The Analysis of Lithosphere–Atmosphere–Ionosphere Coupling Associated with the 2022 Luding Ms6.8 Earthquake
Abstract
:1. Introduction
2. Materials and Methods
2.1. EQ and Solar–Geomagnetic Data
2.2. TEC Data and Method
2.3. Plasma Data and Method
2.4. MODIS Data and Method
2.5. AEF Data and Method
3. Results and Analysis
3.1. Ionospheric TEC Anomalies
3.2. Ionospheric Plasma Anomalies
3.3. Infrared Radiation Anomalies
3.4. AEF Anomalies
4. Discussion
5. Conclusions
- (1)
- The ionospheric multi-parameter anomalies were detected on 26 August under relatively quiet solar–geomagnetic conditions and were less affected by solar flares. The observed parameters included the GIM and GPS TECs from ground-based monitoring and the He+ and O+ densities from satellite monitoring. Combined with the spatial and temporal characteristics of the pre-seismic ionospheric disturbances, the stronger seismo-ionospheric coupling effect around the epicenter 10 days before was potentially associated with the Luding EQ. Meanwhile, the joint analysis of the satellite–ground monitoring data was necessary for the judgment of pre-seismic ionospheric anomalies, and effectively increased the confidence of the anomaly recognition.
- (2)
- In addition to ionospheric disturbances, infrared radiation, the AEF, and hot spring ions all showed pre-seismic anomalous changes. The anomalies in hot spring ions firstly appeared from July to September before and after the EQ, followed by the infrared radiation anomalies in August and the AEF anomalies on 25 August and 4 September. Finally, the ionospheric multi-parameter anomalies appeared on 26 August. The characteristics of the multi-sphere coupling anomalies in temporal evolution and spatial distribution were very obvious, which showed a remarkable correlation with the seismogenic process of the Luding EQ. We suggest that the differential motion and the regional crustal stress accumulation between the Chuandian block and the Bayan Har block might have led to this EQ. The seismic precursor signals propagated upward from the lithosphere to the atmosphere and ionosphere through a geochemical pathway, thus triggering the multi-sphere coupling anomalies, which fully validated the physical mechanism of the LAIC.
- (3)
- The multi-sphere coupling analysis of the Luding EQ provided a reference for the identification of pre-seismic anomalies in the Earth’s multi-sphere structures and indicated that remote sensing and ground-based monitoring technologies play an important role in corroborating and compensating each other. Based on the joint analysis of the multi-sphere coupling anomalies, seismic precursors should be traceable using adequate observation methods and observation point layouts. Furthermore, it is possible to more accurately predict the location and timing of upcoming main shocks once a clearer understanding of the seismogenic process for major EQs can be obtained.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalinin, U.K.; Romanchuk, A.A.; Sergeenko, N.P.; Shubin, V.N. The large-scale isolated disturbances dynamics in the main peak of electronic concentration of ionosphere. J. Atmos. Sol.-Terr. Phys. 2003, 65, 1175–1177. [Google Scholar] [CrossRef]
- Sharma, K.; Dabas, R.S.; Sarkar, S.K.; Das, R.M.; Ravindran, S.; Gwal, A.K. Anomalous enhancement of ionospheric F2 layer critical frequency and total electron content over low latitudes before three recent major earthquakes in China. J. Geophys. Res. Space Phys. 2010, 115, A11313. [Google Scholar] [CrossRef]
- Oikonomou, C.; Haralambous, H.; Pulinets, S.; Khadka, A.; Paudel, S.R.; Barta, V.; Muslim, B.; Kourtidis, K.; Karagioras, A.; Inyurt, S. Investigation of pre-earthquake ionospheric and atmospheric disturbances for three large earthquakes in Mexico. Geosciences 2021, 11, 16. [Google Scholar] [CrossRef]
- Salikhov, N.; Shepetov, A.; Pak, G.; Nurakynov, S.; Ryabov, V.; Saduyev, N.; Sadykov, T.; Zhantayev, Z.; Zhukov, V. Monitoring of Gamma Radiation Prior to Earthquakes in a Study of Lithosphere-Atmosphere-Ionosphere Coupling in Northern Tien Shan. Atmosphere 2022, 13, 1667. [Google Scholar] [CrossRef]
- Hayakawa, M. Electromagnetic phenomena associated with earthquakes: A frontier in terrestrial electromagnetic noise environment. Recent Res. Dev. Geophys. 2004, 6, 81–112. [Google Scholar]
- Pulinets, S.A.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Molchanov, O.; Fedorov, E.; Schekotov, A.; Gordeev, E.; Chebrov, V.; Surkov, V.; Rozhnoi, A.; Andreevsky, S.; Iudin, D.; Yunga, S.; et al. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. Nat. Hazards Earth Syst. Sci. 2004, 4, 757–767. [Google Scholar] [CrossRef]
- Kamogawa, M. Preseismic lithosphere-atmosphere-ionosphere coupling. Eos Trans. Am. Geophys. Union 2006, 87, 417–424. [Google Scholar] [CrossRef]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmoshere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Shahzad, F.; Shah, M.; Riaz, S.; Ghaffar, B.; Ullah, I.; Eldin, S.M. Integrated Analysis of Lithosphere-Atmosphere-Ionospheric Coupling Associated with the 2021 Mw 7.2 Haiti Earthquake. Atmosphere 2023, 14, 347. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Shen, X.H.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Di Giovambattista, R.; Jin, S.; Ippolito, A.; Cianchini, G.; et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw = 7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, X. The development in seismo-ionospheric coupling mechanism. Prog. Earthq. Sci. 2022, 52, 193–202, (In Chinese with an English Abstract). [Google Scholar]
- Barkat, A.; Ali, A.; Rehman, K.; Awais, M.; Riaz, M.S.; Iqbal, T. Thermal IR satellite data application for earthquake research in Pakistan. J. Geodyn. 2018, 116, 13–22. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, X.; Jun, L.; Qi, Y.; Bo, Z.; Chong, Y.; Kang, C.; Lu, X. Influences of multiple layers of air temperature differences on tidal forces and tectonic stress before, during and after the Jiujiang earthquake. Remote Sens. Environ. 2018, 210, 159–165. [Google Scholar]
- Ouzounov, D.; Liu, D.; Kang, C.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P.; Cui, Y.; Sun, K. Microwave brightness temperature characteristics of three strong earthquakes in Sichuan province, China. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 513–522. [Google Scholar]
- Jing, F.; Zhang, L.; Singh, R.P. Pronounced Changes in Thermal Signals Associated with the Madoi (China) M 7.3 Earthquake from Passive Microwave and Infrared Satellite Data. Remote Sens. 2022, 14, 2539. [Google Scholar] [CrossRef]
- Zhang, T.B.; Yang, X.; Lu, Q. Variation features of satellite infrared radiation time series associated with Ms ≥ 7.0 earthquakes occurred in the Mid-Eastern Bayan Har block. Chin. J. Geophys. 2023, 66, 1496–1507, (In Chinese with an English Abstract). [Google Scholar]
- Smirnov, S. Association of the negative anomalies of the quasistatic electric field in atmosphere with Kamchatka seismicity. Nat. Hazards Earth Syst. Sci. 2008, 8, 745–749. [Google Scholar] [CrossRef]
- Mizuno, A.; Takashima, K. Continuous measurement of current in air and possible relation with intense earthquake. J. Electrost. 2013, 71, 529–532. [Google Scholar] [CrossRef]
- Choudhury, A.; Guha, A.; De, B.K. A statistical study on precursory effects of earthquakes observed through the atmospheric vertical electric field in northeast India. Ann. Geophys. 2013, 56, R0331. [Google Scholar]
- Harrison, R.G.; Nicoll, K.A. Fair weather criteria for atmospheric electricity measurements. J. Atmos. Sol. Terr. Phys. 2018, 179, 239–250. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, X.; Zhang, X.; Jin, X.; Wu, H.; Ti, S.; Li, R.; Li, L.; Wang, S. Imminet estimation of earthquake hazard by regional network monitoring the near surface vertical atmospheric electrostatic field. Chin. J. Geophys. 2021, 64, 1145–1154, (In Chinese with an English abstract). [Google Scholar]
- Jin, X.B.; Zhang, L.; Bu, J.W.; Qiu, G.L.; Ma, L.; Liu, C.; Li, Y.D. Discussion on anomaly of atmospheric electrostatic field in Wenchuan Ms8.0 earthquake. J. Electrost. 2020, 104, 103423. [Google Scholar] [CrossRef]
- Pulinets, S.; Davidenko, D. Ionospheric precursors of earthquakes and Global Electric Circuit. Adv. Space Res. 2014, 53, 709–723. [Google Scholar] [CrossRef]
- Ryu, K.; Lee, E.; Chae, J.S.; Parrot, M.; Pulinets, S. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements. J. Geophys. Res. Space Phys. 2014, 119, 8524–8542. [Google Scholar] [CrossRef]
- Klimenko, M.V.; Klimenko, V.V.; Karpov, I.V.; Zakharenkova, I.E. Simulation of Seismo-Ionospheric Effects initiated by internal gravity wave. Russ. J. Phys. Chem. 2011, B5, 393–401. [Google Scholar] [CrossRef]
- Le, H.; Liu, J.; Zhao, B.Q.; Liu, L.B. Recent progress in ionospheric earthquake precursor study in China: A brief review. J. Asian Earth Sci. 2015, 114, 420–430. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Pulinets, S.; Tsai, Y.; Chuo, Y. Seismo-ionospheric signatures prior to M ≥ 6.0 Taiwan earthquakes. Geophys. Res. Lett. 2000, 27, 3113–3116. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Jhuang, H.K.; Lin, Y.H. Ionospheric foF2 and TEC anomalous days associated with M ≥ 5.0 earthquakes in Taiwan during 1997–1999. Terr. Atm. Ocean Sci. 2004, 15, 371–383. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Chen, C.; Hattori, K. Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M9.3 Sumatra-Andaman Earthquake. J. Geophys. Res. 2010, 115, A09312. [Google Scholar] [CrossRef]
- Le, H.; Liu, J.Y.; Liu, L. A statistical analysis of ionospheric anomalies before 736 M 6.0+ earthquakes during 2002–2010. J. Geophys. Res. 2011, 116, A02303. [Google Scholar]
- Zhang, X.M.; Wang, Y.L.; Boudjada, M.Y.; Liu, J.; Magnes, W.; Zhou, Y.L.; Du, X.H. Multi-Experiment Observations of Ionospheric Disturbances as Precursory Effects of the Indonesian Ms6.9 Earthquake on August 05, 2018. Remote Sens. 2020, 12, 4050. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Zhang, X.; Wang, Z.; Zhou, C. Ionospheric total electron content anomaly possibly associated with the April 4, 2010 Mw7.2 Baja California earthquake. Adv. Space Res. 2022, 69, 2126–2141. [Google Scholar] [CrossRef]
- Zhima, Z.; Yan, R.; Lin, J.; Wang, Q.; Yang, Y.; Lv, F.; Huang, J.; Cui, J.; Liu, Q.; Zhao, S.; et al. The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite. Remote Sens. 2022, 14, 905. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.; Liu, J.; Shen, X. Two Large Earthquakes Registered by the CSES Satellite during Its Earthquake Prediction Practice in China. Atmosphere 2022, 13, 751. [Google Scholar] [CrossRef]
- Xie, T.; Chen, B.; Wu, L.; Dai, W.; Kuang, C.; Miao, Z. Detecting seismo-ionospheric anomalies possibly associated with the 2019 Ridgecrest (California) earthquakes by GNSS, CSES, and Swarm observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028761. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, C.; Long, F.; Yan, Y. Suspected Seismo-Ionospheric Anomalies before Three Major Earthquakes Detected by GIMs and GPS TEC of Permanent Stations. Remote Sens. 2022, 14, 20. [Google Scholar] [CrossRef]
- Zhao, S.F. Research of Lithosphere-Atmosphere-Ionosphere Coupling Mechanism Related to Earthquakes. Master’s Thesis, Institute of Earthquake Forecasting, China Earthquake Administration, Beijing, China, June 2010. [Google Scholar]
- Yang, X.B. Study of Lithosphere-Atmosphere-Ionosphere Electric Field Coupling. Ph.D. Thesis, Wuhan University, Wuhan, China, June 2015. [Google Scholar]
- Zhong, M.J. A Study on Thermal Infrared Anomalies and Ionospheric Disturbances of Strong Earthquakes. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, June 2021. [Google Scholar]
- Qu, Z.; Zhu, B.J.; Cao, Y.T.; Fu, H.R. Rapid report of seismic damage to buildings in the 2022 M 6.8 Luding earthquake, China. Earthq. Res. Adv. 2023, 3, 100180. [Google Scholar] [CrossRef]
- Yi, G.X.; Long, F.; Liang, M.J.; Zhao, M.; Zhang, H.P.; Zhou, R.J.; Li, Y.; Liu, H.; Wu, P.; Wang, S.W.; et al. Seismogenic structure of 5 September 2022 Sichuan Luding Ms6.8 earthquake sequence. Chin. J. Geophys. 2023, 66, 1363–1384, (In Chinese with an English Abstract). [Google Scholar]
- Xiong, B. Ionospheric Response to Solar Flare and GPS-TEC Monitoring. Ph.D. Thesis, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, May 2012. [Google Scholar]
- Chen, Y.I.; Chuo, J.Y.; Liu, J.Y.; Puilnets, S.A. Statistical Study of Ionospheric Precursors of Strong Earthquake at Taiwan Area, XXIVth General Ass.; URSI: Paris, France, 1999; p. 745. [Google Scholar]
- Wen, Y.Z.; Tao, D.; Wang, G.X.; Zong, J.Y.; Cao, J.B.; Battiston, R.; ZeRen, Z.M.; Shen, X.H. Ionospheric TEC and plasma anomalies possibly associated with the 14 July 2019 Mw 7.2 Indonesia Laiwui earthquake, from analysis of GPS and CSES data. Earth Planet. Phys. 2022, 6, 313–328. [Google Scholar] [CrossRef]
- Chen, S.Y.; Liu, P.X.; Liu, L.Q.; Ma, J.; Chen, G.Q.; Hu, X.Y. Comparative analysis between land surface temperatures obtained by field measurement and satellite remote sensing and its implication in earthquake research. Chin. J. Geophys. 2011, 54, 747–755, (In Chinese with an English Abstract). [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.P.; Jiang, L.M.; Xin, H.; Zhang, T.B.; Lu, X. Correlation analysis between Modis brightness temperature and surface temperature provided by meteorological station. Seismol. Geol. 2010, 32, 127–137, (In Chinese with an English Abstract). [Google Scholar]
- Hang, T.B.; Lu, Q.; Liu, F.; Xin, H. Analysis on infrared anomalous increase of Modis satellite before Wenchuan M 8.0 and Yushu M 7.1 earthquakes. J. Seismol. Res. 2013, 36, 496–501, (In Chinese with an English Abstract). [Google Scholar]
- Shan, X.J.; Li, Y.C.; Gao, Z.Y.; Hua, J.; Huang, X.; Gong, W.Y.; Qu, C.Y.; Zhao, D.Z.; Chen, J.X.; Huang, C.C.; et al. Coseismic deformation of the 2022 Luding Ms6.8 earthquake and seismic potential along adjacent major faults. Chin. Sci. Bull. 2023, 68, 944–953, (In Chinese with an English Abstract). [Google Scholar] [CrossRef]
- Zhang, G.M.; Zhang, P.Z. Academic progress on the mechanism and forecast for continental strong earthquake in the first two years. China Basic Sci. 2000, 10, 6–12. [Google Scholar]
- Zhang, P.Z.; Deng, Q.D.; Zhang, G.M.; Ma, J.; Gan, W.J.; Min, W.; Mao, F.Y.; Wang, Q. Active tectonic blocks and strong earthquakes in the continent of China. Sci. China Ser. D Earth Sci. 2003, 46 (Suppl. S2), 13–24. [Google Scholar]
- Freund, F. Charge generation and propagation in igneous rocks. J. Geodyn. 2002, 33, 543–570. [Google Scholar] [CrossRef]
- Wu, L.X.; Liu, S.J.; Wu, Y.H.; Wang, C.Y. Precursors for rock fracturing and failure—Part I: IRR image abnormalities. Int. J. Rock Mech. Min. Sci. 2006, 43, 473–482. [Google Scholar] [CrossRef]
- Wu, L.X.; Mao, W.F.; Liu, S.J.; Xu, Z.Y.; Li, Z.W.; Qi, Y.; Miao, C.L. Mechanisms of altering infrared-microwave radiation from stressed rock and key issues on crust stress remote sensing. J. Remote Sens. 2018, 22 (Suppl. S1), 146–161, (In Chinese with an English Abstract). [Google Scholar]
- Zhong, M.; Shan, X.; Zhang, X.; Qu, C.; Guo, X.; Jiao, Z. Thermal Infrared and Ionospheric Anomalies of the 2017 Mw 6.5 Jiuzhaigou Earthquake. Remote Sens. 2020, 12, 2843. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seis-moionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res. 2009, 114, A04320. [Google Scholar]
- Chen, P.; Yao, Y.B.; Chen, J.J.; Yao, W.Q.; Zhu, X.J. Study of the 2013 Lushan M7.0 earthquake coseismic ionospheric dis turbances. Adv. Space Res. 2014, 54, 2194–2199. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X. Ionospheric Disturbances Possibly Associated with Yangbi Ms6.4 and Maduo Ms7.4 Earthquakes in China from China Seismo Electromagnetic Satellite. Atmosphere 2022, 13, 438. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Wu, W.; Chen, C.; Wang, M.; Yang, M.; Guo, Y.; Wang, J. The Seismo-Ionospheric Disturbances before the 9 June 2022 Maerkang Ms6.0 Earthquake Swarm. Atmosphere 2022, 13, 1745. [Google Scholar] [CrossRef]
- Zhou, X.C.; Du, J.G.; Chen, Z.; Cheng, J.W.; Tang, Y.; Yang, L.M.; Xie, C.; Cui, Y.J.; Liu, L.; Yi, L.; et al. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms8.0 earthquake, southwestern China. Geochem. Trans. 2010, 11, 5. [Google Scholar] [CrossRef]
- Koike, K.; Yoshinaga, T.; Ueyama, T.; Asaue, H. Increased radon-222 in soil gas because of cumulative seismicity at active faults. Earth Planets Space 2014, 66, 57. [Google Scholar] [CrossRef]
- Fu, C.C.; Yang, T.F.; Tsai, M.C.; Lee, L.C.; Liu, T.K.; Walia, V.; Chen, C.H.; Chang, W.Y.; Kumar, A.; Lai, T.H. Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the Longitudinal Valley of eastern Taiwan. Chem. Geol. 2017, 469, 163–175. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Guan, Z.; Chen, Z.; Zhang, L.; Lv, C.; Sun, F. Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan, southwestern of China. Appl. Geochem. 2018, 89, 23–33. [Google Scholar] [CrossRef]
- Surkov, V.V.; Pilipenko, V.A.; Silina, A.S. Can Radioactive Emanations in a Seismically Active Region Affect Atmospheric Electricity and the Ionosphere? Izv. Phys. Solid Earth 2022, 58, 297–305. [Google Scholar] [CrossRef]
- Schekotov, A.; Hayakawa, M.; Potirakis, S.M. Does air ionization by radon cause low-frequency atmospheric electromagnetic earthquake precursors? Nat. Hazards 2021, 106, 701–714. [Google Scholar] [CrossRef]
- Song, S.R.; Chen, Y.L.; Liu, C.M.; Ku, W.Y.; Chen, H.F.; Liu, Y.J.; Kuo, L.W.; Yang, T.F.; Chen, C.H.; Liu, T.K.; et al. Hydrochemical changes in spring waters in Taiwan: Implications for evaluating sites for earthquake precursory monitoring. Terr. Atmos. Ocean. Sci. 2005, 16, 745–762. [Google Scholar] [CrossRef]
- Skelton, A.; Claesson, L.L.; Wästeby, N.; Andrén, M.; Stockmann, G.; Sturkell, E.; Mörth, C.M.; Stefansson, A.; Tollefsen, E.; Siegmund, H. Hydrochemical changes before and after earthquakes based on long term measurements of multiple parameters at 2 sites in northern Iceland—A review. J. Geophys. Res. Solid Earth. 2019, 124, 2702–2720. [Google Scholar] [CrossRef]
- Nakagawa, K.; Yu, Z.Q.; Berndtsson, R.; Hosono, T. Temporal characteristics of groundwater chemistry affected by the 2016 Kumamoto earthquake using self-organizing maps. J. Hydrol. 2020, 582, 124519. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, X.; Zhou, Y.; Yan, Y.; Li, Y.; Ouyang, S.; Liu, F.; Zhong, J. Hydrogeochemistry and Precursory Anomalies in Thermal Springs of Fujian (Southeastern China) Associated with Earthquakes in the Taiwan Strait. Water 2021, 13, 3523. [Google Scholar] [CrossRef]
- Chen, Z.; Du, J.; Zhou, X.; Yi, L.; Liu, L.; Xie, C.; Cui, Y.; Li, Y. Hydrochemistry of the hot springs in western Sichuan Province related to the Wenchuan Ms8.0 earthquake. Sci. World J. 2014, 2014, 901432. [Google Scholar]
- Chen, Z.; Zhou, X.C.; Du, J.G.; Xie, C.; Liu, L.; Li, Y.; Yi, L.; Liu, H.; Cui, Y.J. Hydrochemical characteristics of thermal spring waters in the Kangding district related to the Lushan Ms = 7.0 earthquake in Sichuan, China. Nat. Hazards Earth Syst. Sci. Discuss. 2015, 2, 1149–1156. [Google Scholar] [CrossRef]
No. | Hot Springs | Lon. (°) | Lat. (°) | Distance from Epicenter (km) | Type of Exception | Duration |
---|---|---|---|---|---|---|
1 | Xinxing | 102.06 | 29.75 | 18 | SO42− ↑ | 27 May–28 August 2022 |
2 | Gongyi sea | 102.39 | 29.02 | 67 | Na+ ↑ | 18 May–24 September 2022 |
SO42− ↑ | 20 July–18 September 2022 | |||||
3 | Guanding | 101.96 | 29.95 | 42 | Cl− ↑ | 25 August–24 September 2022 |
Na+ ↑ | 25 August–24 September 2022 | |||||
4 | Chuanxing | 102.31 | 27.87 | 198 | Cl− ↑ | 27 July–24 September 2022 |
Na+ ↑ | 27 July–24 September 2022 | |||||
5 | Heba | 101.50 | 27.10 | 283 | Na+ ↑ | 2 August–24 September 2022 |
SO42− ↑ | 2 August–24 September 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, X.; Yang, X.; Yang, M.; Zhang, T.; Bao, Z.; Wu, W.; Qiu, G.; Yang, X.; Lu, Q. The Analysis of Lithosphere–Atmosphere–Ionosphere Coupling Associated with the 2022 Luding Ms6.8 Earthquake. Remote Sens. 2023, 15, 4042. https://doi.org/10.3390/rs15164042
Liu J, Zhang X, Yang X, Yang M, Zhang T, Bao Z, Wu W, Qiu G, Yang X, Lu Q. The Analysis of Lithosphere–Atmosphere–Ionosphere Coupling Associated with the 2022 Luding Ms6.8 Earthquake. Remote Sensing. 2023; 15(16):4042. https://doi.org/10.3390/rs15164042
Chicago/Turabian StyleLiu, Jiang, Xuemin Zhang, Xianhe Yang, Muping Yang, Tiebao Zhang, Zhicheng Bao, Weiwei Wu, Guilan Qiu, Xing Yang, and Qian Lu. 2023. "The Analysis of Lithosphere–Atmosphere–Ionosphere Coupling Associated with the 2022 Luding Ms6.8 Earthquake" Remote Sensing 15, no. 16: 4042. https://doi.org/10.3390/rs15164042
APA StyleLiu, J., Zhang, X., Yang, X., Yang, M., Zhang, T., Bao, Z., Wu, W., Qiu, G., Yang, X., & Lu, Q. (2023). The Analysis of Lithosphere–Atmosphere–Ionosphere Coupling Associated with the 2022 Luding Ms6.8 Earthquake. Remote Sensing, 15(16), 4042. https://doi.org/10.3390/rs15164042