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Abstract: Studying the spatiotemporal distribution pattern of carbon storage, balancing land de-
velopment and utilization with ecological protection, and promoting urban low-carbon sustainable
development are important topics under China’s “dual carbon strategy” (Carbon emissions stabilize
and harmonize with natural carbon absorption). However, existing research has paid little attention
to the impact of land use changes under different spatial policies on the provincial-scale ecosystem
carbon storage. In this study, we established a carbon density database for Liaoning Province and
obtained the spatial and temporal distribution of carbon storage over the past 20 years. Then, based
on 16 driving factors and multiple spatial policies in Liaoning Province, we predicted land use
and land cover changes (LUCC) under three scenarios for 2050 and analyzed the spatiotemporal
distribution characteristics and response mechanisms of carbon storage under different scenarios. The
results showed that (1) LUCC directly affected carbon storage, with a 35.61% increase in construction
land and a decrease in carbon storage of 0.51 Tg over the 20-year period. (2) From 2020 to 2050, the
carbon storage varied significantly among the natural trend scenario (NTS), ecological restoration
scenario (ERS), and economic priority scenario (EPS), with values of 2112.05 Tg, 2164.40 Tg, and
2105.90 Tg, respectively. Carbon storage in the ecological restoration scenario exhibited positive
growth, mainly due to a substantial increase in forest area. (3) The spatial pattern of carbon storage
in Liaoning Province was characterized by “low in the center, high in the east, and balanced in the
west”. Therefore, Liaoning Province can consider rationally formulating and strictly implementing
the spatial policy of ecological protection in the future land planning so as to control the disorderly
growth of construction land, realize the growth of ecological land area, effectively enhance carbon
storage, and ensure the realization of the goal of “dual carbon strategy”.

Keywords: carbon storage; land use change; multisource remote sensing data; InVEST model; PLUS
model; Liaoning Province

1. Introduction

Global warming caused by greenhouse gas emissions such as carbon dioxide has
become a serious climate problem facing human society and has a profound impact on
global ecosystems [1]. In 2021, countries successively put forward the goal of achieving
“net-zero carbon emissions” (Carbon emissions and the amount of natural removal to be
balanced) [2]. The increase in terrestrial ecosystem carbon storage plays a vital role in
reducing CO2 content. LUCC directly cause changes in vegetation biomass and soil carbon
sequestration, thus affecting carbon storage [3]. Carbon storage is widely considered to
be a key indicator to measure the value of ecosystem services. By studying the response
relationship and spatial distribution characteristics between carbon storage and LUCC, we
can effectively monitor regional carbon changes [4].
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At present, the evaluation methods of the LUCC response mechanism to carbon storage
mainly include remote sensing estimation methods [5], empirical statistical models [6], and
IPCC inventory approach [7,8]. Among them, the InVEST model can efficiently calculate
and visualize carbon storage based on carbon pool data and has obvious advantages in
reflecting the scale characteristics of carbon storage and the changes in spatiotemporal
series [9]. At present, scholars from many countries have used the InVEST model to couple
LUCC simulation models, such as CA-Markov, CLUE-S, SLEUTH, FLUS, revealing the
spatiotemporal variation characteristics of carbon storage. Among the above models,
the PLUS can best mine the inducement of various LUCC and simulate the patch-level
changes. The model allows for the addition of future spatial policy elements, which can
more scientifically simulate future LUCC under different policy scenarios [10,11]. Previous
research has explored the influence of LUCC on carbon storage, including national [12],
provincial [13], urban agglomeration [14,15], arid area [16], watershed [17,18], coastal
zone [19], city [20,21], and county [22] scales. In summary, the existing research has
extensively discussed the influence of LUCC on carbon storage and predicted future
changes in carbon storage. However, most of these previous studies did not consider
the impact of spatial planning policies on LUCC and carbon storage changes. Moreover,
most of the previous prediction models lack the ability to mine LUCC-driving factors,
resulting in a lack of reports on the linkage mechanism of LUCC-driving factors to carbon
storage distribution.

Following the analysis of carbon storage by the InVEST model, scholars from var-
ious countries found that carbon storage and carbon density have generally shown a
downward trend, and urbanization, farmland expansion, and deforestation were the main
reasons [23,24]. However, some studies have found that ecological protection policies
have greatly increased the coverage area of forests and grasslands, effectively inhibited
the downward trend of carbon storage, and even increased carbon storage [25,26]. There-
fore, to explore the effect of spatial planning policies, some scholars have carried out
multi-scenario simulations of LUCC. Most of the research results show that the value of
ecological service systems under ecological protection scenarios is significantly better than
that under other scenarios (such as farmland protection scenarios and high urbanization
scenarios) [27–29]. The spatial heterogeneity of carbon storage is often caused by many fac-
tors. Some studies have found that carbon storage-intensive areas are usually distributed in
mountainous forest areas with higher altitudes. However, after the altitude exceeds 4000 m,
the climate leads to a decline in biodiversity, and carbon storage decreases with increasing
altitude [30,31]. Existing research on the driving factors shows that geographical factors
(such as topography and slope) and climatic factors (such as annual average rainfall) are
usually the main driving factors affecting carbon storage [32], and economic development
sometimes promotes an increase in carbon storage [33].

Liaoning Province, as China’s heavy industrial base and a province with high energy
consumption, is the key area to implement the dual carbon target. The Implementation
Plan of Carbon Peak in Liaoning Province, promulgated in 2022, clearly pointed out the
need to consolidate and enhance carbon sink capacity. This study estimates and predicts
the carbon storage and its spatial pattern characteristics in Liaoning Province from 2000 to
2020 and in the future up to 2050 by using the InVEST and PLUS models. The purposes are
as follows: (1) to elucidate the impact mechanism of the spatiotemporal evolution of LUCC
on carbon storage in Liaoning Province in the last 20 years; (2) to study the impact of LUCC
on carbon storage at provincial scale under the influence of different spatial policies in the
future; and (3) to analyze the spatiotemporal distribution characteristics of carbon storage.

2. Materials and Methods
2.1. Study Area

Liaoning Province (E118◦53′~125◦46′, N38◦45′~43◦26′) is located in southern north-
east China (Figure 1). The total area of Liaoning Province is 1.48 × 105 km2. In 2020,
the resident population was 42,591,407, and the regional GDP was 2758.41 billion yuan,
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of which secondary industry accounted for 37.4%. Mountains and plains are the main
geomorphological types in Liaoning Province, accounting for 59.5% and 32.4% of the area,
respectively. Liaoning Province, as a critical heavy industrial base, has abundant natural
resources and a solid industrial foundation and has made a tremendous contribution to
the process of industrialization in China. In 2003, with the proposal of the “Revitaliza-
tion Plan of Northeast China”, Liaoning Province ushered in a new development peak.
Energy-intensive industries such as equipment manufacturing, petrochemical, and metal-
lurgical industries are the main economic pillars of Liaoning Province. In 2019, Liaoning
Province emitted 533.4 Mt of carbon dioxide, accounting for 5.44% of the total emissions
from China [34].
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Figure 1. Location and terrain of Liaoning Province.

2.2. Methods
2.2.1. InVEST Model

The carbon storage module of the InVEST model assesses carbon storage using land
use types as the units of measurement for the land surface. It can effectively evaluate the
quantity and value of ecosystem services. The total carbon storage in the study area was
estimated by multiplying the total area of different land types with their corresponding
average carbon densities. We utilized the InVEST model to analyze carbon storage in
Liaoning Province and predict its spatial distribution based on simulated LUCC in the
province by 2050. The formulae are as follows:

Ci = Ci_above+Ci_below+Ci_soil+Ci_dead (1)

Ctotal = ∑n
i=1 Ci × Si, (2)

where i is the i-th land use type; Ci is the total carbon density of land use type i (Mg·hm−2);
Ci_above, Ci_below, Ci_soil and Ci_dead are the aboveground, underground, soil, and dead organic
average carbon density of land use type i (Mg·hm−2), respectively; Ctotal is the total carbon
storage (Mg); Si is the area of land use type i (hm2); and n is the number of land use types,
with a value of 6 in this study [35].

2.2.2. Markov-PLUS Model

The Markov model is a predictive method based on the Markov stochastic process. It
utilizes an initial state vector and transfer probability matrix to forecast the future trend of
LUCC change. This model is particularly suitable when landscape changes are not explicitly
defined and exhibit a stable pattern. The calculation can be summarized as follows:

St+1 = Pmn × St, (3)
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where St is the land use situation in the period of t; St+1 is the land use situation in the
period of t + 1; and Pmn is the probability of land transfer from land use type m to land use
type n.

In this study, we employ the Markov model to predict the land use demand for
various types of land in Liaoning Province up to the year 2050, considering the change
trend observed in the overall land use structure from 2010 to 2020. However, it is important
to note that the Markov model alone does not account for the spatial variation of land types.
To address this limitation, we complement our analysis by incorporating the PLUS model,
which allows us to simulate the spatial evolution of land changes based on the predicted
land demand.

PLUS is an LUCC model developed by Liang Xun et al. (2021) of China University of
Geosciences. It has higher simulation accuracy and maneuverability than other models [36].
It integrates the stochastic seed mechanism in the planning development zone based on
stochastic forest and takes the driving and guiding role of the ecological construction zone
and planning development zone into account in the process of regional development. It is
mainly based on LEAS and CARS. The LEAS module can sample the LUCC and use the
stochastic forest algorithm to calculate the expansion odds of various types of land and
the contribution rate of driving factors. Then, based on the CARS module, combined with
the pixel values of different land types and the domain weights, the future LUCC can be
simulated and predicted. The domain weight is determined based on the proportion of
the expanded area for each land use type from 2000 to 2020, relative to the total expansion
area. To achieve the optimal simulation results, the weight values have been fine-tuned as
follows: 0.320 for farmland, 0.238 for forestland, 0.090 for grassland, 0.046 for water, 0.305
for construction land, and 0.001 for unused land.

This study first extracted the LUCC in Liaoning Province from 2000 to 2020 by the
LEAS module, simulated the LUCC in 2020 by combining the data of 16 driving factors. In
order to test the applicability of the PLUS model to the study area, we compared the land
use data of Liaoning Province in 2020 simulated by the PLUS model with the real land use
data of Liaoning Province in 2020 and used the Kappa coefficient and the overall accuracy
to quantitatively describe the simulation accuracy. Usually, a value of kappa index greater
than 0.8 is statistically satisfactory [11,37,38]. The verification results show that the Kappa
coefficient and the overall accuracy reach 0.829 and 89.30%, respectively, which proves
that the simulation accuracy meets the requirements, and the PLUS model can truly reflect
the rule of spatial variation of land use in Liaoning Province. Therefore, the PLUS model
is applicable to the LUCC simulation in Liaoning Province and can be used for LUCC
prediction in the study area in 2050.

2.2.3. Scenario Setting

Considering that the social and economic development and natural conditions of
different study areas have their own characteristics, the simulation of future land use
spatial changes needs to be combined with the actual situation of the study area for specific
analysis [39]. Based on the various development planning and policy frameworks of Liaon-
ing Province, this study adds several spatial policy elements in the land and space planning
of Liaoning Province and uses scenario analysis to assume three development scenarios.

• NTS: Assuming that the demand for land use is not affected by subsequent policies,
continue to maintain the existing trend evolution.

• ERS: According to the principles of multiple ecological protection planning in Liaoning
Province, ecological restoration and comprehensive management are promoted. It
is assumed that under the ecological restoration scenario, the construction goal of
increasing forestland coverage by 0.5% every 5 years in the 14th Five-Year Forestry and
Grassland Development Plan of Liaoning Province must be achieved. In the Markov
model, the probability of forestland conversion to other land uses is reduced by 60%,
and the policy of returning farmland to forest and grassland and desertification control
is further promoted. The probability of transfer of farmland and unused land outside
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the permanent basic farmland area (farmland designated by the government that
needs protection and cannot be used for other purposes) to forestland and grassland
is increased by 20%. Adding forest parks and ecological protection red lines (areas
with special and important ecological functions designated by the government) as
forestland construction areas, the priority of forestland expansion in this area is higher
than that of other land types.

• EPS: It is assumed that the study area will be driven by economic development in
the future, and the probability of conversion from other land to construction land
will increase by 20%. In order to attract external production factors and promote the
economic development of Liaoning Province, national economic development zones
and provincial economic development zones are added as economic construction
zones; the priority of construction land expansion in this area is higher than that of
other land types.

2.2.4. Spatial Autocorrelation Analysis

The average carbon density of each county is calculated in ArcGIS, and Moran’s I value
is calculated based on the carbon density value to obtain the global autocorrelation results.
The range of Moran’s I values is [−1, 1]. If the value is greater than 0, it means that the
observed values of attributes have positive spatial correlation. Finally, local autocorrelation
results and LISA (local indicators of spatial association) clustering of cities and counties are
obtained via Anselin Local Moran’s I.

2.3. Data Sources
2.3.1. The Remote Sensing Dataset of LUCC

In this study, the dataset of LUCC in Liaoning Province was derived from the land
cover data of China, released by Professor Yang Jie and Huang Xin’s team of Wuhan Univer-
sity. The overall accuracy of the dataset is 79.31%, and there are 9 first-level categories [40].
Referring to the classification of land resources, the land use types in Liaoning Province
were reclassified into 6 types, namely farmland, forestland, grassland, water, construction
land and unused land. To reduce the computation and ensure the accuracy of LUCC
simulation, the spatial resolution was resampled to 90 m.

2.3.2. Carbon Density Data

The carbon pool data mainly refer to the public dataset and previous literature. In
order to minimize the error, the carbon density data obtained via the field sampling of
various types of land in Liaoning Province and adjacent research areas are selected as much
as possible, and the average value is calculated. For carbon density data with multiple
data sources, average processing is also performed. Some carbon density datasets further
classify land use types into secondary classes, such as forests (subdivided into broad-leaved
forests, coniferous forests, and coniferous and broad-leaved mixed forests). We calculate
the carbon density based on the weighted average of the proportion of secondary land
types in the third land survey and statistical yearbook published by Liaoning Province.
Finally, we obtain the carbon density values of the four carbon pools corresponding to
different land use types in Liaoning Province (Table 1).

2.3.3. Driving Factors Data

Selection of driving factors: The driving factors of LUCC mainly included 2 socioe-
conomic data points, 7 accessibility data points, and 7 climate and environmental data
points (Table 2). To meet the requirements of the model’s operation, all factor resolutions
were uniformly resampled to a 90 m resolution. To ensure the scientific validity of factor
contribution calculations, a normalization treatment was applied, normalizing the value
range of each factor to [0, 1].
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Table 1. Carbon density database of Liaoning Province (Mg·hm−2).

Land Use
Type Ci_above Ci_below Ci_soil Ci_dead Ctotal Data Sources

Farmland 21.09 9.07 72.34 0 102.50 [41–45]
Forestland 86.12 46.08 105.62 2.15 239.97 [43–46]
Grassland 14.34 14.15 56.81 0.24 85.54 [43–45,47–51]

Water 6.94 6.88 42.35 0.76 56.94 [43–45,52]
Construction

land 10.51 8.24 41.78 0.58 61.11 [41,43,45,53–55]

Unused land 9.14 11.74 21.50 0 42.38 [44,45]

Table 2. Information related to LUCC driving factor data.

Data Category Data Name Data Source Data Accuracy

Socioeconomic data
Population

Open Spatial Demographic Data and
Research (https://www.worldpop.org/,

accessed on 25 August 2022)
100 m × 100 m

Gross Domestic
Product (GDP)

Global Change Research Data Publishing
& Repository (http://www.geodoi.ac.cn,

accessed on 31 August 2022)
1 km × 1 km

Accessibility data

Distance to the railway

OpenStreetMap
(https://www.openstreetmap.org/,

accessed on 24 August 2022)
90 m × 90 m

Distance to the highway
Distance to the expressway
Distance to the trunk road
Distance to the secondary

trunk road
Distance to the bypass

Distance to the city center

Climate and
environmental data

Soil type
National Qinghai-Tibet Plateau Scientific

Data Center (http://data.tpdc.ac.cn/,
accessed on 18 October 2022)

1 km × 1 km

Distance to the river
Open Street Map

(https://www.openstreetmap.org/,
accessed on 25 August 2022)

90 m × 90 m

Annual average temperature WorldClim
(https://worldclim.org/data/index.html,

accessed on 7 September 2022)
490 m × 490 m

Average annual rainfall

Digital elevation
model (DEM)

Geospatial Data Cloud
(http://www.gscloud.cn, accessed on 22

August 2022)
30 m × 30 m

Slope
Aspect of slope

3. Results
3.1. Spatial Change in Land Use

From 2000 to 2020, the proportion of farmland area was always the highest, followed
by that of forestland and construction land (Table 3). Construction land and forestland
increased continuously, and water increased and then decreased greatly. Among all land
use types, construction land had the largest increase, increasing by 4008.57 km2 in the
past 20 years, an increase of 35.61%; grassland decreased by 2440.00 km2 and farmland
decreased by 2380.07 km2, among which, grassland decreased the most, with a total
decrease of 28.32%.

https://www.worldpop.org/
http://www.geodoi.ac.cn
https://www.openstreetmap.org/
http://data.tpdc.ac.cn/
https://www.openstreetmap.org/
https://worldclim.org/data/index.html
http://www.gscloud.cn
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Table 3. LUCC area in different periods of Liaoning Province from 2000 to 2020 (km2).

Land Use Type 2000 2010 2020 2000–2010 2010–2020 2000–2020

Farmland 73,575.60 72,171.92 71,195.53 −1403.68 −976.39 −2380.07
Forestland 50,445.49 50,873.41 51,297.33 427.92 423.92 851.84
Grassland 8616.00 7293.65 6176.00 −1322.35 −1117.65 −2440

Water 2059.21 2324.72 2053.03 265.51 −271.69 −6.18
Construction land 11,257.35 13,321.05 15,265.92 2063.70 1944.87 4008.57

Unused land 59.74 28.64 25.58 −31.10 −3.06 −34.16

From 2000 to 2020, the area of farmland transferred to construction land was the largest,
reaching 3362.78 km2, followed by the transfer of forestland and grassland to farmland,
which had values of 2192.03 km2 and 2072.93 km2, respectively (Table 4). Figure 2a shows
the spatial distribution of land use type transfer in Liaoning Province, and the main change
patterns are visualized using a Sankey diagram in Figure 2b. The farmland with land type
transfer was mainly distributed in the Shenyang modern metropolitan area, which means
that Shenyang has developed outwards, occupying a large amount of farmland for urban
construction. A large area of forestland was transferred to farmland and construction land
in the eastern hilly zone, and the transfer area of forestland in the eastern hilly zone was
more than that in the western zone.

Table 4. Transfer area of various land use types in Liaoning Province from 2000 to 2020 (km2).

2020

Farmland Forestland Grassland Water Construction
Land

Unused
Land Total Total

Transfer-Out

2000

Farmland 66,679.63 1956.16 1177.92 396.37 3362.78 2.75 73,575.60 6895.98
Forestland 2192.03 47,943.19 79.70 3.69 226.67 0.21 50,445.49 2502.30
Grassland 2072.93 1391.73 4910.91 5.67 222.89 11.88 8616.00 3705.09

Water 183.28 5.60 1.79 1407.20 458.00 3.35 2059.21 652.01
Construction land 52.67 0.62 0.41 235.26 10,967.73 0.66 11,257.35 289.62

Unused land 15.00 0.04 5.28 4.83 27.86 6.73 59.74 53.01
Total 71,195.53 51,297.33 6176.00 2053.03 15,265.92 25.58 146,013.39 ——

Total transfer-in 4515.90 3354.15 1265.09 645.82 4298.19 18.85 —— 14,098.00
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different land use types.

3.2. Driving Forces of Land Use Change

According to Figure 3, population factors had a great impact on the changes in farm-
land, forestland, grassland, and construction land, with contribution rates of 0.119, 0.111,
0.086, and 0.154, respectively. The DEM, slope, and other topographic factors were the
first three driving forces affecting the transformation of farmland, forestland, water, and
construction land. The DEM factor was the largest driving force of farmland transforma-
tion, with a contribution rate of 0.143. The slope factor was the largest driving force of
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forestland expansion, with a contribution rate of 0.148. The contribution rate of the GDP
factor to unused land reached 0.480, which indicates that economic factors influence the
development of unused land to a great extent.
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(c) grassland, (d) water, (e) construction land and (f) unused land.

3.3. Spatiotemporal Variation Characteristics of Carbon Storage

The simulation results of carbon storage in Liaoning Province in 2000, 2010, and 2020
were 2119.16 Tg, 2117.72 Tg, and 2118.65 Tg, respectively. From 2000 to 2020, carbon storage
decreased by approximately 0.51 Tg, and the average annual decrease was 0.03 Tg. In
general, carbon storage showed a trend of decreasing first and then increasing slightly
which decreased by 1.44 Tg from 2000 to 2010 and increased by 0.93 Tg from 2010 to 2020.

The distribution of carbon storage had significant spatial heterogeneity (Figure 4a),
which is consistent with the topographic profile of “six mountains, one water, and three
fields” in Liaoning Province. The northeastern low mountain area and the Liaodong
Peninsula hilly area are divided by the Harbin-Dalian high-speed railway on the east side,
and the western mountain and hilly area is composed of Nuluerhu Mountain, Songling
Mountain, Heishan Mountain, and Yiwulu Mountain from northeast to southwest on the
west side, constituting a high-density carbon storage area.

The increased areas of carbon storage in 2000–2020 were concentrated mainly in the
hilly areas of western Liaoning and the reclamation area of the Yingkou Salt Field in
Liaodong Bay (Figure 4b). From 2000 to 2010, the areas where carbon storage decreased
significantly were mainly distributed in the periphery of Shenyang, Liaoyang, and Dalian
and the coast of the Liaodong Peninsula (Figure 4c). After 2010, the growth of the urban
construction land gradually slowed down, and the carbon storage reduction areas were
scattered. From 2010 to 2020, only Shenyang was still expanding outward on a large scale,
and the areas of carbon storage reduction were concentrated mainly in the periphery of
Shenyang (Figure 4d).
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3.4. LUCC Simulation under Multiple Scenarios

Based on the PLUS model, the Markov model, and multiple policy constraints, the
LUCC simulation of Liaoning Province in 2050 under NTS, ERS, and EPS was completed
(Table 5). In 2050, the land use structure of the study area will still be dominated by
forestland and farmland. Compared with 2020, the area of construction land under the three
scenarios is increasing, which will increase by 3662.86 km2, 3617.40 km2, and 4903.59 km2,
respectively, with an increase of 23.99%, 23.70%, and 32.12%, respectively. Under the EPS,
the increase in construction land is the largest, and the expansion of construction land
is obvious. The main source of circulation is suburban farmland. The area of farmland
under the three scenarios will shrink to varying degrees, which is expected to decrease
by 3634.97 km2, 7425.92 km2, and 4526.16 km2, respectively. Under the ERS, forestland
will increase by 4349.30 km2 compared with 2020, and forestland coverage will increase by
2.98%, basically completing the ecological restoration goal of increasing forestland coverage
by 0.5% every 5 years. The forestland will increase by 549.20 km2 and 444.61 km2 under
the NTS and the EPS, respectively. The growth of the forestland area under the ERS is
significantly higher than other scenarios. In the next 30 years, the grassland area will be in
a state of continuous reduction. Among them, the grassland under the EPS will decrease
the most, which is 813.14 km2. Under the ERS, the grassland area will change little, which
is 538.92 km2, because of the effective protection.

Table 5. Area of different land types under three scenarios in 2050 (km2).

Land Use Type 2020 NTS ERS EPS

Farmland 71,195.53 67,560.56 63,769.61 66,669.37
Forestland 51,297.33 51,846.53 55,646.63 51,741.94
Grassland 6176.00 5606.36 5637.08 5362.86

Water 2053.03 2053.03 2057.08 2053.06
Construction land 15,265.92 18,928.78 18,883.32 20,169.51

Unused land 25.58 18.13 19.68 16.65
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The land in the three scenarios presents a pattern of differentiated distribution in
space. Under NTS, the spatial change of all kinds of land develops according to inertia,
and the construction land increases are scattered (Figure 5a). Under the ERS, the growth
of forestland is mainly in the areas with high ecological value such as the ecological red
line and the surrounding areas of large area of water (Figure 5b). The source of forestland
transfer is mainly the farmland area that needs to be returned to forest. At the same time,
due to the limitation of permanent basic farmland policy under the ERS, the farmland in the
Liaozhong plain area is protected, so the growth of construction land is mainly distributed
in the coastal strip area that is not suitable for the growth of farmland and forestland.
Under the EPS, the expansion of construction land is mainly concentrated in the economic
development zone defined by the policy (Figure 5c) so as to maximize the contribution of
construction land to economic growth.
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3.5. Carbon Storage Estimation and Spatial Distribution Characteristics Analysis under
Multiple Scenarios
3.5.1. Carbon Storage Estimation

In 2050, the carbon storage of Liaoning Province under NTS, ERS, and EPS is 2112.05 Tg,
2164.40 Tg, and 2105.90 Tg, respectively. Compared with 2020, the carbon storage will lose
6.60 Tg and 12.75 Tg under NTS and EPS, respectively, but the carbon storage will increase
45.75 Tg under ERS.

The response mechanisms of land transfer to carbon storage changes vary across the
three scenarios (Table 6). In the NTS, the increased carbon storage will primarily result
from the conversion of grassland and cropland to forestland, contributing an additional
4.72 Tg and 3.17 Tg, respectively. However, the conversion of farmland to construction land
resulted in a loss of 13.62 Tg, leading to an overall decrease in carbon storage. In the ERS, a
significant amount of grassland and cropland will be converted to forestland, increasing
forest coverage, and adding a total of 58.37 Tg of carbon storage. This increase exceeds
the carbon loss caused by the conversion of cropland to construction land, resulting in an
overall growth in carbon storage. In the EPS, more cropland and grassland will be occupied
by construction land for economic development, and the carbon storage loss from these
conversions amounts to 18.73 Tg and 0.90 Tg, respectively.
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Table 6. Carbon storage corresponding to land transfer under three scenarios from 2020 to 2050 (Tg).

Carbon Storage Increase Carbon Storage Reduce

Conversion of Major Land
Use Types Variation Conversion of Major Land

Use Types Variation

NTS
Farmland–Forestland 4.72 Farmland–Construction land −13.62
Grassland–Forestland 3.17 Grassland–Construction land −0.89

ERS
Farmland–Forestland 46.25 Farmland–Construction land −16.52
Grassland–Forestland 12.12 Farmland–Grassland −0.37

EPS
Grassland–Forestland 6.86 Farmland–Construction land −18.73

Unused land–Construction land 0.01 Grassland–Construction land −0.90

3.5.2. Spatial Pattern Prediction of Carbon Storage

In 2050, the carbon storage in Liaoning Province will be unevenly distributed (Figure 6).
The areas with high carbon storage will still be concentrated mainly in the mountainous
forest areas in western Liaoning and eastern Liaoning.
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In the NTS, the carbon storage reduction areas will be mainly in the core area of the
development axis of the central Liaoning urban agglomeration.

In the ERS, in order to ensure the integrity of ecological land patches, the land tends
to adopt an intensive development pattern. The regions with decreased carbon storage
will be concentrated in the outskirts of major cities and along the Bohai Sea coast. On the
other hand, the regions with increased carbon storage will be located within the western
hilly areas of Liaoning Province and the Changbai Mountain range in the eastern part
of Liaoning.

In the EPS, the carbon storage in the Liaoning central plain will significantly decrease.
Due to the expansion of construction land in the economic development zones, the reduc-
tion in carbon storage will be more prominent. Only a small portion of Chaoyang City in
western Liaoning will experience an increase in carbon storage.

3.5.3. Spatiotemporal Distribution Characteristics of Carbon Storage

To uncover the spatial agglomeration characteristics of carbon storage in future admin-
istrative units in Liaoning Province, this study employed spatial autocorrelation analysis
to analyze the average carbon density of each district and county in the study area under
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three scenarios. The results revealed Moran indices of 0.594, 0.586, and 0.592 for the three
scenarios, respectively (p < 0.001). These findings indicate a significant positive correlation
between high carbon density regions and their geographical locations, suggesting the
presence of an agglomeration effect.

The LISA clustering shows that the high–high cluster areas under the three scenarios
show consistency, mainly distributed in Tieling, Fushun, Benxi, Dandong, and Anshan,
where Changbai Mountain is located. Fushun, Benxi, and Dandong, with the largest forest
coverage area, are the most important high–high agglomeration areas. The high–low cluster
area of carbon density is located in Yingkou, southwest of the high–high agglomeration
area, with a small area. The low–low cluster areas of carbon density under the NTS will
mainly be concentrated in Shenyang and Panjin (Figure 7b), which is consistent with
2020 (Figure 7a). In contrast, the ERS increases Shenbei New District of Shenyang and
Xinglongtai District of Panjin (Figure 7c), and the EPS increases Taian County of Anshan
and Shuangtaizi District of Panjin (Figure 7d). Due to the constraints on the ecological
and farmland areas under the ERS, the low carbon density agglomeration area will mainly
increase in the urban area of the city rather than the surrounding counties, while the
construction land under the EPS will be more inclined to the direction of the metropolitan
area, and the low–low cluster areas of carbon density will form a zonal distribution trend
from Shenyang to the coastal urban area.
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4. Discussion
4.1. Ecological and Development Problems Caused by Urbanization

Urban expansion brought by rapid urbanization will erode natural ecosystems such as
green space ecosystems and farmland ecosystems, resulting in regional natural vegetation
degradation and carbon storage reduction. According to the data of the China Statistical
Yearbook (Figure 8a), Liaoning Province experienced large-scale urban expansion from 2000
to 2020, with the urban population density increasing by 630 person·km−2, and the urban
built-up area increasing from 1558.62 km2 to 2725.60 km2, an increase of 74.87%. Generally,
LUCC in Liaoning Province is a process in which construction land encroaches on farmland,
and farmland expands to consume forestland and grassland to ensure the development
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of agriculture. From 2000 to 2020, the carbon storage in Liaoning Province showed a
downward trend overall (Figure 8b). Similar conclusions can be found in other studies.
Chen et al. (2019) found that the population and economy in the central part of Hunan
Province in China have developed rapidly since the early 1960s, and that the original
evergreen broad-leaved forest had been rapidly cut down and replaced by farmland,
plantations, residential construction, or factories, thus resulting in low carbon storage [56].
Similarly, Sallustio et al. (2015) found that urbanization reduced carbon storage in the
Molise region and the province of Rome (Italy) by approximately 0.25 Tg and 1.39 Tg,
respectively, from 1990 to 2008 [57].
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Rapid urbanization not only brings ecological problems such as carbon storage decline
but also brings economic development problems caused by non-intensive land develop-
ment. The per capita construction land area in Liaoning Province has increased too quickly.
As of 2015, 13 cities in Liaoning Province had exceeded the national standard (120 m2).
Li et al. (2020) showed that the growth of urban construction land in most cities in Liaoning
Province leads to negative economic growth [58]. The inefficient use and extensive develop-
ment mode of land development not only damages ecological security but also goes against
the sound development of the regional economy. Therefore, urbanization needs a scientific
strategy. Liaoning Province should reduce the dependence of urban economic growth on
land, strictly control the large-scale expansion of cities, and pay attention to improving
urbanization quality. We must eliminate the pattern of “grow first, clean up later”, create
sustainable cities, and coordinate ecological protection with economic development.

4.2. Influence of LUCC Driving Factors on Carbon Storage

Human activity is the main driving force of LUCC, and LUCC is restricted by natural
environmental factors and influenced by socioeconomic factors. The more frequent human
activities are, the stronger the growth of urban construction land [59], the greater its
impact on farmland, forestland, and grassland, and the greater its impact on the change
in carbon storage. Among the driving factors, the population had a great influence on the
changes in farmland, forestland, grassland, and construction land. This was mainly due
to rapid urbanization accompanied by the growth of the urban population. Cities need to
continuously expand their urban areas to accommodate and meet the needs of the growing
population for living space, resulting in a decline in regional carbon density and carbon
storage capacity.

The DEM factor was the largest driving force for the conversion of farmland, which may
be because urban construction usually occurs in plain areas with low DEM values, resulting
in the transfer of farmland to land with relatively high DEM values. Wang et al. (2022)
analyzed the driving force of farmland growth in the Yangtze River Economic Belt and
found that the DEM played a positive role in the early stage of farmland expansion. Over
time, areas with a relatively high DEM that were suitable for farmland were used, and the
DEM had a negative impact on farmland expansion at this time [60]. Therefore, the damage
of farmland growth to carbon storage may decrease with the increase in altitude.
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4.3. Influence of Policy on Carbon Storage in Cities

Policies play a key role in promoting regional economic development and ecological
restoration. Socioeconomic development policies may impose great pressure and challenges
on the protection of ecosystems. Active ecological protection and restoration policies can
effectively restore the stability and integrity of ecosystems and enhance regional carbon
storage [61]. For example, Jerath et al. (2016) found that ecological policies affect the
estimation of mangrove carbon storage in the Everglades of South Florida [62].

The carbon storage of all cities in the Liaohe Plain decreased from 2000 to 2020
(Figure 9a), among which the carbon storage in Liaoyang city, Shenyang city, Fushun city,
and Anshan city all decreased by more than 2.00 Tg. According to the forecast, from 2020
to 2050, there will be 9 cities with decreased carbon storage in Liaoning Province under
NTS (Figure 9b), while the number will reach 13 under EPS (Figure 9d).
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As shown in Figure 10, many development strategies, such as the Northeast China
Revitalization Plan in 2003, had been implemented. China’s 13th Five-Year Plan (2015–2020)
vigorously supports the development of urban agglomerations in central and southern
Liaoning. In the context of these policies, a large amount of investment in infrastructure
and industrial construction has occurred, which has put great pressure on the management
of ecosystems. Similar conclusions can be found in other studies. Li et al. (2017) found that
government policies have greatly affected the rapid growth of artificial land cover in the
coastal zone of Liaoning Province [63]. Mao et al. (2019) recorded the loss and degradation
of large areas of wetlands and grasslands in Northeast China caused by policy drivers after
2000 [64].
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From 2000 to 2020, the carbon storage of Chaoyang, Fuxin, and Huludao in the low
hilly area of western Liaoning and Dalian and Dandong in the low hilly area of the Liaodong
Peninsula increased. This was closely related to many forestry ecological projects, such
as the Liaohe Shelterbelt System Construction Project, the Grain to Green Project, and
the Grassland Desertification Control Project in Northwest Liaoning [65,66]. Liaoning
Province strictly controlled the deforestation of natural forests and vigorously carried
out afforestation campaigns supplemented by scientific forest management measures.
The forestland landscape in western Liaoning has gradually changed from discrete small
patches to connected large patches, the fragmentation degree has decreased, and the
overall ecological function has increased, which reflects the strengthening of forest resource
protection in Liaoning Province. From 2000 to 2020, the ecological policy achieved a net
increase in forestland area of 851.84 km2 in Liaoning Province, which was equivalent to
an increase in carbon storage of 20.44 Tg. Previous studies have similar findings. For
example, Muñoz-Rojas et al. (2011) found that afforestation and agricultural intensification
policies increased the carbon storage of Andalusia (southern Spain) by 17.24 Tg from
1956 to 2007 [67]. In fact, compared with other provincial research areas in China, the
absolute value of carbon storage reduction in Liaoning Province from 2000 to 2020 was
relatively small, at 0.51 Tg. During the same period, Anhui Province lost 33.84 Tg [68],
Guangdong Province lost 6.53 Tg [69], and Shandong Province lost 6.57 Tg [70]. The reason
for these differences may be the effective implementation of ecological protection policies
in Liaoning Province.

Under ERS, due to the effective implementation of the ecological protection red line
and the policy of returning farmland to forest, the number of cities with increased carbon
storage will increase to 12 (Figure 9c), which is three times that under NTS. Accordingly,
it is important to formulate scientific ecological policies to protect and restore natural
ecosystems to achieve sustainable ecosystem management and increase carbon storage.

4.4. Response Relationship between Land Use and Spatial Distribution of Carbon Storage

The spatial distribution of carbon storage was closely related to land use. The land
development intensity in the central plain of Liaoning Province was high, and the land
types were mainly farmland and construction land. The number of ecological patches such
as forestland and grassland was small, and the degree of fragmentation was high, which
does not provide high-density carbon storage space. Therefore, carbon storage is in a low
agglomeration state in the central region. The topography and elevation of the hilly area of
eastern Liaoning hinder the expansion of construction land and farmland to forestland, so
the area maintains a high forest coverage and ecological integrity, which enables the region
to have a significantly high carbon storage value. In general, the future spatial aggregation
relationship of carbon storage has formed the structural characteristics of “low in the center,
high in the east, and balanced in the west” in Liaoning Province.
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4.5. Limitations

This study has reference value for optimizing the spatial layout of inter-provincial
land and formulating low-carbon development strategies. However, there are still some
limitations and uncertainties. (1) The InVEST model can efficiently calculate and visualize
carbon storage based on carbon pool data. However, it assumes that the carbon density
pool remains unchanged, which weakens the influence of environmental interference in
the process of the carbon cycle and subsequent vegetation regeneration process [71]. The
accuracy and real-time performance of parameters are common problems in this kind
of research. These parameters can be verified by field sampling to reduce the potential
uncertainty and obtain more reliable results. However, field sampling and surveys are
expensive, and it is difficult to cover large and mesoscale study areas [72]. This study
selected carbon density pools measured in the same study area and similar geographical
location as much as possible to reduce the error of carbon storage evaluation. (2) The
selection of spatial resolution is key to accurately simulating LUCC [73]. Based on previous
studies [74], the resolution was resampled to 90 m to reduce the computation and improve
the accuracy of the simulation. However, different study areas had different optimal
simulation resolutions, so it is necessary to further study the best grid scale of LUCC
simulation at the provincial scale.

5. Conclusions

This study discusses the spatial and temporal variation characteristics of carbon
storage in Liaoning Province from 2000 to 2020 and predicts the change of carbon storage
in 2050 under multiple scenarios. The results show that the construction land in Liaoning
Province has increased significantly in the past 20 years, and the areas that reduce carbon
storage are mainly distributed in the Liaohe Plain and the coastal economic belt of Liaoning
Province. Driving factor analysis showed that the population, DEM, and slope were the
main driving forces affecting the change in carbon storage.

In 2000, 2010, and 2020, the carbon storage in Liaoning Province was 2119.16 Tg,
2117.72 Tg, and 2118.65 Tg, respectively. Ecological policies effectively inhibited the decline
in carbon storage. It is estimated that by 2050, the carbon storage in Liaoning Province
under the NTS, ERS, and EPS will be 2112.05 Tg, 2164.40 Tg, and 2105.90 Tg, respectively,
and the carbon storage under the ERS will achieve positive growth. There is significant
spatial heterogeneity in the spatial distribution of carbon storage in Liaoning Province.
The hilly area of the Liaodong Peninsula is a high-carbon-density area, while the highly
developed central urban agglomeration and coastal economic belt urban agglomeration are
low-carbon-density areas.

Liaoning Province, as a typical old industrial base, has had earlier urban construction
and a higher degree of urbanization due to industrial expansion and resource development
in the early stage of development. The development pattern of “grow first, clean up later”
has brought about the decline in ecosystem service function. Cities should give full play to
the advantages of their own regions according to different resources and socioeconomic
conditions. In future development and construction, the ecological resources within the eco-
logical protection red line should be strictly protected. At the same time, the development
intensity of the Liaohe Plain and coastal land should be reasonably controlled to improve
the intensive and economic ability of construction land. With the depletion of resources,
industrial transformation, and system transitions, we should promote the transformation
and revival of old industrial bases. It is necessary to explore the transformation from
low-end industries to green industries and pay attention to ecological governance in order
to achieve the goal of “carbon neutrality”.
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