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Abstract: In the Internet of Vessels (IoV), it is difficult for any unmanned surface vessel (USV) to
work as a coordinator to establish full communication connections (FCCs) among USVs due to the
lack of communication connections and the complex natural environment of the sea surface. The
existing solutions do not include the employment of some infrastructure to establish USVs’ intragroup
FCC while relaying data. To address this issue, considering the high-dimension continuous action
space and state space of USVs, we propose a multi-agent deep reinforcement learning framework
strategized by unmanned aerial vehicles (UAVs). UAVs can evaluate and navigate the multi-USV
cooperation and position adjustment to establish a FCC. When ensuring FCCs, we aim to improve
the IoV’s performance by maximizing the USV’s communication range and movement fairness
while minimizing their energy consumption, which cannot be explicitly expressed in a closed-form
equation. We transform this problem into a partially observable Markov game and design a separate
actor–critic structure, in which USVs act as actors and UAVs act as critics to evaluate the actions of
USVs and make decisions on their movement. An information transition in UAVs facilitates effective
information collection and interaction among USVs. Simulation results demonstrate the superiority
of our framework in terms of communication coverage, movement fairness, and average energy
consumption, and that it can increase communication efficiency by at least 10% compared to DDPG,
with the highest exceeding 120% compared to other baselines.

Keywords: communication coverage; full communication connection; internet of vessels; multi-agent
deep reinforcement learning; unmanned aerial vehicles; unmanned surface vessels

1. Introduction

With the development of marine technology and the potential to greatly improve
the operational efficiency and fuel economy of various marine engineering projects, the
marine Internet of Vessels (IoV) is widely used in marine fisheries, marine pollution
treatment, marine disaster monitoring, disaster rescuing, etc., providing them with massive
data collection, data exchange, and data processing services [1]. It uses the effective
communication of intelligent devices, such as ocean ships and unmanned surface vessels
(USVs), to monitor and share data. Hence, the full communication connection (FCC) of
USVs and high communication coverage of the target sea area are the primary tasks for
the reliable and effective implementation of offshore missions in modern eceanographic
observations [2,3].

The unstable resource consumption and the uncontrollable communication connec-
tion between USVs often lead to an ineffective FCC and poor data collection quality [4].
For example, most communication connections among the randomly deployed USVs are
uncertain in the initial stage of IoV deployment, and some vessels often sail out of com-
munication range or exhaust energy prematurely when the marine task is executed. In the
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IoV, coastal base stations, satellites, and unmanned aerial vehicles (UAVs) often act as relay
nodes to assist and provide communication connections with USVs. Nevertheless, USVs in
extreme weather conditions or some offshore zones cannot maintain communication con-
nections with coastal base stations. Furthermore, considering the real economic situation,
it is also not ideal to equip all USVs with high-gain antennas to request communication
services from satellites because of the relatively high costs and low data rate [5]. Due to
their agile flexibility and mobility, relatively low cost, and high data rate, UAVs attract
lots of attention [6–10]. At the same time, UAVs have some resource limitations and do
not work all day. Compared to participating in long-term relay communication, UAVs
have a better advantage in on-demand communication [11]. Therefore, in addition to the
relay communication provided by the above infrastructure, the intragroup FCC of USVs is
imperative for offshore tasks.

First, the current research lacks the effective infrastructure to establish a multi-USV
FCC. Second, it is difficult to rely solely on USVs to achieve the establishment of an FCC
among the USVs because the existence of sea clutter makes the marine environment have a
long transmission distance and an irregularly deteriorated channel due to its blocking [12].
USVs also cannot work as coordinators to deal with multi-USV FCC tasks due to incomplete
communication among them before establishing the FCC. Third, the existing technologies
support heterogeneous communication between UAVs and USVs [13]. Fourth, the move-
ment of USVs will impact economic costs and operation efficiency, such as fuel energy
consumption and communication coverage [8]. Motivated by the above cases, this paper
proposes that UAVs be deployed over the target sea area to navigate multiple USVs and
adjust their positions when multi-USV FCC demand is driven. This would establish a
multi-USV FCC and maximize the communication coverage of the target sea area in a fair
and energy-saving manner. We elaborate on the challenges of designing such mechanisms
as well as our approaches to addressing them.

The first challenge comes from the fact that the process of achieving an FCC by multi-
USV position adjustment is a continuous control task. The state space and action space
of the agents are continuous and interrelated in this environment, and it is difficult to
discretize actions into separate and effective action vectors, especially for large-scale action
vectors. Therefore, the single-agent reinforcement learning algorithm is not suitable for
USVs. And the movement decisions of USVs need to be made in each time slot by the
position selection and feedback of each USV, whereas USVs cannot effectively communicate
with each other before establishing an FCC. Additionally, the IoV needs to both maintain an
FCC among USVs and optimize their performance, including maximizing communication
coverage, reducing resource waste among USVs, and relatively improving the fairness of
resource utility. We need to explicitly design the quantitative indexes and balance the multi-
object optimization problem. Hence, we propose a multi-agent deep reinforcement learning
(MADRL) scenario strategized by UAVs for a multi-USV FCC, called “UST-MADRL,” to
solve the high-dimensional, continuous action, and state space problem. We transform
our problem into a partial observable Markov game (POMG) and propose a novel multi-
agent actor–critic structure (ACS), referred to as UST-ACS, based on the multi-agent deep
deterministic policy gradient algorithm (MADDPG). In this setup, the UAVs act as critics
to evaluate the actions of USVs, optimize parameters, and help USVs centrally train.
Meanwhile, the USVs with distributive execution act as actors and simulated samples.

Furthermore, to enable effective decision making on USV movement through cen-
tralized training, the critics of UAVs need to obtain global information from USVs. The
state–action information of each USV changes with the policy decision, which will change
the effective messages passing between UAVs and USVs. We need to encode the local mes-
sages of a single USV and fuse multi-USV messages to form a global message. Therefore, we
design an information transition module that obtains the state–action information of USVs
in each time slot, fuses it into global information, and sends it to the critics in the UAV.

With the increase in the number of USVs, the number of agents in the environment
and the dimension explosion of the state space and action space will intensify, making
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it difficult for the solution algorithms to converge. In this paper, based on the strategy
of signal-weighted Voronoi cell division [9], we divide the target sea area into several
sub-areas, which are called sea service areas (SSAs). Therefore, our solution algorithm
can be executed in each SSA, and the contact among the UAVs ensures the cooperation
of all UAVs and USVs. Based on this design, we can effectively reduce the computational
complexity of the algorithm.

Overall, we integrate the above components into an integrated UST-MADRL frame-
work and jointly solve the challenges mentioned above. This work includes the first
mechanism to study concept that the IoV realizes the intragroup FCC of USVs by reinforce-
ment learning (RL) based on the evaluation of UAVs. The main contributions of this paper
are summarized as follows:

• We use a deep neural network (DNN) to model each USV and dispatch UAVs to eval-
uate the movement policy of USVs. The USVs not only interact with the environment,
but also interact with each other. In the distributed scenes, multiple USV agents learn
to make decisions based on their local observations and the global cooperation by
UAVs for the same system targets.

• Considering the marine communication feature and the joint behavior of multiple
USVs, we define the optimization indexes, including communication coverage, energy
consumption, USVs movement fairness, and communication efficiency. Balancing
the optimization among them is a coupled and non-convex problem. Therefore, we
transform it into a POMG. Then, to achieve an FCC with the improved optimization
indexes, we design a UST-ACS, separating the the agents in the USVs and UAVs, i.e.,
USVs act as actors and UAVs act as critics. The UAVs can efficiently communicate
with the USVs, evaluate the movement policy of USVs in the critic networks of UAVs,
and feed the evaluation back to the USVs.

• The information transition module is responsible for collecting the action–state infor-
mation of USVs and for message fusion. Meanwhile, we divide the target sea area into
several SSAs and execute the UST-ACS in each SSA in order to effectively reduce the
computational complexity and facilitate the convergence of solution algorithms.

• We perform extensive simulations and compare them to the deep deterministic policy
gradient (DDPG) and three baselines. A large number of experiment results show that
our proposed framework has better communication coverage performance, higher
communication efficiency, and fairer movement decision making.

The rest of this paper is summarized as follows: In Section 2, the related work is
reviewed. In Section 3, the system model and problem definition are introduced. The
problem formulation is presented in Section 4. In Section 5, the solution is proposed. In
Section 6, simulation results are presented. Section 7 concludes the paper.

2. Related Work
2.1. Full Communication Connections among USVs

Some maritime communication research has been dedicated to maintaining the com-
munication connections within the group of USVs and ensuring the stable communication
link between ship users. The authors of [14] studied how the USVs applied a long-range
(LR) Wi-Fi wireless communication system to support the transmission of important in-
formation with fishing vessels or other vessels users. The vessel cooperative waterway
intersection scheduling [15] was proposed to allocate a desired arrival time for the vessels,
which helps avoid collisions and improves the communication connectivities in the urban
waterway networks. The deployment of multiple USVs from the perspective of game
theory was studied in [16], quantifying the transmission information of USVs through a
uniform quantizer and ensuring the communication connections of multiple USVs. The
study developed a marine broadband communication network to improve the transmission
quality of the video packets between vessels and proposed three offline algorithms to
improve the weighted throughput of the video packet transmission [17]. In [18], the com-
munication topology is built to optimize the intra-group and inter-group communication
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of USVs with lower communication cost. The existence of sea clutter makes the marine
environment have a long transmission distance and an irregularly deteriorated channel. It
is difficult for USVs to maintain the FCC in an efficient manner while only depending on
their own communication and coordination abilities.

2.2. UAV-Assisted USV Networks

Some works noted that UAVs assisted USVs to relay the data. In maritime tasks, UAVs
can provide the communication connections and the data processing services for USVs. The
authors of [7] deployed a UAV-relay to carry out cooperative communication with USVs.
The deep reinforcement learning (DRL) algorithm is used to obtain the optimal position
of the UAV. A UAV-assisted mobile relay communication system in a downlink maritime
communication is proposed to make the average reachability between the UAV and the
offshore users meet the communication requirements. The UAV is dispatched to accompany
the vessels users to sail, so as to ensure the communication connections among the vessels,
shore base stations and satellites in [8]. The study proposed a network system structure
where UAVs assist USVs to collect the scientific data offshore, in which UAVs are deployed
as relay nodes to assist the backbone network to complete the communication [19]. A
solution combining the RL strategy with the whale optimization algorithm was introduced
to improve the data transmission rate and the delay between UAVs and USVs [20]. Another
work [21] proposed a downlink maritime communication to make the average reachability
between the UAV and offshore users meet the communication requirements by optimizing
the positions of the UAV. In 5G and beyond networks, the authors established an on-
demand style and a ubiquitous trust evaluation framework to eliminate malicious mobile
data collectors and create a clean data collection and communication environment by
dispatching UAVs [22]. In [23], the authors proposed a multi-path long-term evolution
protocol by deploying a UAV, which effectively promotes data exchange among USVs and
transmits them to the base station. The on-demand communication for the ship users [24]
was provided by deploying UAVs to ensure the communication connections among the
ships, shore base stations and satellites. In [5], the authors improved the coverage range of
the maritime communication network by deploying UAVs and mobile vessels as mobile
base stations to provide the communication services for other vessels. The above research
employed the UAVs as relays or mobile base stations to participate in the communication
with USVs in the target areas and supported the hardware heterogeneity between UAVs
and USVs. They did not consider deploying UAVs to help USVs realize and assure their
intragroup FCC.

2.3. DRL for UAV-Assisted Networks

DRL has recently attracted much attention from various industries and in academia.
UAVs and USVs were integrated into a cognitive mobile computing network [25] to carry
out the search and rescue path planning based on a distributed DRL algorithm. In [9],
a DRL framework adopted a DDPG algorithm to optimize a group of UAV trajectories
to improve wireless communication coverage, maximize the number of vehicles covered
by the minimum number of UAVs and reduce energy consumption. A distributed DRL
framework was proposed to use UAVs as air mobile base stations to provide long-term
communication coverage for ground users [26]. MADRL considers learning through multi-
ple agents in RL, which has been developed for distributed scenes, in which multiple agents
learn to make decisions based on their local observations and communication cooperation
for the same system targets [27]. MADRL also necessitates the exploration of environment
dynamics and the joint action space between agents. This is a difficult problem due to
non-stationarity caused by concurrently learning agents [28]. In order to achieve better
coordination, the authors of [29] considered a multi-agent partially observable Markov
decision process and proposed a MADRL framework to help agents convey message re-
liably in a noisy channel. UAVs were deployed as mobile edge computing servers, and
MADDPG was used to make joint decisions to allocate computing resources for vehicles.
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Compared to DDPG, MADDPG is more suitable for dynamic and complex environments.
It employs centralized training and distributed execution, adding the information of other
agents during the training process to increase convergence efficiency, and using agents’
own information during the testing process. MADDPG has been empirically proved to
outperform some DRL algorithms including DDPG in cooperative and competitive multi-
agent environments and to be also suitable for the continuous control task [30]. In [31], the
authors investigated the spectrum-sharing problem in vehicular networks based on multi-
agent reinforcement learning. A fingerprint-based multi-agent Q-network method was
proposed to achieve centralized resource management for the base station agent. However,
in practical engineering, the deep Q-network (DQN) will encounter many difficulties, such
as low sample utilization and unstable training value. The authors investigated a double
deep Q-network-based resource allocation framework that maximizes energy efficiency and
total network throughput in UAV-assisted terrestrial networks [32] and studied nonlinear
energy-harvesting for UAV-assisted device-to-device networks using multi-agent DQN
(MADQN) [33]. The training and testing of MADQN are the same network, their input
information must be consistent, and both the training phase and the testing phase need the
information from other agents, whereas the communication among USVs is incomplete
before establishing the FCC. Therefore, MADDPG is suitable for our scenario, centralized
training, and distributed execution. A graph-embedded value-decomposition actor–critic
algorithm was proposed to embed the interaction information of agents and learn a locally
optimal solution through a distributed policy [34]. It studied the non-convex, strongly
coupled, and highly complex mixed integer nonlinear programming problem.

The existing technologies verify that UAVs have adequate communication, caching,
and computing abilities and can be enhanced with artificial intelligence. MADRL can make
navigation decisions through capturing the IoV dynamics and the collaboration of USVs.
However, it is difficult for the USVs to obtain each other’s state action information over
the vast sea surface. Therefore, the existing algorithms cannot be directly applied to the
establishment of the FCC, as illustrated in Table 1. Thus, in this paper, we consider the
USVs marine communication characteristics and design a MADRL framework strategized
by a UAV for the intragroup FCC of USVs based on the advantages of UAVs, which have
a larger communication range and on-demand communication. We separate the critics
from USVs and propose UST-ACS. USVs act as actors and simulate samples. UAVs act as
critics to obtain the global state–action information, evaluate the actions of USVs, optimize
parameters, help USVs make effective decisions on movement, and adjust the position of
USVs in each timeslot.

Table 1. Related work summary.

Literature UAV-Assisted USVs UAV-Assisted Terrestrial Networks UAV Role FCC among USVs DRL

[14–18] × × × Partial ×

[5,7,8,19–24]
√

× Relay/participant × DRL, RL, etc.

[25]
√

× Relay/participant × A distributed DRL
framework

[26] ×
√

Relay/participant × A distributed DRL
framework

[9] ×
√

Relay/participant × DDPG

[29] ×
√

Relay/participant × MADDPG

[30] ×
√

Relay/participant × MADDPG

[31] ×
√

Relay/participant × DQN

[32] ×
√

Relay/participant × DDQN

[33] ×
√

Relay/participant × MADQN

Our framework
√

× On-demand/transient
√

UST-MADRL
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3. System Model

In this section, we introduce the network model, including the definition of the target
sea area, the set of USVs and UAVs, and the motion model of USVs and UAVs. Then, the
communication model among USVs, the communication model between USVs and UAVs,
and the SSA division strategy are proposed. Finally, we model the problem in this paper.

3.1. Network Model

We consider a three-dimensional sea scenario consisting of a number of USVs and
several UAVs. USVs are randomly distributed in the target sea area G, monitoring the
information or collecting the information from other USVs, as shown in Figure 1. Dur-
ing the demand for establishing the FCC, UAVs are used to assist the USVs to optimize
their positions to guarantee the FCC. After the FCC is established, the UAVs will re-
turn or execute another on-demand task. The target sea area G can be divided into
k = {1, 2,. . . , |k|} grids, and their intersection can be used as the positions where USVs
can stay. Let N , {Ni|i = 1, 2, . . . ,

∣∣∣N∣∣∣} be a set of USVs with a limited communication
range. The communication range of each USV is defined as RN, which is a connecting
constraint between USVs. If the distance is d(Ni, Nj) ≤ RN, we consider that USV Ni and
USV Nj are interconnected. Otherwise, they cannot communicate with each other. In

addition, we let UAVs set be M , {Mu|u = 1, 2, . . . ,
∣∣∣M∣∣∣}. We define the communication

range of UAVs as RM. Generally, the communication range of UAVs is much larger than
that of USVs, i.e. RM � RN.
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FCC on demand. After the FCC is established, UAVs will return or execute another on-demand task.

USVs need to achieve the FCC in the target sea area in a fair and energy-saving
manner via a task. We assume that the task period is divided into T timeslots, denoted as
T = {1, 2,. . . , T}, and that each timeslot is equal, t ∈ [1, T]. At the initial time, all USVs are
randomly and statically deployed on the target sea area. Without loss of generality, the
position of Ni in any timeslot t can be modeled as

Pt(Ni) = [xt(Ni), yt(Ni), ϕt(Ni), ωt(Ni)] (1)
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where [x t(Ni), yt(Ni)] denotes the instantaneous coordinates of USV Ni at the grid inter-
section in the timeslot t, and [ϕ t(Ni), ωt(Ni)] denotes the action of selecting a rotatable
move to next state for Ni in timeslot t. The direction is ωt(Ni) ∈ [0, 2π], and the distance
is ϕt(Ni) ∈ (0, ϕMax).

In the beginning, the position of USV Ni is P0(Ni) = [x0(Ni), y0(Ni), ϕ 0(Ni), ω0(Ni)],
and the position of USV Ni is PT(Ni) = [xT(Ni), yT(Ni), 0, 0] in the end. When the length
of timeslot t is small enough, the position of USV Ni in each timeslot is considered to be
fixed. Therefore, we can express the continuous position of each USV within the finite time
horizon T as

P(Ni) = {P0(Ni), . . . , Pt(Ni), . . . , PT(Ni)}. (2)

For simplicity, we consider that UAV Mu can move freely in the plane of height Hu,
Hu ≤ RM. Then, the position of UAV Mu in timeslot t is defined as

Pt(Mu) = [xt(Mu), yt(Mu), Hu]. (3)

Therefore, in the task period T, the continuous position of UAV Mu can be derived as

P(Mu) = {P0(Mu), . . . , Pt(Mu), . . . , PT(Mu)}. (4)

3.2. Communication Channel Models and UAV SSA Partition
3.2.1. Communication Channel Model of USVs

The communication of USVs on the sea surface usually works in the complex and
changeable channel environment [35]. We assume that all USVs are equipped with omni-
directional antennas because the channel of the USVs is impacted by the earth radian, wave
and ship shielding, as well as the fading and multi-path effects. Generally, the free space
propagation loss [14] is

Lp = 32.45 + 20lg f + 20lgd
(

Ni, Nj
)

(5)

where f is the operating frequency in MHz, and d
(

Ni, Nj
)

is the distance between two USVs,

in which d
(

Ni, Nj
)
=
√(

yt
(

Nj
)
− yt(Ni)

)2
+
(
xt
(

Nj
)
− xt(Ni)

)2. The channel between
USV Ni and USV Nj on the sea surface in timeslot t can be denoted as the antenna gain (Gt
and Gr) minus all losses occurring in a link, i.e.,

Lt
(

Ni, Nj
)
= Gt + Gr − Lp − Lw (6)

where Gt is the transmitting antenna gain, and Gr is the receiving antenna gain. Lw repre-
sents other possible losses, such as sea surface reflection and atmospheric absorption loss [36].

3.2.2. Communication Channel Model between USVs and UAVs

We assume that the UAVs in the air and the USVs on the sea surface are equipped
with a single antenna and communicate through the line-of-sight [8,37]. At timeslot t, the
signal transmitted from UAV Mu is denoted as bt (Mu), and the received signal of USV Ni
by UAV Mu at the position Pt (Mu) can be expressed as

Ht(Ni, Mu) = TPt(Mu)GMu GNi Ct(Ni, Mu)bt(Mu) + σt(Ni, Mu) (7)

where TPt (Mu) denotes the transmission power of UAV Mu, GMu denotes the antenna gain
of UAVs, GNi denotes the antenna gain of USVs served by UAVs, and σt (Ni, Mu) denotes
the white Gaussian noise. Ct (Ni, Mu) denotes the channel between UAV Mu and USV Ni
that can be denoted as Ct(Ni, Mu) = (ht(Ni, Mu))−1/2 C−t(Ni, Mu), where C−t(Ni, Mu)
is Rician fading during transmission, as defined in [8], and ht(Ni, Mu) is the path loss,

ht(Ni, Mu) = ε + 10τlog10
(

d(Ni, Mu)

d0

)
+ Zt(Ni, Mu). (8)
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Here d (Ni, Mu) is the Euclidean distance between USV Ni and UAV Mu, d0 denotes
the reference distance, ε denotes the path loss at d0, τ denotes the path-loss exponent, and
Zt (Ni, Mu) is a zero-mean Gaussian random variable with standard deviation.

3.2.3. SSA Partition of UAV

The communication range of UAV RM is much larger than that of USV RN, so the
number of UAVs set M can be estimated according to the scale of the target sea area and
the communication range of UAV on the sea. When the number of UAVs is determined, we
adopt the deployment strategy of UAVs to achieve the full coverage of the target sea area
by minimizing the total deployment delay proposed in [38]. When USV Ni is within the
communication range RM of UAV Mu, USV Ni can receive the service of UAV Mu. Due to
different signal/noise ratio (SNR), we express the SNR of UAV Mu to USV Ni in timeslot
t as

SNRt(Ni, Mu) = δ(d(Ni, Mu))Ht(Ni, Mu). (9)

We define δ(d (Ni, Mu)) as a binary variable. If d (Ni, Mu)≤ RM, we define δ(d (Ni, Mu)) = 1;
otherwise, δ(d (Ni, Mu)) = 0. We next use the signal-weighted Voronoi cell partition
strategy [39] to divide the target sea area into M sub-areas, referred to as UAV SSAs. The
SNR between a UAV and any USV in its SSA is always higher than that in other UAV SSAs.
Therefore, the UAV only cooperates with the USVs in its own SSA. The SSA of UAV Mu is
defined as a signal-weighted Voronoi cell Vt(Mu),

Vt(Mu) = {Ni|∀Mv∈ M\{Mu} : SNRt(Ni, Mu) > SNRt(Ni, Mv)}. (10)

From (10), we can construct an associated signal-weighted Delaunay graph by choos-
ing the set of vertices as M and the set of edges as pairs of UAVs whose signal-weighted
Voronoi cells are adjacent [40]. We demonstrate that each UAV provides communication
services for its connecting USVs in its SSA with the strategy of distributed cooperation.
Therefore, UAVs can be used as the guide to evaluate and assist the position adjustment of
USVs in its own SSA Vt (Mu) by observing the overall situation and the communication
among UAVs. The contact among UAVs ensures the cooperation of all UAVs and USVs.

3.3. Problem Definition

In order to realize the FCC and optimize the performance of the IoV, we define and
model the optimization aims, including optimizing the communication coverage and USV
movement fairness, saving energy, and increasing communication efficiency. We regard
the intersection of each grid in the target sea area as the sampling point k, and the SNR
between USVs Ni and sampling point k can be expressed as

SNRt(Ni, k) =
TPt(Ni) + Lt(Ni, k)

σ2 (11)

where σ2 is the variance of additive white gaussian noise, and the sum of the transmit
power TPt(Ni) and Lt (Ni, k) denotes the signal power [14] from USVs Ni to sampling point
k. Lt (Ni, k) can be calculated by (6).

The communication coverage of USVs Ni in the target sea area is determined by SNR
and is defined as

ct(Ni, k) =
{

1, i f SNRt(Ni, k) ≥ λSNR
0, else

(12)

where λSNR is the SNR threshold [39]. When the SNR between USV Ni and sampling point
k is greater than the given threshold, the position will be covered by USV Ni. Hence, we
approximately define the communication coverage score of the target sea area covered by
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USVs set at timeslot t as the ratio of the number of sampling points that are covered by all
USV communication in the target area to the total number of sampling points,

St ≈
∑N

i ∑k
j ct(Ni, k)

k
. (13)

The movement of USVs is accompanied by energy consumption. If the energy of the
USVs are exhausted, the communication quality of service will not meet the IoV. Therefore,
this paper aims to reduce the average moving distance of USVs as much as possible and
improve the average residual energy of USVs. The initial energy of all USVs at the initial
time is equal and denoted as e0. The energy consumed by USV Ni to remain stationary
in timeslot t is defined as et (Ni) = α, where t is the stationary timeslot. And the energy
consumption of USV Ni in the process of moving on the sea is defined as et (Ni) = lez, where
ez is the movement distance of USV Ni, and ez is the normalized energy consumed (NEC)
of the USV moving unit distance. Thus, the energy consumption of USV Ni in a specific
task period T is calculated as

eT(Ni) = ∑T
t=0 et(Ni). (14)

Then, the average energy consumption of all USVs is expressed as

eT(avg) =
∑N

i=1 eT(Ni)

N
. (15)

Moreover, when only some of the USVs in the IoV are in constant motion, they will
unfairly consume more energy. If these vessels run out of energy, there will be more
communication coverage holes in the target area and the IoV will not work any more. In
order to balance the energy consumption and the residual energy of all USVs, we use Jain’s
fairness index [41] to define the movement fairness index as

Ft =

(
∑
|N|
i=1 et(Ni)

)2∣∣∣N∣∣∣∑|N|i=1 et(Ni)
(16)

where Ft ∈ [ 1
|N| , 1]. When all et (Ni) are equal, Ft = 1. Then, the final achieved fairness

index in the whole mission cycle is FT = Ft|t=T , which helps all USVs to move fairly and
reasonably throughout the task period. The communication connection performance of the
IoV is positively correlated with the movement fairness index.

4. Problem Formulation

This paper aims to realize FCC and optimize the IoV performance, including optimiz-
ing the communication coverage, energy consumption and movement fairness index. Since
the optimizations among USVs are coupled and non-convex, we cannot integrate these
three indexes into a mixed-integer linear programming optimization problem. The perfor-
mance of these three indexes depends on the position decision-making process of multiple
USVs, and the performance of the next timeslot is related to the decision of multiple USVs
in the current timeslot, which has the Markov property [42]. Therefore, we transform our
problem into a POMG in each SSA, which is defined as a tuple (N, S, At,F , and Rt). The
details are clarified as follows.

4.1. Multi-Agent Set N

In this paper, the USV set N is defined as the |N| agents in the multi-agent envi-
ronment. Each agent partially observes the environment and obtains local observation
information.
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4.2. Observation Space Ot and State S

The set of Ot is defined as the observation space of USVs at timeslot t. At each
timeslot t, each USV actor Ni can partially observe the environment and obtain par-
tial observation ot(Ni), including the coordinates [xt(Ni), yt(Ni)], the movement distance
ϕt(Ni) ∈ (0, ϕMax), the directions ωt(Ni) ∈ [0, 2π], and the energy consumption et (Ni).
Hence, it is expressed as ot(Ni) = {xt(Ni), yt(Ni), ϕt(Ni), ωt(Ni), et(Ni)}, and the obser-
vation space of all USVs is Ot , {ot(Ni)| i ∈ N, t = 1, 2, . . . , T

}
.

In the multi-agent environment, the set S represents the state, which obeys the markov
property, i.e., each state only depends on the previous state and the action taken by the
agents. The set S includes the observation space Ot and the communication coverage score
St of USVs in timeslot t, denoted as S , {st} = Ot ∪ {St}.

4.3. Action Space At

At each timeslot t, each USV Ni chooses an action at(Ni) from its action space according
to the current policy πNi and the corresponding observation. The actions of USVs can be
described as At , {at(Ni)|Ni ∈ N, t = 1, 2, . . . , T}.

4.4. State Transition Function F
The environment state st will transit into next state st+1 after the USVs perform their

actions. The state transition function F is defined as F : st × At → st+1 .

4.5. Reward–Penalty Mechanism for USVs Rt

The reward function rt(Ni) of USV Ni represents the immediate reward after agent Ni
executes its action at(Ni) at each timeslot, which measures the effect of the action taken by
a USV at a given state. In order to obtain the effective reward, we define the reward-penalty
mechanism in the following normalized quantities, including communication efficiency,
penalty constrains, and corresponding penalty values:

(1) Communication Efficiency Xt: It integrates three optimization indexes, namely the
communication coverage score of USVs St, the average energy consumption of USVs
eT(avg), and the movement fairness index of USVs Ft, defined as

Xt =
StFt

eT(avg)
(17)

(2) Non-connectivity Penalty pt(Ni)1: If the action selected by USV Ni were to change its
position from inside of the communication range to outside of the communication
range, i.e., ∃dt

(
Ni, Nj

)
> RN , where Nj is any neighbor of Ni, this kind of action

should receive a penalty, and the penalty value is pt(Ni)1. The reason is that it will
cause disconnections among USVs and finally undermine the FCC.

(3) Redundancy Penalty pt(Ni)2: If the action selected by USV Ni causes the Euclidean
distance between USV Ni and any neighbor USV Nj to be less than the distance
threshold D, i.e., ∃dt

(
Ni, Nj

)
< D, this kind of action should receive a redundancy

penalty, and the value is pt(Ni)2. This is because it will increase the communication
coverage redundancy and reduce the communication coverage score.

(4) Cross Border Penalty pt(Ni)3: When USV Ni moves beyond the target sea area, we
will impose a penalty for this kind of action, and the penalty value is pt(Ni)3. This
operation ensures that USVs learn how to move continually on the given target
sea area.

The reward function rt(Ni) of USV Ni is defined as

rt(Ni) = Xt(Ni)− pt(Ni)1 − pt(Ni)2 − pt(Ni)3 (18)

And we construct the holistic joint reward function as Rt , {rt(Ni)|i ∈ N }, represent-
ing the joint reward of all agents in the environment. Here, the communication efficiency
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ensures the reward for effective communication coverage, average energy consumption,
and movement fairness. Additionally, if any USV Ni executes one of the above penalty
actions, it will obtain the corresponding penalty value, which will reduce the reward and
reduce the selection probability of this action. Note that this penalty value is global and not
limited to a single SSA, which makes our algorithm effective in the global environment.
The reward–penalty mechanism can lead each agent to its optimal policy, and the policy
directly determines the optimal trajectory and position of the USV. The reward function is
designed based on the objectives of the original formulated problems. The optimization
problem can be formulated as

max
{N,M,Ot ,At}

{Rt , {rt(Ni)|i ∈ N }} (19)

s. t. (10), (12), (13), (15), (16), (17), (18); (19a)

pt(Ni)1, pt(Ni)2, pt(Ni)3; (19b)

D ≤ dt
(

Ni, Nj
)
≤ RN ; (19c)

Ni is within G; (19d)

where (19a) denotes FCC and USVs’ performance constraints, and (19b)–(19d) describe the
movement constraints of USVs.

5. Proposed Solution

The above multi-object optimization is an infinite control task; USVs can carry out
continuous actions because of the infinite sailing angle and distance, and the reward
function depends on the joint action of all USVs in the global environment. It cannot be
solved using the conventional dynamic programming method [10], which is a model-based
approach. We use DRL to find suboptimal solutions. However, since the USV reward is
affected by the actions of many other USVs in our scenario, it needs central UAV training
and distributed USV execution as a multi-agent environment. Traditional policy-gradient-
based methods, such as DDPG, require that the reward only depends on a USV’s own
action, which cannot be directly applied to this problem. We propose a UST-ACS with the
centralized training and decentralized execution. We separate the critic networks from
USV agents and put them into UAVs. UAVs are responsible for multi-USV information
collection, sharing, and evaluation. The UST-ACS includes actor networks of USVs, critic
networks of UAVs, and information transitions in UAVs. At a given state, the USV actor
uses the observation as the input for its independent parameterized policy, generates
the movement action, and executes it. The execution of each action will be rewarded
accordingly. The transition samples including state, action, and reward, and are collected
and stored in the experience replay buffer. The critic in the UAV corresponding to the
actor, which can be represented as a value function, evaluates the action generated by the
actor and training the value function with the time difference (TD) error by sampling the
mini-batch from the experience replay buffer. After training, the UAV’s critic networks
return the optimized policy parameters to the USVs. The actor will be guided to update
the policy, and then produce the action with higher communication performance. The
above procedure is repeated until convergence, and finally obtain an optimal strategy to
realize the FCC as well as the optimal IoV network performance. SSA partition strategy
can solve the problem of space dimension explosion caused by the large number of agents,
and reduce the complexity of algorithm. Figure 2 shows its framework in one SSA.
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5.1. Actor Network Design for USVs

In our framework, each USV processes a local actor network that generates an action
according to its own policy and observation information, modeled as a DNN with the
weights matrix θ and policy π. The actor network aims to optimize the action probability
sets for each state by the policy π so as to achieve the FCC and the optimization of
the indexes. Thus, we use a deterministic policy rather than a random policy. In any
SSA Vt(Mu), each USV agent Ni corresponds to a policy πNi

(
ot(Ni), θNi

)
, where θNi is

policy parameter, and this function maps an observation definitively to an action. USV Ni
determines its action at(Ni) by policy function, described as

at(Ni) = πNi

(
ot(Ni), θNi

)
(20)

Each USV Ni generates and executes the determined action at(Ni) according to its own
independent actor network, and accordingly obtains reward rt(Ni). After the actions of all
actors are executed, the environment state will transition from st to st+1 by state transition
function F and obtain a global reward Rt. Each USV’s local information, including obser-
vation ot(Ni), action at(Ni), reward rt(Ni), and next observation ot+1(Ni), will be stored in
the experience replay buffer β with capacity size B, and the transition samples of all USVs
are stored as tuples in each UAV.

As for the update procedure of actor network, we use π =
[
πN1 , . . . , πN|N|

]
to denote

the |N| continuous policy selected by the USVs in timeslot t. Thus, the actor network of
USV Ni is updated by the gradient of the expected return in the critic of UAV as

∇θNi J
(
θNi

)
= EOt ,a∼β

[
∇θNi πNi(at(Ni)|ot(Ni)

)
∇aiQπ

Ni
(St, at(N1), . . . , at(NN))∣∣at(Ni) = πNi

(
ot(Ni), θNi

)] (21)

where Qπ
Ni
(St, at(N1), . . . , at(NN)) is a centralized action-value function that takes the

actions of all USVs as input in addition to St, and then outputs the Q-value of the joint action
for USV Ni. St includes Ot and the available additional state information (environmental
state information). Ot = [ot(N1), . . . , ot(NN)] denotes the joint observation of USVs in
timeslot t. Our algorithm is model-free, directly learning from the experiences of USVs.
During training, at each timeslot, actors can generate the transition samples of position state–
action information. We leverage the experience replay buffer to store the transition samples
of all USVs as tuples

(
Ot, at(N1), . . . , at

(
N|N|

)
, rt(N1) . . . , rt

(
N|N|

))
. The information

transition fuses the transition samples into the global information. The pseudocode of
“actor network” is shown in Algorithm 1.
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Algorithm 1. Actor network of USVs

1: Input: USVs observation ot (Ni), policy πNi for each USV Ni with parameter θNi , discount factor γ, learning rate for actor
network of USVs η;
2: Output: at(N1), . . . , at(NN).
3: for USV Ni: = 1,. . . , |N| do
4: Initialize a random process for action exploration with target parameter θNi ;
5: Receive initial state st;
6: end for
7: for episode: = 1,. . . , Episode Length do
8: for Timeslot t: = 1,. . . , T do
9: for USV Ni = 1,. . . , |N| do
10: USV i obtain at(Ni) = πNi

(
ot(Ni), θNi

)
according to the local policy and the observation;

11: end for
12: Execute all actions of USVs at(N1), . . . , at

(
N|N|

)
and get reward rt(N1) . . . , rt

(
N|N|

)
;

13: Send ot(Ni), at(Ni), rt(Ni) and ot+1(Ni) to Information Transition;
14: st←st+1;
15: end for
16: end for

5.2. Information Transition

The information transition in the UAV is used to better establish the message trans-
mission between UAVs and USVs. In an SSA, the observation and action of each agent
will be encoded into a message and sent to the UAV managing the SSA. Then, the UAV
decodes each message and integrates it into a global information, which includes the
historical observations and behaviors of all USVs. Thus, the critic network will obtain
the global environmental state and make a global evaluation, as shown in Figure 3. In
timeslot t, USV Ni encodes its observation ot (Ni), action at (Ni), and reward rt(Ni), adds
it to its own message vector ht-1(Ni), and updates it to a new local environment message
ht (Ni). Next, the local messages of all USVs will be summarized into a global message
into {ht(N1), ht(N2), . . . , ht (N|N| )} ∪ St in the information transition, where the mes-
sage ht (Ni) contains all previous observations and behaviors. Finally, the global state
information is decoded in the UAV’s critic network and the critic network evaluates the
action-value functions of all USVs in each SSA. The pseudocode is shown in Algorithm 2.

Algorithm 2. Information transition of UAVs

1: Input: USVs observation ot (Ni), USVs action at (Ni), USVs reward rt (Ni), USVs observation in next state ot+1 (Ni);
2: Output: Global environment information {s t , At , Rt}.
3: Initialize the capacity of replay buffer β to B;
4: for UAV Mu: = 1, ..., |M| do
5: Receive the USV local information in its SSA;
6: Generate information sequence ht (Ni);
7: Integrate

{
ht(N1), ht(N2), . . . , ht

(
N|N|

)}
∪ St ;

8: Store st , At , Rt , st+1, in replay buffer β;
9: end for
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5.3. Critic Network Design for UAVs

We design the critic network in each UAV and access the global state st and joint actions
at(N1), . . . , at (N|N| ) in the training process. The action value function
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Qπ
Ni
(st, at(N1), . . . , at (N|N| ) ) = Eπ [∑T

i=t r(Ni)
∣∣∣st, at(Ni) ] is approximated under the cur-

rent policy πNi , where π = [πN1 , . . . , πN|N| ] is the joint policy with parameter set

θ =
[
θN1 , . . . , θN|N|

]
. From a global perspective, all USVs are designed to achieve a common

goal. When the critic network of a UAV updates its parameters, the state–action information,
(st, at(Ni), rt(Ni), st+1, at+1(Ni)|at+1(Ni) = πNi (ot+1(Ni), θi)), is necessary, where at+1(Ni)
comes from its target policy. Thus, a UAV critic can randomly sample mini-batches of
multi-USV experiences from the experience replay buffer and utilize the TD error method
to update the parameter of the critic network by minimizing the loss function

L
(
θNi

)
= EOt , at(N1),..., at(N|N|), rt(N1)..., rt(N|N|),Ot+1

[ (Qπ
Ni
(Ot, at (N1 ), . . . , at (N|N| ) )−y )2 ] (22)

where y is the target value generated by the target network of critic and is calculated by

y = rt(Ni) + γQθ’

Ni

(
Ot+1, at+1(N1), . . . , at+1

(
N|N|

)∣∣∣at+1
(

Nj
)
= θ

′
Nj

(
Ot+1

(
Nj
)))

(23)

where the target policy parameter set is θ′ =
[
θ′N1

, . . . , θ′N|N|

]
.

After training, each UAV critic will feed the optimized policy parameters back to each
USV actor. A UAV critic can use joint observations and actions in the training process as
the guide to master the overall environment, and evaluate the action-value functions of all
USVs in each SSA. Therefore, the critic can obtain the global environmental state and make
the global evaluation. Considering the common objective of the formulated optimization
problems, |N| agents should cooperatively maximize the communication coverage score
and movement fairness index and minimize the average energy consumption of the USVs.
The pseudocode of “critic network” is shown in Algorithm 3.

Algorithm 3. Critic network of UAVs

1: Input: st, At, Rt, st+1, action selection by policy πθ
t(Ni) for each USV;

2: Output: Updated policy parameter set θ.
3: for each episode: = 1,. . . , Episode Length do
4: for Timeslot t: = 1,. . . , T do
5: for UAV Mu: = 1,. . . , |M| do
6: Sample a random mini-batch of k samples, st , At , Rt , st+1 from β;
7: Set target value y by (23);
8: Update critic network by minimizing the loss L(θi) by (22);
9: Update actor network using the sampled policy gradient by (21);
10: end for
11: Update two target network parameters for each USV Ni;
12: θNi ’←ςθNi + (1 − ς) θNi ’;
13: end for
14: end for

5.4. Training Process

According to [29,30], offline training is available, and the training dataset and loss
function can be designed to guarantee the generalization capability. Our architecture is a
centralized training and distributed implementation framework. In the centralized training,
actors can generate transition samples of observation, action, state, and reward information
at each timeslot, and store them in the experience replay buffer of the corresponding
UAV. A UAV’s critic network masters the global information, evaluates USVs policies and
feeds evaluation results back to the USVs. The actor and the critic update the parameters
according to the input mini-batch of transitions. By this process, the policies of USVs are
gradually optimized until they become as optimal as possible.

5.5. Testing Process

In the testing process, since our scenario is a distributed execution, each USV can make
a parameterization policy according to its observation ot (Ni) and policy parameter θNi .
Therefore, the action at (Ni) of each USV is generated through its actor network without the
direct communication of other USVs’ information.
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5.6. Complexity Analysis

Based on [43], we analyzed the complexity of algorithm. In the distributed execution
procedure, each USV obtained its action from its actor networks through the state, including
the 2D coordinate, directions, moving distance, energy consumption, and communication
coverage score. Hence, the input size was 6, and the output size was 8. In the centralized
training process, UAVs collected the global information from all USVs. The input and
output sizes in each critic network in a UAV were 8N and 1, respectively. According to [44],
given the fully-connected neural network with fixed numbers of hidden layers and neurons,
the computational complexity of the back-propagation algorithm was proportional to the
product of the input size and the output size. The centralized training complexity was
O(N2) in the critic network, while the decentralized execution procedure complexity was
O(N) in the actor network. Therefore, the overall complexity was O(N2).

6. Simulation Results

To evaluate the performance of our solution, we conducted a series of experiments step
by step. We compared our solution with DDPG and the three baselines employed in the
multi-agent cooperation and competition search. The results show that our framework was
superior to the other solutions in communication coverage, movement energy consumption,
movement fairness index, and communication efficiency.

6.1. Setup and Evaluation Metrics

We implemented the simulation results in Windows 10, TensorFlow 1.14, and python
3.7. We simulated a sea surface target area with the scale of 20 × 20 grids, in which the
grid points were the sampling points. Our parameters were set according to [26,29]. The
communication range of the USVs was defined as RN = 5 units, and each USV was able
to choose any grid point to move to. The communication range of the UAVs was defined
as about 35 units. We gave a non-connectivity penalty pt(Ni)1 = 3, a redundancy penalty
pt(Ni)2 = 2, and a cross border penalty pt(Ni)3 = 1, respectively. Every time the action
selected by a USV met a non-connection penalty, redundancy penalty, or cross-border
penalty, it obtained the corresponding penalty value and reduced the reward. We trained
the proposed model into 4K episodes, each episode had T = 500 timeslots, with every
100 sets of modeling producing 40 models. During the test period, we tested each model
100 times, took the average value, and chose the best one among the 40 models. The main
parameters of simulation are listed in Table 2.

Table 2. Main simulation parameters.

Parameters Configuration Quantity

Noise power −120 dBm
Channel power gain −50 dB
Size of replay buffer 10,000
Size of mini-batch 100

Activation functions ReLU
Discount factor γ 0.96

Actor’s learning rate η Decaying from 0.0002 to 0.0000001
Critic’s learning rate ζ Decaying from 0.002 to 0.000001

Reward discount factor γ Augmenting from 0.8 to 0.99

Our simulation adopted four layers of DNN, including an input layer, two hidden
layers, and an output layer of 80 neurons. Each USV maintained the actor network, and
each UAV maintained the critic network, which were activated by the rectified linear unit
(ReLU) function. The hyperbolic tangent activation function was used in the outermost
layer. The actor network of a USV received the state value of USV Ni at the input layer,
output an action at the output layer, and then sent it to the associated UAV. The critic
network of a UAV received the current environment status and the actions of all USVs in
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its SSA in the input layer. In the output layer, it produced a Q value. The training of the
DNN was carried out by using the generated samples, and the best moving route of each
USV in the SSA was realized by using Tensor Processing Unit (TPU).

We used four metrics specified in (13) and (15)–(17) to measure performance evaluation,
including the communication coverage score St, average energy consumption eT(avg),
movement fairness index Ft, and communication efficiency Xt.

6.2. Baselines

We compared our proposed UST-MADRL framework with the frameworks using the
following solutions:

• DDPG [45]: A policy-gradient-based approach for continuous control tasks, which
uses one actor network and one critic network to output control decisions for all UAVs.
The state and reward functions in DDPG are consistent with those in our framework.

• Genetic algorithm (GA) [46]: A stochastic global search optimization method that
simulates the replication, crossover, and mutation phenomena occurring in natural
selection and genetics, starting from any initial population by the genetic operation
to produce a group of individuals better suited for the environment. Here, the USV’s
position is adjusted according to the fitness that is calculated from the reward of
our paper. In each timeslot t, each USV chooses an action with high fitness value.
Combined with the gene crossover and mutation, we use the roulette to eliminate
the fittest.

• Particle swarm optimization (PSO) [47]: A bionic optimization algorithm based on
multiple agents, which is derived from the study of bird predation behavior. The
velocity of the particle is updated according to its own previous best position and the
previous best position of its companions. The particles fly with the updated velocities.

• Virtual force algorithm (VFA) [48]: VFA constructs a virtual force field, which is
composed of the attractive force field of the target orientation and the repulsive force
field around the other agents. It searches in the descending direction of the potential
function to find an optimal path and makes the agent move along the direction of the
resultant force of virtual attractive force and virtual repulsive force. The attractive
force and virtual repulsive force are mainly reflected by the distance among the agents.
For a given number of USVs, our optimization indicators can be provided as inputs to
the VFA, thereby ensuring flexibility.

According to the above references, we set parameters of these four baselines as follows:
In GA, the number of iterations was set to 500 times, the crossover probability was 0.4, the
mutation probability was 0.005, and the initial population was generated randomly. In PSO,
the initial position and initial speed were randomly generated, the initial inertia weight
was set to 0.9, the inertia weight when iterating to the maximum evolutionary algebra
was set to 0.4, and the speed interval was [0.1,

√
2] unit per timeslot. The VFA needed to

consider the threshold factor of the attractive force and repulsive force function that USVs
can establish at the current position. We set the threshold distance to USV’s communication
range considering the coverage rate. The maximum step size of USV movement was set to
0.5 unit. We tested these four methods 100 times and took the average value.

6.3. Evaluation Results

In this section, we show the trends of the communication coverage score; movement
fairness index; average energy consumption and communication efficiency, which varied
with various USV’s communication range; the number of USVs in each SSA; and the NEC
by USVs moving a unit distance.

Figure 4 shows the impact of the communication range on the above four metrics. We
can clearly see that the average energy consumption of all solutions decreased with the
increase in a USV’s communication range because a higher communication range was able
to reduce the moving distance of USVs when establishing the FCC. At the same time, the
movement fairness and the coverage range correspondingly increased.
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In Figure 4a, it can be seen that our proposed framework was better in the commu-
nication coverage score because in our framework, each USV needed to consider that the
selected moving position was able to cover more sampling points in order to obtain more
rewards in the training process. DDPG focused on the local information of a single USV
in training and lacked comprehensive consideration, while our approach used the global
information of all USVs and leveraged the cooperation and competition among USVs,
hence DDPG was worse than UST-MADRL. In the VFA, the attractive force and virtual
repulsive force were mainly represented by the distance between the agents; therefore, it
showed better communication coverage than GA and PSO, whereas the movement fairness
and average energy consumption in the VFA were relatively worse than GA and PSO
in Figure 4b,c.

Figure 4b shows that UST-MADRL was always optimal in terms of USVs’ movement
fairness when the communication range of USVs varied because we quanitifed the energy
consumption by Jain’s fairness index and considered energy consumption fairness by
multi-USV cooperative movement in the target sea area. Compared to this, DDPG, with
one policy, only relayed on one agent, which might have led to the potential unbalances
and conflicts among USVs. We can see that its movement fairness index were about 6%
higher than DDPG, 15% higher than GA, 65% higher than VFA, and 52% higher than PSO
when communication range R = 4.

In Figure 4c, it can be seen tha the average energy consumption of USVs was the lowest
under the control of UST-MADRL. DDPG was inferior to UST-MADRL. The average energy
consumption of GA was lower than PSO and the VFA because the energy consumption of
USVs was fully considered in the fitness function of GA as an important standard of the
chromosome evolution in the iterative process. However, the velocity and position of the
particles played a more important role than the fitness information in PSO. In the meantime,
the VFA paid more attention to the distance. We input some optimization indicators into
the VFA to try to enhance it, so the average energy consumption of PSO was the highest.
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Figure 4d shows that the communication efficiency of our framework was always
better than that of the others, with an increase in USV’s communication range. When the
UAVs in the target sea area were trained by UST-ACS, there was a good solution for the
cooperation and competition among the UAVs; that is, the policy parameters of the UAVs
in the strategy selection was able to help USVs to improve the overall communication
efficiency. Based on the above trends, DDPG is inferior to UST-MADRL. UST-MADRL
exceeded GA by an average of 10%. Compared to GA, the communication efficiency of UST-
MADRL exceeded that of GA by 2.2%, 5.4%, 31.7%, 24.9%, 23.6%, and 20.8%, respectively.
This was because even though GA can find the optimal solution according to the evolution
characteristics in multi-agent environment and the fitness was the same as our reward, GA
had a preference for local optimization.

Figure 5 shows the influence of the number of USVs in each SSA on the four indicators
when we changed the number of USVs in each SSA from 2 to 7. With the increase in the
number of USVs, the communication coverage score and movement fairness index showed
an upward trend, while the average energy consumption decreased. Accordingly, the
communication efficiency also kept increasing.
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Figure 5a shows that the communication coverage score of our framework kept
growing. This growth slowed when the number of USVs was 6 or 7. At that time, the
communication coverage gradually tended toward saturation. The curve of DDPG was
still below our framework. The VFA kept better coverage than PSO and GA, which was the
same as Figure 4, but worse average energy consumption and movement fairness, as shown
in Figure 5b,c. When the number of USVs in each SSA was 2 or 3, the communication
coverage score of our method was even lower than that of the VFA. This was because the
communication coverage of a small number of USVs was not enough to fully cover the
target sea area. In order to obtain greater communication efficiency, our method will prefer
to improve the movement fairness and reduce the energy consumption.

Moreover, in Figure 5b,c, it can be seen that the other baselines were inferior to our
proposed method. This is because the benefits from our comprehensive reward as well as
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the global policy optimization process, which ensures the overall return of the policy set
in the multi-agent environment. Thus, UST-MADRL was still able to achieve the lowest
average energy consumption and the highest movement fairness. When more USVs were
deployed, our framework still performed better. For instance, in Figure 5c, when the
number of USVs was 6 in each SSA, our method showed a 24% improvement compared to
GA and a 40.4% improvement compared to PSO, while VFA performed the worst. UST-
MADRL performed worse than GA when the number of USVs was 7 in each SSA. This was
because when the number of USVs increased, UST-MADRL needed to consider both the
higher movement fairness and average energy consumption of USVs. Contrarily, GA only
focused on the energy consumption of USV while ignoring the unfair movement that could
have made partial USVs run out of the energy and could have caused the void network
communication. As for the VFA, the increase in the USVs number in each SSA will make
the balance of the attraction and repulsion among USVs difficult.

In Figure 5d, it can be seen that UST-MADRL was always superior to the others
in terms of communication efficiency. For example, when the USVs in each SSA was 4,
our framework was 17.7% higher than DDPG, 46.5% higher than GA, 109% higher than
PSO, and 127% higher than the VFA. When the USVs in each SSA was 7, our algorithm
was 4.2% higher than DDPG, 31.7% higher than GA, 97% higher than PSO, and 124%
higher than VFA. Our framework showed an average 10.9% improvement compared to
DDPG. The communication efficiency of VFA was the worst because it was not able to
comprehensively consider the movement energy consumption and movement fairness of
USVs while ensuring the maximum communication coverage score. With the increase in
the number of USVs, the difference between UST-MADRL and DDPG reduced because
UST-MADRL employed central training and decentral execution based on the improvement
of MADDPG, which showed poor convergence with the larger number of agents.

Figure 6 verifies the influence of the NEC of a unit movement distance on the four
indicators when it changed from 0.4 to 1.4. Our UST-MADRL outperformed the others. It
is obvious that the four indicators become worse with the increase in the NEC value.
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Although UST-MADRL tended to decrease in terms of the communication coverage
score when the NEC increased, UST-MADRL was still better than the other baselines, as
shown in Figure 6a. GA always selected an action with the smallest energy cost, thus
the more the NEC impacted its results, and it obtained a lower communication coverage
score. PSO received less impact from the NEC because it focused on velocity and position
rather than other indicators. As the NEC became greater and greater, the VFA, considered
the distance, lost the advantage and its communication coverage score decreased. UST-
MADRL both considered the average energy consumption of USVs and focused on the
movement fairness index, which made USVs obtain a higher communication coverage
score. DDPG considered the same reward as our framework, therefore, it outperforms the
other three baselines.

In Figure 6b, we have the similar observations that UST-MADRL outperformed all
baselines in terms of the movement fairness index. For example, when the NEC was 1.0,
the movement fairness index of UST-MADRL was 52% higher than that of VFA. In addition,
Figure 6c shows that UST-MADRL had the absolute advantage in the aspect of the average
energy consumption. When the NEC was 1.4, the average energy consumption of UST-
MADRL was 3.48, which was the lowest in all methods. This was because UST-MADRL
calculated the global reward value by weighing the average energy consumption, which
reduced the overall movement energy consumption of USVs as much as possible.

Finally, we can observe that the communication efficiency of all methods decreased
with the increase in the NEC, as shown in in Figure 6d. However, the UST-MADRL
achieved the best performance. For example, when the NEC was 1.4, the communication
efficiency of UST-MADRL was 0.404, the communication efficiency of DDPG was 0.303, the
communication efficiency of GA was 0.261, the communication efficiency of PSO was 0.18,
and the communication efficiency of the VFA was 0.167. UST-MADRL gave an average
increase of 16.6% compared to DDPG. It was proved that our framework was able to
obtain a stable communication coverage score, movement fairness index, and average
energy consumption.

7. Conclusions

In this paper, we proposed a UST-MADRL framework that enables UAVs to efficiently
navigate the movement of USVs to establish a multi-USV FCC based on MADRL. The
optimization of both FCC and IoV performance, including the communication coverage of
USVs, USVs’ movement fairness, and energy consumption, is multi-objective, mutually
coupled, and non-convex. Accordingly, we designed quantitative indexes and transformed
the optimization problem into a POMG. Unlike existing research, we put the critic networks
into UAVs, taking the communication features of both USVs and UAVs into consideration.
We then proposed a UST-ACS, in which USV agents operated in the actor network to execute
the mobility strategy. In the meantime, the UAVs acted as critic to evaluate the action of
USV agents. Moreover, the information transition efficiently collected the local information
from multiple USVs and provided the global experience information to the critic networks
in the UAV for better assessment. The definition of SSA further facilitated the convergence
of the algorithms. Finally, the numerical results and theoretical analyses demonstrated that
our UST-MADRL framework was able to effectively establish the FCC and improve the
IoV’s communication coverage, the USVs’ movement fairness, energy consumption, and
communication efficiency. Because our model is based on the improvement of MADDPG,
it may be faced with the poor convergence performance associate with a larger scale of
USVs. In the future, we will study this issue.
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Abbreviations

The following abbreviations are used in this manuscript:
UAVs Unmanned Aerial Vehicles
USVs Unmanned Surface Vessels
IoV Internet of Vessels
FCC Full Communication Connection
MADRL Multi-Agent Deep Reinforcement Learning
POMG Partial Observable Markov Game
MADDPG Multi-agent Deep Deterministic Policy Gradient
UST-MADRL MADRL Scenario Strategized by UAVs for Multi-USV FCC
ACS Multi-agent Actor-Critic Structure
SSA Sea Service Area
DNN Deep Neural Network
LR Long Range
DRL Deep Reinforcement Learning
RL Reinforcement Learning
DDPG Deep Deterministic Policy Gradient
DQN Deep Q-network
MADQN Multi-Agent Deep Q-network
SNR Signal/Noise Ratio
TD Time Difference
ReLU Rectified Linear Unit
TPU Tensor Processing Unit
GA Genetic Algorithm
PSO Particle Swarm Optimization
VFA Virtual Force Algorithm
NEC Normalized Energy Consumed
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