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Abstract: Soil moisture (SM) is a crucial hydrologic factor that affects the global cycle of energy, carbon,
and water, as well as plant growth and crop yield; therefore, an accurate estimate of SM is important for
both the global environment and agriculture. Satellite-based SM data have been provided by the National
Aeronautics and Space Administration (NASA)’s Soil Moisture Active Passive (SMAP) and the European
Space Agency (ESA)’s Soil Moisture and Ocean Salinity (SMOS) satellite missions, but these data are based
on passive microwave sensors, which have limited spatial resolution. Thus, detailed observations and
analyses of the local distribution of SM are limited. The recent emergence of deep learning techniques,
such as rectified linear unit (ReLU) and dropout, has produced effective solutions to complex problems.
Deep neural networks (DNNs) have been used to accurately estimate hydrologic factors, such as SM and
evapotranspiration, but studies of SM estimates derived from the joint use of DNN and high-resolution
satellite data, such as Sentinel-1 and Sentinel-2, are lacking. In this study, we aim to estimate high-resolution
SM at 30 m resolution, which is important for local-scale SM monitoring in croplands. We used a variety
of input data, such as radar factors, optical factors, and vegetation indices, which can be extracted from
Sentinel-1 and -2, terrain information (e.g., elevation), and crop information (e.g., cover type and month),
and developed an integrated SM model across various crop surfaces by using these input data and DNN
(which can learn the complexity and nonlinearity of the various data). The study was performed in
the agricultural areas of Manitoba and Saskatchewan, Canada, and the in situ SM data for these areas
were obtained from the Agriculture and Agri-Food Canada (AAFC) Real-time In Situ Soil Monitoring for
Agriculture (RISMA) network. We conducted various experiments with several hyperparameters that
affected the performance of the DNN-based model and ultimately obtained a high-performing SM model.
The optimal SM model had a root-mean-square error (RMSE) of 0.0416 m3/m3 and a correlation coefficient
(CC) of 0.9226. This model’s estimates showed better agreement with in situ SM than the SMAP 9 km SM.
The accuracy of the model was high when the daily precipitation was zero or very low and also during
the vegetation growth stage. However, its accuracy decreased when precipitation or the vitality of the
vegetation were high. This suggests that precipitation affects surface erosion and water layer formation,
and vegetation adds complexity to the SM estimate. Nevertheless, the distribution of SM estimated by our
model generally reflected the local soil characteristics. This work will aid in drought and flood prevention
and mitigation, and serve as a tool for assessing the potential growth of crops according to SM conditions.

Keywords: soil moisture; deep neural network; Sentinel-1; Sentinel-2

1. Introduction

Soil moisture (SM) refers to the amount of water in the active layer of top soil [1]. It is
a key hydrological parameter affecting global cycles (climate, hydrology, and carbon), crop
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yields, and disasters, such as droughts and floods. SM determines the amount of latent heat
and heat released through evapotranspiration during the Earth’s energy cycle [2], and also
affects the atmospheric variability that occurs between the near surface and the atmosphere [3,4].
Additionally, SM is an essential factor for the survival of plants and microorganisms, as it affects
photosynthesis, respiration, and microbial activities, thereby influencing the carbon cycle [5];
it is also used to monitor drought and predict crop production [6]. SM also plays a role in
determining rainfall infiltration and runoff, thereby enabling flood monitoring [6,7].

SM is typically observed using equipment such as time-domain reflectometry (TDR) and
Stevens HydraProbe sensors installed in the soil [8,9]. However, these in situ observation
techniques are prohibitively expensive for observing the spatial distribution of SM over large
areas [10]. In contrast, satellite-based SM data are useful for confirming the continuous spatial
and temporal distribution of SM. These data are currently provided by the Soil Moisture and
Ocean Salinity (SMOS) mission of the European Space Agency (ESA) and the Soil Moisture
Active Passive (SMAP) mission of the National Aeronautics and Space Administration (NASA).
The SMAP and SMOS missions estimate SM using brightness temperature, which is measured
from a passive microwave (L-band) radiometer and the tau-omega radiative transfer model
(RTM). The RTM determines the brightness temperature based on the emissivity of the ground
and vegetation [11]. Changes in SM content lead to changes in surface emissivity at microwave
frequencies due to differences in dielectric properties between dry and wet soils [11]. Hence,
SM is inversely derived based on brightness temperature using RTM. Passive microwave
sensors typically have a wide instantaneous field of view (IFOV) to effectively capture naturally
emitted, low-energy microwave radiation [12]. Thus, passive sensor-based SM data have a
low spatial resolution (SMOS: 30–50 km and SMAP: 9–36 km), and there are limitations when
observing the local distribution of and spatiotemporal changes in SM [13]. The ESA’s Sentinel-1
(S1) and Sentinel-2 (S2), which provide high-resolution images, can be used to overcome these
resolution limitations.

S1 consists of Sentinel-1A (launched on 3 April 2014) and Sentinel-1B (launched
on 25 April 2016). It is equipped with an active microwave sensor, C-band (5.404 GHz)
synthetic-aperture radar (SAR) and provides vertical–vertical (VV) and vertical–horizontal
(VH) polarized microwave images with a resolution of 10 m (Table 1). S2 consists of
Sentinel-2A (launched on 23 June 2015) and Sentinel-2B (launched on 7 March 2017) and
provides multi-spectral data with 13 bands in the visible, near-infrared, and shortwave
infrared parts of the spectrum (Table 1). Multispectral data are provided at different spatial
resolutions (10, 20, and 60 m) depending on the type of band.

Table 1. Description of Sentinel-1 and Sentinel-2 bands [14].

Satellite Bands Frequency/Wavelength
Characteristics Resolution (m)

Sentinel-1
VV C-band (5.404 GHz) 10

VH C-band (5.404 GHz) 10

Sentinel-2

Band1 (Coastal aerosol) 0.443 µm 60

Band2 (Blue) 0.490 µm 10

Band3 (Green) 0.560 µm 10

Band4 (Red) 0.665 µm 10

Band5 (Red Edge) 0.705 µm 20

Band6 (Red Edge) 0.740 µm 20

Band7 (Red Edge) 0.783 µm 20

Band8 (NIR) 0.842 µm 10

Band8A (Narrow NIR) 0.865 µm 20

Band9 (Water vapor) 0.945 µm 60

Band10 (SWIR–Cirrus) 1.375 µm 60

Band11 (SWIR) 1.610 µm 20

Band12 (SWIR) 2.190 µm 20
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Many studies have derived high-resolution SM data using SAR and optical im-
agery [15–31]. Three primary approaches are used for SAR data, including physical,
empirical, and semi-empirical models. The integral equation model (IEM) is a physical
model, and the Oh and Dubois models are semi-empirical models. The IEM was developed
to estimate backscattering from rough surfaces. It calculates the backscatter coefficient using
an integral equation that considers factors such as radar frequency, polarization, the angle
of incidence, soil’s dielectric constant, root-mean-square height (RMSH), and the autocor-
relation function [16,17]. SM is estimated using the dielectric constant calculated through
IEM inversion [18]. Oh et al. (2002) [19] proposed a semi-empirical model for retrieving
SM from bare soil. The model describes the co-polarized backscattering ratio (σ

◦
HH/σ

◦
VV)

and cross-polarized backscattering ratio (σ
◦
HV/σ

◦
VV) using the angle of incidence, wave

number, RMSH, and volumetric SM [19]. Therefore, in the approach using Oh’s model, SM
is estimated using radar and roughness data [19]. The Dubois model is a semi-empirical
model that estimates SM and RMSH from the scatterometer data of bare soil [20]. It defines
the HH and VV polarized backscatter coefficient as an equation consisting of the incidence
angle, dielectric constant, RMSH, and wavelength [20]. SM is estimated by using a dielectric
constant, itself calculated using the Dubois model and data on the variables that constitute
the equation, including the backscatter coefficient [20]. These models are used to predict
the backscattering coefficients from radar parameters, such as wavelength, polarization, in-
cidence angle, and wave number, as well as soil properties, including the dielectric constant
and surface roughness [15,16]. Therefore, these models have been used to estimate SM and
roughness from radar backscattering coefficients and radar parameters [15]. The empirical
model is based on the statistical relationship between the backscatter coefficient and SM,
and estimates SM through linear or nonlinear regression analyses using the backscatter
coefficient or backscatter ratio as an independent variable [21–23]. The proposed models
leverage the characteristic that microwaves vary according to the dielectric constant of
SM. The dielectric constant is generally higher in wet soil than in dry soil. The linear
relationship between backscattered microwaves and SM is subject to the saturation status
of the SM. Much before saturation, the backscatter increases relatively fast according to the
increase in SM [15]. Just before saturation, however, the backscatter increases relatively
slowly according to the increase in SM [24]. Such relationships have been expressed as
a linear [21,22] or an exponential function [23]. Additionally, these models have mainly
been used to estimate SM in smooth and bare soil, or sparsely vegetated areas with flat
topography [21,22]. This is because the pure backscattered signal reflected from the soil can
be corrupted by topography, surface roughness, and vegetation [16], leading to inaccurate
estimates of SM.

A representative method of estimating SM using optical images is the temperature
vegetation dryness index (TVDI) [25]. TVDI is a remote sensing-based drought index
using the relationship between land surface temperature (LST) and vegetation index (VI)
to assess the dryness condition in the land surface and the state of SM indirectly [25,26].
TVDI measures the dryness of soil based on the relative position of pixels between the
“dry edge” and “wet edge” based on LST-VI space [25]. The “dry edge” refers to the
highest surface temperature that can be observed in a particular vegetation condition and
indicates limited water availability [25]. On the other hand, the “wet edge” represents
the lowest surface temperature that can be observed in a particular vegetation condition
and indicates maximum evapotranspiration and unlimited water access [25]. TVDI values
range from 0 (no water stress) to 1 (maximum water stress). In a previous study [26], the
normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and
modified soil-adjusted vegetation index were used for VI for TVDI calculation, and TVDI
based on LST-EVI space showed the highest correlation with in situ SM at depths of 10 and
20 cm.

Recently, a number of quantitative methods, such as change detection (CD) [27], the
water cloud model (WCM) [28], the ordinary least squares (OLS) regression method [29],
and machine learning (ML) [28,30,31], have been used to estimate SM using both SAR and
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optical sensing data (S1 and S2). CD calculates SM using the change in backscatter [27].
With this methodology, the NDVI produced from optical data is used to consider the same
vegetation condition, which has a diminishing effect on the ground state that influences
backscatter [27]. WCM is a semi-empirical model for estimating backscattering in veg-
etation. As WCM uses SM as an input parameter to estimate backscatter, it is used to
inversely estimate SM from the observed backscatter at the vegetation surface. Vegetation
indices, such as NDVI, are used as vegetation descriptors and reflect the vegetation status
of the land surface in the WCM [28]. The OLS regression method is a multivariate linear
regression method that uses the normalized differential moisture index (NDMI) and the
radar moisture index (RMI) as explanatory variables to estimate SM [29]. NDMI, which is
equivalent to the normalized difference water index (NDWI), is calculated by dividing the
difference between the near-infrared (NIR) and shortwave infrared (SWIR) bands of S2 by
their sum, and a value close to 1 indicates a moist condition [29]. The RMI is calculated by
dividing the difference between the backscatter values from S1 corresponding to the mini-
mum and maximum NDMI by their sum, and it is positively correlated with NDMI [29].
ML approaches, such as neural networks (NNs), support vector regression (SVR), random
forest regression (RFR), and generalized regression neural networks (GRNN), have also
been used to estimate SM [28,30,31]. Bousbih et al. (2018) [28] performed NN-based SM
modeling in a semi-arid region by combining S1 and S2 data, and the accuracy of the
model was a root-mean-square error (RMSE) of around 6%. NN is an ML method inspired
by the neural network of the human brain and is composed of layers of interconnected
nodes, each designed to mimic human neurons. Attarzadeh et al. (2018) [30] conducted
SVR-based SM modeling using S1 and S2 data to retrieve SM from vegetated areas and
produced a 4.94% RMSE. SVR is an ML technique used for regression analysis; it employs
the principles of support vector machines (SVMs), aiming to find the optimal hyperplane
to predict continuous output with the least possible error. Liu et al. (2021) [31] employed
SVR, RFR, and GRNN to estimate SM by combining S1 with S2 images; RFR and GRNN
showed similar accuracy (RMSE = 0.0222~0.0284 cm3/cm3, CC = 0.9318~0.9355), while
SVR showed a lower accuracy. RFR is an ensemble ML method that combines multiple
decision trees, and for regression tasks, the final prediction is derived by averaging the
predictions from individual decision trees within the random forest approach [31]. GRNN
is a nonlinear regression analysis technique with strong nonlinear mapping capability, a fast
learning speed, and the ability to handle limited and unstable data [31]. In these ML-based
studies, S1 SAR features (VH, VV, and incidence angle) and S2 optical features (e.g., bands,
vegetation indices, and water indices) were used as input variables [28,30,31]. These SM
estimation methods, which utilize both S1 and S2 data, use S2 band data, vegetation indices
(particularly NDVI), and water indices to reflect the vegetation condition. This means that
the synergistic use of S1 and S2 data is very important when estimating SM in vegetated
areas. ML-based SM modeling approaches can effectively adapt to diverse datasets and
can contain various model structures because the structure of the model is more flexible
and scalable than CD or WCM.

Deep neural networks (DNNs) were developed to build deeper and thicker neural
networks with recent computing power. The enhanced learning techniques by DNN
can overcome the drawbacks of local minima and overfitting that could be found in the
traditional AI methods [32–36]. Rectified linear unit (ReLU) solved the vanishing gradient
problem instead of the existing activation functions [34]. L1 and L2 regularization helped
to escape the excessive concentration of weights to a few specific neurons [36]. The dropout
method contributed to a robust network by the rigorous training with the random deletion
of parts of the neurons [33]. Although DNN can provide a more stable and accurate
estimation of hydrological factors [10,31,37], few studies are employing S1 and S2 together
for the estimation of SM using DNN. In a study by Liu et al. (2021) [31], the DNN showed
the highest accuracy (RMSE = 0.0045 cm3/cm3, CC = 0.9980) compared to three other ML
algorithms (GRNN, SVR, and RFR). However, as only a single image from S1 and S2 data
was used, there is a need to handle DNN modeling within a broader spatiotemporal range.
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In this study, we aim to estimate high-resolution SM at a resolution of 30 m, which
is important for local-scale SM monitoring in croplands. Unlike previous studies, we not
only used radar factors, optical factors, and vegetation indices (which can be extracted
from S1 and S2), but also used terrain information (e.g., elevation) and crop information
(e.g., cover type and month) as input data for SM modeling. For this reason, we chose a
DNN that can represent and learn the complexity and nonlinearity of the various input
data; through this, we developed an integrated form of an SM model across various
crop surfaces. The study areas were agricultural areas in Manitoba and Saskatchewan,
Canada. The S1-based backscatter, incidence angle, terrain information, S2-based spectral
bands, vegetation indices, SM and meteorological observation data, and crop maps were
constructed for SM modeling. The data were obtained from May to September 2016–2018,
during the crop growing seasons. The performance of the DNN model was determined by
various hyperparameters, such as the number of layers, the number of nodes, the dropout
rate, and the number of epochs. Therefore, this study modeled various combinations
of hyperparameters to select the optimal set that yielded the best performance. The
performance of the model was evaluated using k-fold cross-validation (CV) and SMAP
global 9 km SM data.

2. Data and Methods
2.1. Study Area and Observational Data

The study areas were croplands located near Winnipeg, Manitoba, Canada, and
Saskatoon, Saskatchewan, Canada (Figure 1). Both regions belong to the humid continental
climate zone (Dfb in the Köppen classification). They exhibit a climate characterized
by general humidity, cold winters, and warm summers. The average temperature over
20 years (1981 to 2010) was approximately 18 ◦C in summer and −13 ◦C in winter [38]. The
average annual precipitation over the same period was about 445 mm in Manitoba and
303 mm in Saskatoon [38]. The terrain in these areas is generally flat [39].

The data period was May to September, corresponding to the crop-growing seasons.
We gathered 2016–2018 data from the Agriculture and Agri-Food Canada (AAFC) Real-
time In Situ Soil Monitoring for Agriculture (RISMA) network. RISMA collects soil and
meteorological information, such as SM, precipitation, air temperature, relative humid, and
wind speed, at 15 min intervals and distributes it via their website (https://agriculture.
canada.ca/SoilMonitoringStations/ (accessed on 17 January 2020)) [39]. Twelve monitoring
stations were located in Manitoba and four in Saskatchewan (Figure 1). SM was measured
using three Stevens HydraProbe sensors installed concurrently at depths of 0–5, 5, 20,
50, and 100 cm. In this study, SM data at a depth of 0–5 cm were used to consider
the characteristics of the C-band SAR, which finds it difficult to penetrate deep into the
ground [40]. These data are defined as calibrated SM, calculated based on the recorded real
dielectric permittivity at 0–5 cm (vertical surface sensor), and the unit of SM is m3/m3 [39].
The in situ SM data were adjusted using the calibration equations based on the relationships
with the actual dielectric constant derived from the HydraProbe sensors for each site [39,41].
The SM values measured by the three sensors at the same soil depth were usually similar,
but occasionally showed significant differences. Therefore, we used the average value
when the standard deviation of the three SM values was less than 0.0224 m3/m3. Moreover,
only in situ SM data when the rainfall amount was 0 mm were used for SM modeling,
because a moisture layer formed on the ground by precipitation or irrigation reduces the
backscatter value [42]. The soil texture at the observation stations consisted of sand, sandy
loam, loam, silt loam, silty clay loam, clay loam, clay, and heavy clay (Table 2). Among the
12 observation stations in Manitoba, the in situ data from stations MB6, MB8, MB10 (which
had heavy clay), and MB4 (which had sandy soil) were not used due to their drainage
characteristics. Heavy clay is a low-permeability soil that retains high SM, so a surface
moisture layer may readily form via external water inflow [43]. The backscatter measured
from heavy clay soil is likely to contain relatively more noise due to the water layer. MB4
was composed of well-drained sand as opposed to heavy clay soil, and exhibited large

https://agriculture.canada.ca/SoilMonitoringStations/
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differences in backscatter between pixels within a 3 × 3 window centered near the station
(Figure 2). Such variability can weaken the relationship between the pixel values and in-situ
SM when the satellite data are resampled in a coarser window. Based on the 2016 AAFC
crop inventory digital map with a resolution of 30 m, most observation data were obtained
from the cropland for soybean, barley, canola, spring wheat, and corn. Additionally, parts
of the measurements were obtained from grassland and pasture (Table 2). The stations MB3
and MB8 were located close to the roads and were excluded from the analysis.
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Table 2. Description of the soil moisture stations used in this study.

Station Latitude Longitude Soil Texture AAFC 2016 Crop Map

MB1 49.56234 −98.01924 Sandy Loam Soybeans

MB2 49.4925 −97.93374 Clay Loam Spring Wheat

MB3 49.51951 −97.95649 Sandy Clay Loam Urban and Developed

MB4 49.63609 −97.98813 Sand Spring Wheat

MB5 49.62145 −97.95781 Clay Soybeans

MB6 49.67877 −97.95957 Heavy Clay Spring Wheat

MB7 49.66552 −98.00762 Sandy Loam Corn

MB8 49.75253 −97.98237 Heavy Clay Urban and Developed

MB9 49.69462 −98.02397 Sandy Loam Soybeans

MB10 49.97536 −97.34829 Heavy Clay Sunflower

MB11 50.11131 −97.57337 Clay Loam Barley

MB12 50.18998 −97.59801 Loam Canola and Rapeseed

SK1 51.33484 −106.56494 Silty Clay Loam Spring Wheat

SK2 51.33504 −106.56389 Silt Loam Grassland

SK3 51.38415 −106.46923 Loam Grassland

SK4 51.38164 −106.41583 Clay Loam Pasture and Forages

2.2. Satellite Datasets

S1 consisted of Sentinel-1A and Sentinel-1B, each equipped with a C-band (5.404 GHz)
SAR. In this study, we used the Level-1 Ground Range Detected (GRD) product, acquired in
the interferometric wide (IW) swath mode. The IW mode is intended for land observations
and provides dual-polarization images (VV and VH polarizations). The GRD product uses
the WGS84 Earth ellipsoid model with square pixels. The revisitation period for a single
S1 is 12 days, and six days for dual S1. The S1 data were preprocessed using the Sentinel
Application Platform (SNAP), officially provided by ESA for Sentinel data processing, and
the processes included orbit correction, noise removal, radiometric calibration, terrain
correction, and unit conversion. Orbit correction was performed to update the precise
position and velocity of the satellite because the metadata of the S1 GRD product do not
contain accurate information about the orbit. Thermal noise and speckle were removed,
as they degraded the quality of the SAR images. Such noise complicates the qualitative
or quantitative analysis of SAR images [44,45]. Radiometric calibration was conducted to
convert digital pixel values into backscatter values. A terrain correction was conducted to
correct the geometric distortion included in the SAR images, which made the SAR image as
close to reality as possible using the Shuttle Radar Topography Mission (SRTM) 30 m Digital
Elevation Model (DEM). The unit conversion refers to the conversion of the backscatter
coefficient (σ◦) into decibels (dB), which was conducted using the formula 10 × log10σ◦.
The angle of incidence in the study area mostly appeared in the ranges 30–37◦ and 38–40◦.
As the sensitivity of backscatter to SM is high at low incident angles [46,47] and VV-
polarized backscatter tends to be more sensitive to SM than VH-polarized backscatter [47],
we used VV-polarized backscatter data with incidence angles less than 37◦.

S2 consisted of Sentinel-2A and Sentinel-2B, both equipped with a multispectral
instrument and providing 13 bands of multi-spectral data. The revisitation period for a
single S2 was 5 days, and the revisiting period for dual S2, which uses two satellites, was
2–3 days. In this study, we used the S2 Level-1C product with a geometric correction, but it
required additional atmospheric correction. The atmospheric correction was performed
using Sen2Cor in SNAP. SNAP performs an atmospheric correction and classifies the
image (e.g., cloud, shadow, vegetation, and water) to generate a Level-2A product. During
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Sen2Cor processing, the spatial resolution of all data was resampled to 10 m, and the band
data except Band 1 (0.443 µm), Band 9 (0.945 µm), and Band 10 (1.375 µm), which have
spatial resolutions of 60 m, were automatically converted to Level-2A product. The Level-
2A product included data regarding quality-cloud-confidence, quality-snow-confidence,
and quality-scene-classification, and provided classification and quality information for
each pixel. Quality-cloud-confidence and quality-snow-confidence provide cloud and
snow confidence in percentage (%) units, respectively. Quality-scene-classification includes
categories such as no data, shadows, vegetation, bare soil, water, clouds, and snow, and
the pixel values are integers from 0 to 11. In this study, we used these data to exclude
clouds and snow and used only pixel values that referred to bare soil or vegetation. Most
cropland pixels were classified as bare soil during May–September and as vegetation during
June–August. Five vegetation indices, including NDVI, EVI, the soil- adjusted vegetation
index (SAVI), the moisture stress index (MSI), and NDWI, as well as the multispectral
bands were used to represent the ground and vegetation conditions (Table 3). Healthy
plants absorb red reflectance and reflect near-infrared reflectance. NDVI represents the
reflectance characteristics of healthy plants and has a value between −1 and 1, through the
normalization of both red and near-infrared reflectance. The closer the value is to 0, the
more it corresponds to bare soil, and the closer the value is to 1, the more it corresponds to
a higher vegetation vitality [48]. EVI is an index that improves NDVI by additionally using
blue reflectance to compensate for the effects of the atmosphere and soil and is designed to
be sensitive in areas with high vegetation density [49]. The canopy adjustment factor (L) in
the EVI formula is 1, the aerosol correction factors (C1 and C2) are 6 and 7.5, and the gain
factor (G) is 2.5 [49]. SAVI is an NDVI index that includes the canopy brightness correction
factor (L) to correct for the effect of soil on red and NIR in areas of low vegetation [50]; the
L is 0.428 [51]. MSI is an index that measures water stress in plants and is calculated as
the ratio of the SWIR to the NIR [52]. SWIR is sensitive to leaf moisture content, and its
absorption increases as the leaf moisture content increases [53]. In contrast, NIR is barely
affected by changes in the leaf moisture content [54]. NDWI is an index that uses SWIR
absorption characteristics for leaf moisture content values that are similar to the MSI [55].
As it is calculated by normalizing NIR and SWIR, its value ranges from −1 to 1; a higher
moisture content is indicated by values closer to 1. Band 11 (1.610 µm) data of S2 were used
as the SWIR data required to calculate MSI and NDWI.

Table 3. Description of the vegetation indices used in this study.

Vegetation Indices Equation

Normalized difference vegetation index (NDVI)
ρnir − ρred
ρnir + ρred

Enhanced vegetation index (EVI) G
ρnir − ρred

ρnir + C1 ρred − C2 ρblue + L

Soil adjusted vegetation index (SAVI)
ρnir − ρred

ρnir + ρred + L
(1 + L)

Moisture stress index (MSI)
ρswir
ρnir

Normalized difference water index (NDWI)
ρnir − ρswir
ρnir + ρswir

The 2016 AAFC crop inventory digital map, based on satellite imagery (Landsat-8,
Sentinel-2, Gaofen-1, and RADARSAT-2), was used for crop information and to classify the
croplands at the in situ stations. It was provided as a GeoTIFF file, and the spatial resolution
of the map was 30 m. In this study, the resolution of all satellite data was converted to
30 m to match the spatial resolution of the crop map and to mitigate backscattering noise.
Moreover, all the selected image data were transformed into the world geodetic system
1984 (WGS84) and cropped to match the observation data and to produce soil moisture
maps.
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2.3. Construction of a Comprehensive Dataset for Soil Moisture Modeling

Figure 3 presents a flowchart of the proposed SM model. It is divided into two parts:
the construction of the matchup data and the modeling process, the latter of which is
discussed in the DNN Modeling Section. The input data for model training consisted of S1
factors (the VV-polarized backscatter coefficient, incidence angle, and elevation), S2 band
factors (bands 2–8, band 8A, band 11, and band 12), vegetation indices (NDVI, EVI, SAVI,
MSI, and NDWI), crop type, and month. These data were extracted from preprocessed
satellite data (S1, S2, and the 2016 AAFC crop inventory digital map) and preprocessed
RISMA in situ SM data (Figure 3a). The RISMA in situ data were provided at 15 min
intervals. S1 factors, including backscatter data, which are sensitive to changes in SM,
were matched with the value closest to the observed time; the maximum time difference
was 15 min. The S2 bands and vegetation indices were used to represent the state of the
land surface and vegetation, and the time difference between the S2 and S1 data was set
to be within 10 days. If any of the matched data were missing, the data for that date
were removed. As a result of the filtering, the data of 11 in situ stations (MB1, MB2, MB5,
MB7, MB9, MB11, MB12, SK1, SK2, SK3, and SK4) were used for SM estimation modeling.
Ultimately, the matchup data consisted of a total of 119 data points collected between May
and September from 2016 to 2018.
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Backscatter typically has a linear relationship with SM [23]. Because backscatter
is affected by factors such as the incidence angle, the state of the ground (bare soil or
vegetation), crop type, and roughness, these factors should be considered when estimating
SM. We used these factors as input data for the SM estimation model. The incidence angle
affects the sensitivity of backscatter to the surface roughness, with a lower sensitivity at
lower incidence angles than higher ones [56]. Moreover, the sensitivity of backscattering
to SM is higher at lower incidence angles [46,47]. Therefore, VV polarization backscatter
data with incidence angles less than 37◦ were used for accurate SM estimation. Elevation
derived from DEM is a variable that can affect the distribution of SM. SM can be relatively
low at higher elevations, as water moves from higher to lower places due to gravity [57,58].
This characteristic was found in Manitoba, where SM showed a slight decreasing trend
according to elevation (Figure 4). RMSH and correlation length (CL) are also used as
topographical factors that affect water distribution. We evaluated the variable importance
for the three variables (elevation, RMSH, and CL), and Appendix A shows that elevation
was an appropriate variable for SM modeling. Moreover, a standardized dataset for
elevation, such as SRTM, is available globally. Vegetation generally causes volumetric
scattering and weakens the backscatter reflected by the soil [59], thus affecting the SM
estimate using backscattering. The S2 multi-spectral bands and vegetation indices were
used to reflect the vegetation state and water stress. The S2 multi-spectral bands after
atmospheric correction using Sen2Cor consisted of blue (band 2), green (band 3), red (band
4), red edge (bands 5–7), NIR (bands 8 and 8A), and SWIR (bands 11 and 12). Blue, green,
red, and NIR are useful bands with which to analyze the characteristics of vegetation and
soil and are used to calculate vegetation indices, such as NDVI, EVI, and SAVI; they are also
used for land cover classification [60]. The red edge was designed for vegetation analysis
and is used as a descriptor of the chlorophyll content [61]. SWIR is sensitive to ground
moisture content and is used for plant water stress assessments and snow/ice/cloud
classification [62]. SWIR and NIR are used to calculate MSI and NDWI, which indicate
plant water stress (Table 3). Depending on the crop, differences in canopy structure and
roughness affect the sensitivity of backscatter to SM [63,64]. Therefore, crop type was
selected as an input variable and was used in numerical form (Table 4). In addition, the
structure of crops can be divided according to the phenological stages, which are typically
distinguished on a monthly basis [65]. Thus, monthly information was used as an input
variable, because it can be used to classify the condition of structurally similar crops.
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Table 4. Categorical labeling for each crop type.

Crop Type Categorical Label

Spring Wheat 1

Soybeans 2

Corn 3

Barley 4

Canola, Rapeseed 6

Grassland 7

Pasture, Forages 8

2.4. DNN Modeling

We used the H2O package to build a deep learning model for SM estimation. H2O is a
Java-based open-source ML platform. The DNN model consisted of an input layer, hidden
layers, and an output layer (Figure 5). The input layer consisted of 20 nodes receiving
S1 factors (VV polarized backscatter coefficient, incidence angle, and elevation), S2 band
factors (bands 2–8, band 8A, band 11, and band 12), vegetation indices (NDVI, EVI, SAVI,
MSI, and NDWI), crop type, and month. The output layer consisted of a single node to
estimate SM. We used default values for most of the model hyperparameters and changed
four hyperparameters (hidden layer (H), node (N), dropout ratio (DR), and epoch (E)).
The main hyperparameters of H2O deep learning that were set to default values were:
activation function = ‘RectifierWithDropout’, L1 regularization = 0, L2 regularization = 0,
and optimizer = ‘AdaDelta’. RectifierWithDropout refers to ReLU with a dropout ratio
applied. ReLU is a function that returns the input value, as is, if it exceeds 0, and returns
0 if the value is less than 0 [66]. This prevents the vanishing gradient problem, which is
a learning interruption problem that occurs during the backpropagation process due to
the sigmoid function used in traditional ML [66]. The dropout ratio is a technique used to
remove some nodes to avoid overfitting (which is a problem encountered with DNN) [67]
and is implemented at each layer in the neural network. Overfitting means that, while the
training error is small due to overtraining on the training data, the error is large on the
validation data. For example, a dropout ratio = 0.2 means that 20% of the nodes existing
in the layer are excluded from training. L1 and L2 regularization, along with the dropout
ratio, are parameters used to reduce model complexity and prevent overfitting [68]. L1
regularization is a method to limit the absolute value of weights, and L2 regularization
is a method to limit the sum of squared weights [68]. Adaptive delta (AdaDelta) is an
optimizer used to minimize the loss function and improve learning speed. It is a technique
that improves the Adagrad problem, in which the learning rate approaches zero as training
progresses, resulting in ineffective learning [69].

In this study, to find the optimal estimate model for SM, models were constructed
and evaluated under various hyperparameter conditions: hidden layer (H: 3–4), node
(N: 100–400, interval: 100), epoch (E: 1–200, interval: 5), and dropout ratio (DR: 0.05–0.25,
interval: 0.05) (Figure 3b). Each model was trained and evaluated using the k-fold cross-
validation (CV) (k = 10). This method randomly divides the entire dataset into k sets and
performs k evaluations. During the k evaluations, (k − 1) sets are used as training data,
and the remaining set is used as the validation set. The validation set is not duplicated and
changes with each iteration. As this method uses all datasets for training and evaluation,
more generalized models can be built. In this study, we adopted this method to mitigate
the potential overfitting that can occur when a small number of matchup data are divided
into training and validation datasets. The matchup data, composed of 119 data points
gathered between May and September from 2016 to 2018, were randomly divided into ten
sets. Each set was then utilized for conducting ten-fold CV experiments for each model.
The accuracy of the models was evaluated quantitatively using mean bias error (MBE),
mean absolute error (MAE), RMSE, and CC. In addition, for an objective evaluation of
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the model performance, an accuracy comparison was performed using top layer SM data
(0–5 cm), derived from SMAP L4 Global 3 hourly 9 km EASE-Grid Surface and Root Zone
Soil Moisture Geophysical Data. SMAP SM data were extracted based on values close to in
situ data in terms of space and time, and their accuracy compared with in situ data was
calculated.
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3. Results and Discussion
3.1. Model Accuracy and Optimal Model

To find the optimal DNN model for estimating SM, we constructed various models by
changing the values of four hyperparameters (hidden layer, node, dropout ratio, and epoch)
and evaluated these models through the ten-fold CV. Table 5 summarizes the RMSE and
CC of each model based on the low RMSE for an objective evaluation. In Table 5, Model
1 (H = 4, N = 300, DR = 0.1, E = 200) had the greatest accuracy (RMSE = 0.0416 m3/m3,
CC = 0.9226). Table 6 presents the CV results for each fold of Model 1. The average MBE
of Model 1 was 0.0042 m3/m3, which was close to the 0 bias, and the average MAE was
0.0315 m3/m3. The average CC was 0.9226, suggesting a strong linear relationship between
the estimated and observed SMs. The accuracy and correlation showed a much higher
performance than the 9 km SMAP SM data (Figure 6). The proposed Model 1’s estimates
were more densely clustered along the 1:1 line than the points representing SMAP data in
the scatterplot between the estimated and observed values (Figure 6). In other words, the
estimated SM values from the proposed model were more consistent with the observed
values than the SMAP data. Among the ten CVs of Model 1, CV4 and CV8 presented
RMSE values of 0.0585 m3/m3 and 0.0522 m3/m3 respectively, which were higher than the
average RMSE, but maintained a high positive CC (Table 6). This was judged to be less
accurate for some CVs, because a ten-fold CV was performed with 119 small matchup data.

The H2O library used for DNN modeling provides the importance of input variables
calculated through the Gedeon method. This method calculates their importance by
considering the weights connecting the input features to the first two hidden layers, and the
derived importance represents the significance of the variables for the prediction outcome
as a percentage [70,71]. Among the input variables, the incident angle, crop type, month,
elevation, and backscattering showed an importance of about 6% or more, while the
bands and vegetation indices related to S2 showed an importance of about 4% (Figure 7).
Particularly, the incident angle, crop type, month, and elevation used to reflect the sensor
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and ground conditions that affect backscattering in the model showed higher importance in
predicting SM than backscattering, which has a direct relationship with SM (Figure 7). This
means that including the sensor and local factors that affect backscatter helps to achieve
more accurate SM estimates when modeling for SM across several study areas.

Table 5. Validation accuracy of the models constructed based on different hyperparameter conditions.

Model Hidden
Layer Node Dropout

Ratio Epoch RMSE
(m3/m3) CC

1 4 300 0.1 200 0.0416 0.9226

2 4 300 0.1 215 0.0416 0.9186

3 3 400 0.1 200 0.0418 0.9180

4 4 300 0.1 205 0.0424 0.9171

5 3 400 0.1 190 0.0427 0.9182

6 3 300 0.1 190 0.0428 0.9153

7 3 400 0.1 180 0.0429 0.9148

8 3 400 0.1 160 0.0431 0.9173

9 3 300 0.1 200 0.0433 0.9174

10 4 300 0.15 190 0.0433 0.9144

11 4 300 0.1 180 0.0434 0.9152

12 3 400 0.1 130 0.0438 0.9093

13 4 300 0.1 140 0.0438 0.9121

Table 6. Cross-validation accuracy of Model 1 with the best performance.

Cross-Validation MBE
(m3/m3)

MAE
(m3/m3)

RMSE
(m3/m3) CC

CV1 0.0057 0.0284 0.0332 0.9403

CV2 −0.0023 0.0311 0.0380 0.9538

CV3 0.0044 0.0354 0.0467 0.8759

CV4 0.0203 0.0417 0.0585 0.8950

CV5 −0.0051 0.0314 0.0464 0.9215

CV6 −0.0131 0.0171 0.0223 0.9914

CV7 0.0044 0.0197 0.0294 0.9513

CV8 0.0037 0.0363 0.0522 0.8584

CV9 0.0176 0.0338 0.0422 0.9189

CV10 0.0061 0.0405 0.0466 0.9196

Mean 0.0042 0.0315 0.0416 0.9226

Standard deviation 0.0099 0.0081 0.0109 0.0393

For a more accurate SM estimate, we used data only when precipitation was 0 mm.
However, even if there was no precipitation at a certain time, precipitation that may have
fallen in the past might affect backscattering by forming a water layer on the ground
(standing water), or changing SM or ground roughness. Therefore, we calculated the
sum of the rainfall that occurred in the 24 h before the time of the observation data and
investigated the effect of daily rainfall intensity on the accuracy of SM. The accuracy was
high on non-rainy days and low on rainy days (Table 7). Specifically (Table 8), when
the daily precipitation was ≤5 mm/day, the accuracy was similar to that when the daily
precipitation was 0, whereas when the daily precipitation was >5 mm/day, the RMSE
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and MAE increased to 0.0656 m3/m3 and 0.0531 m3/m3, respectively, and showed a
tendency to underestimate SM (MBE = −0.0185 m3/m3). Precipitation contributes to
surface erosion, saturation of SM, and the formation of standing water [43,72,73]. Moreover,
surface scattering occurs more in wet vegetation after rainfall than volume scattering
does [74]. As a result, backscatter tends to decrease under these conditions, suggesting that
SM is underestimated due to high precipitation.
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Table 7. Accuracy of soil moisture according to the occurrence of precipitation.

Daily Precipitation
(DP, mm/24 h)

MBE
(m3/m3)

MAE
(m3/m3)

RMSE
(m3/m3) CC N

No rain (DP = 0) 0.0109 0.0271 0.0374 0.9211 65

Rain (0 < DP ≤ 28) −0.0040 0.0367 0.0485 0.9049 54

Table 8. Accuracy of soil moisture according to the amount of daily precipitation.

Daily Precipitation
(DP, mm/24 h)

MBE
(m3/m3)

MAE
(m3/m3)

RMSE
(m3/m3) CC N

DP = 0 0.0109 0.0271 0.0374 0.9211 65

0 < DP ≤ 5 0.0052 0.0262 0.0333 0.9417 33

5 < DP ≤ 28 −0.0185 0.0531 0.0656 0.8080 21

The accuracy of SM was the best within the NDVI range of 0.3 < NDVI ≤ 0.7, which
corresponded to the vegetation growth stage, and was low when the vitality of vegetation
was high (NDVI > 0.7) or low (NDVI ≤ 0.3) (Table 9). High vegetation vitality corresponds
to a period of maximum crop growth [75]. During this time, the soil is likely to be in a state
of “dense vegetation” and completely covered by the vegetation canopy [75]. Vegetation
serves to attenuate microwave signals reflected from the soil [59]. Therefore, the accuracy
was low at a higher NDVI due to this effect (RMSE = 0.0524 m3/m3, CC = 0.8662). The
accuracy of SM at NDVI ≤ 0.3, which is close to bare soil, was affected by precipitation.
In the case of no rain, the accuracy of SM was similar to the condition in which the
NDVI was >0.3 and ≤0.7, but MAE, RMSE, and CC significantly deteriorated in the rain
(Tables 9 and 10).

Table 9. Accuracy of soil moisture according to NDVI range.

NDVI MBE
(m3/m3)

MAE
(m3/m3)

RMSE
(m3/m3) CC N

0 < NDVI ≤ 0.3 0.0116 0.0431 0.0572 0.8307 18

0.3 < NDVI ≤ 0.7 0.0031 0.0225 0.0305 0.9575 65

0.7 < NDVI ≤ 1 0.0023 0.0418 0.0524 0.8662 36

Table 10. Accuracy of soil moisture in the low NDVI range (0 < NDVI ≤ 0.3), according to the
occurrence of daily precipitation.

Daily Precipitation
(DP, mm/24 h) NDVI MBE

(m3/m3)
MAE

(m3/m3)
RMSE

(m3/m3) CC N

No rain (DP = 0) 0 < NDVI ≤ 0.3 0.0162 0.0313 0.0383 0.9190 8

Rain (DP > 0) 0 < NDVI ≤ 0.3 0.0080 0.0526 0.0686 0.7249 10

Taken together, the presence of fully grown vegetation and precipitation are factors
that can cause an inaccurate SM estimation. However, the CCs were generally higher
than about 0.9 and the CC was 0.7249–0.9049 in cases of precipitation or heavy vegetation
(Tables 7–10). This means that, although accuracy may decrease due to precipitation and
vegetation, the estimated SM based on the DNN was strongly positively correlated with
the observed SM.

To determine the effect of meteorological factors (daily precipitation, air temperature,
and relative humidity) on SM, the correlation between meteorological factors for each
station and estimated SM was analyzed. As with precipitation data, air temperature and
relative humidity also used the average relative humidity (%) and average air temperature
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data (◦C) provided by RISMA. When calculating the correlation, any instances missing at
least one weather variable were excluded. SM was positively correlated with precipitation
(CC = 0.3781–0.7362) at all stations except SK3 (Table 11). Air temperature and relative
humidity are factors that affect evaporation, which causes a loss of SM. SM showed a
negative correlation with air temperature and a positive correlation with relative humidity.
However, there were some differences in variables affecting SM for each station. In MB1,
MB7, MB9, MB11, and MB12, SM showed a higher correlation with relative humidity
than air temperature (Table 11). On the other hand, SM in MB2, MB5, SK3, and SK4
showed a higher correlation with temperature than relative humidity (Table 11). In general,
evapotranspiration tends to increase with higher temperatures, but this is limited by
humidity [76]. Because of this, the effect will have been different at each station. However,
a very weak correlation with precipitation was confirmed at station SK3 (CC = 0.1920), and
almost no correlation was found between air temperature and relative humidity at stations
SK1 and SK2 (Table 11). This is presumed to be attributable to yet unclear factors affecting
SM, such as irrigation. In addition, it was confirmed that the relationship between SM and
meteorological variables had a complex and nonlinear structure rather than a simple linear
relationship. This re-emphasizes that DNN-based modeling that effectively reflects the
complexity and nonlinearity of various variables is essential for SM modeling. One of the
most considerable limitations of current SM modeling is the absence of high-resolution
meteorological factor data and data related to irrigation. If these data can be made available
in the future, the accuracy of high-resolution SM modeling will be greatly improved.

Table 11. The correlation between estimated soil moisture and meteorological factors (daily precipita-
tion, average relative humidity, and average air temperature) at each in situ station.

Station CCSM−Daily precipitation CCSM−Relative humidity CCSM−Air temperature N

MB1 0.3781 0.4111 −0.3521 15

MB2 0.7362 0.6645 −0.7770 8

MB5 0.7002 0.5069 −0.6787 11

MB7 0.5972 0.4426 −0.2552 16

MB9 0.6356 0.5475 −0.2861 15

MB11 0.4454 0.5614 0.0716 8

MB12 0.4054 0.4179 0.3406 9

SK1 0.5519 0.1671 −0.0947 12

SK2 0.3786 −0.2772 0.0354 11

SK3 0.1920 0.0853 −0.4340 8

SK4 0.8902 −0.6671 −0.9938 3

3.2. Soil Moisture Mapping at the Local Scale

Figures 8 and 9 present SM maps for the Carman and Sturgeon Creek watersheds in
Manitoba, respectively. Pixels that did not match the conditions of the input data used
in the DNN model (e.g., crop type, no data, shadows, water, clouds, and snow) were
excluded from the SM estimate and are represented by a gray color, which indicates that
there are no data on the map (Figures 8 and 9). Some areas were not represented in the SM
maps. We used the departure from average precipitation (DAP) (mm) data provided by the
Government of Canada to compare SM. DAP was defined as the accumulated precipitation
value from the beginning of growing season, specifically from 1 April, subtracted from
the long-term average value. The long-term average precipitation was defined as the
average amount during 1981–2010 [77]. A negative DAP value indicates less than average
precipitation, while a positive DAP value indicates above-average precipitation [77]. To
facilitate this comparison, we compared SM maps with the DAP data of the closest date to
the SM maps. SM in the two regions was related to precipitation. In particular, the Carman
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region had a relatively low SM distribution from May 2017 to July 2018 (Figure 8). This
was consistent with the decrease in precipitation (DAP < 0) in 2017 and 2018 compared to
2016 (Figure 10). However, the area northeast of Carman showed no significant change
in SM compared to the southwest (Figure 8). This distribution of SM was closely related
to the soil texture. In this area, sandy and loam-based soils exist in the southwest, while
clay-based soils are in the northeast (Figure 11). Clay-based soils have small soil particles
that do not drain well [39,78]; thus, their SM was generally high regardless of the season
(Figure 8).
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Figure 10. Departure from average precipitation (DAP) in the ROI of the Carman area, Manitoba,
as depicted in Figure 8. DAP is defined as the accumulated precipitation value from the beginning
of the growing season, specifically from 1 April, subtracted from the average precipitation during
1981–2010 [77].

The Sturgeon Creek watershed is located northwest of Winnipeg, Manitoba, Canada.
The region of interest (ROI) shown in Figure 9 corresponds to the downstream region of
the Sturgeon Creek watershed [78]. Although DAP in this area was generally negative, SM
was consistently distributed over 0.20 m3/m3 regardless of the season (Figures 9 and 12).
This was also related to the soil texture. The soil in this area is clay, which does not
drain well [78]. Bhuiyan et al. (2017) [78] reported that SM was generally distributed
over 0.20 m3/m3 in the October 2014 SM map for this area. However, notably, slightly
reduced SM distributions were observed on 24 August 2017 and 5 September 2017, close to
21 August 2017 and 4 September 2017, when DAP was below −80 mm (Figures 9 and 12).
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This means that, even if the soil is composed of clay, the SM can decrease under fairly low
precipitation. Overall, clay retains more SM than other soil types. Although soil texture
information was not included as input data in the model, the mapping results show that
the estimated SM fairly reflected local and seasonal characteristics. Therefore, it is expected
that using soil texture information as input data will lead to more accurate modeling.
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tershed, Manitoba, as depicted in Figure 9. DAP is defined as the accumulated precipitation value
from the beginning of the growing season, specifically from 1 April, subtracted from the average
precipitation during 1981–2010 [77].
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4. Conclusions

In this study, we conducted DNN-based SM modeling for croplands in Manitoba and
Saskatchewan, Canada, using high-resolution image data (e.g., S1 SAR, S2 multi-spectral
data, and AAFC crop maps) with resolutions ranging from 10 to 60 m to estimate SM at a
regional scale. The model was built through hyperparameter optimization, and its accuracy
was evaluated according to daily precipitation and vegetative growth. The model had an
RMSE of 0.0416 m3/m3 and a CC of 0.9226. The SM values estimated from the proposed
model were in better agreement with the in situ values than the SMAP data. The accuracy
tended to be higher when daily precipitation was zero or very low, as opposed to when it
was higher (RMSE = 0.0333–0.0374 m3/m3 and CC = 0.9211–0.9417 m3/m3). This is because
precipitation can affect backscattering by contributing to surface erosion, saturation of
SM, and the formation of standing water [43,72,73]. Additionally, the accuracy improved
during periods of bare soil and vegetative growth (0 < NDVI ≤ 0.7). Although the accuracy
decreased during high precipitation and the presence of vegetation with high NDVI, the
estimated SM remained strongly correlated with the observed SM (CC = 0.7249–0.9049).
Furthermore, we confirmed from the SM maps that the estimated SM generally reflected
the regional soil characteristics, even if the soil texture information was not used as an
input variable.

One of the most considerable limitations of high-resolution SM modeling is the current
lack of high-resolution data on weather and irrigation. Meteorological factors can affect the
increase in and loss of SM, but this study confirmed that the relationship between SM and
weather variables (precipitation, temperature, and relative humidity) is not just a linear
relationship, but a complex and nonlinear relationship. Moreover, some results showing
a weak correlation of less than 0.4 between the predicted SM and meteorological factors
suggest that yet unclear factors, such as irrigation, are affecting SM. Irrigation is the process
of artificially supplying water to crops when the natural water supply is not sufficient for
plant growth, and it affects SM through different ways, such as soil salinity, soil temperature,
runoff, and erosion. First, proper irrigation during crop growth prompts an increase in
SM, thereby relieving water stress in plants and improving crop growth and yields [80–84].
Second, irrigation with low- or medium-salinity water reduces soil salinity via leaching [85],
and hence it affects SM by promoting root water absorption by plants [86,87]. On the other
hand, in soils with high salinity, the ability of plants to absorb water diminishes [86,87].
Third, irrigation reduces surface temperatures by increasing evapotranspiration, along
with increasing SM [84,88]. It thus helps plants to grow by preventing stress at high
temperatures and supplying SM [88,89]. Fourth, excessive irrigation can lead to runoff
and erosion [90–92]. As this runoff water moves down slopes, it evaporates, leaving less
water stored in the soil for plant growth [90]. The erosion changes surface roughness,
which influences the backscattering of radar [93]. Thus, irrigation data are crucial for
estimating SM, but detailed data for irrigation are not usually available [94]. Therefore, it is
essential to secure high-resolution meteorological data and local agricultural data (such
as that regarding irrigation) in the future. Additionally, if various data (e.g., SAR/optical
images, meteorological images, and local ground data (such as soil texture, roughness,
vegetation, and irrigation)) are produced, and SM modeling that integrates these data is
performed using DNN (which is effective in dealing with complexity and nonlinearity
between variables), more accurate SM estimation across a wider area will be possible.
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ReLU Rectified Linear Unit
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ROI Region of Interest
RTM Radiative Transfer Model
S1 Sentinel-1
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SAR Synthetic-Aperture Radar
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SVM Support Vector Machine
SVR Support Vector Regression
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VV Vertical–Vertical
WCM Water Cloud Model

Appendix A

The importance of topographical variables (elevation, RMSH, and CL) was evaluated
to investigate the topographical effect on SM modeling. RMSH was an index to quantify
vertical roughness, calculated by Equation (A1) [95]:

RMSH =

√
∑n

i=1(zi − z)2

n − 1
(A1)

where n is the number of data points chosen; zi indicates the elevation value of the point i;
and z is the average elevation of the all the data points. CL is obtained by the autocorrelation
function (Equation (A2)) [96,97]:

ρ(h) =
∑

n(h)
i=1 zizi+h

∑n
i=1 zi

2 (A2)

where ρ(h) indicates the autocorrelation function, which measures the correlation between
the elevation at point i (represented as zi), and the elevation at another point located a
distance h away from it (denoted to as zi+h) [97]. For each distance h, n(h) is the number
of pairs taken into account [97]. CL is defined as the distance where the value of ρ(h)
reaches 1/e [97]. In the study, the CL was calculated using the ‘geodiv’ package for surface
roughness in the statistical programming language R. The ‘scl’ function in the package
computes the CL using an area autocorrelation function [98].

When using each one of the three variables, the variable importance of elevation,
RMSH, and CL were 6.14%, 6.12%, and 5.50%, respectively (Figure A1a–c). Additionally,
when the variable importance experiment that included all topographic variables was
performed, the variable importance of elevation, RMSH, and CL were 5.74%, 5.48%, and
4.85%, respectively (Figure A1d). Thus, we chose elevation as the topographic variable
for SM. Additionally, NASA SRTM is a common dataset available for the global values of
elevation.
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