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Abstract: Mineral prospectivity mapping is a crucial technique for discovering new economic mineral
deposits. However, detailed knowledge-based geological exploration and interpretations generally
involve significant costs, time, and human resources. In this study, an ensemble machine learning
approach was tested using geoscience datasets to map Cu-Au and Pb-Zn mineral prospectivity in
the Cobar Basin, NSW, Australia. The input datasets (magnetic, gravity, faults, electromagnetic, and
magnetotelluric data layers) were chosen by considering their association with Cu-Au and Pb-Zn
mineralization patterns. Three machine learning algorithms, namely random forest (RF), support
vector machine (SVM), and maximum-likelihood (MaxL) classification, were applied to the input
data. The results of the three algorithms were ensembled to produce Cu-Au and Pb-Zn prospectivity
maps over the Cobar Basin with improved classification accuracy. The findings demonstrate good
agreement with known mineral occurrence points and existing mineral prospectivity maps developed
using the weights-of-evidence (WofE) method. The ability to capture training points accurately and
the simplicity of the proposed approach make it advantageous over complex mineral prospectivity
mapping methods, to serve as a preliminary evaluation technique. The methodology can be modified
with different datasets and algorithms, facilitating the investigations of mineral prospectivity in other
regions and providing guidance for more detailed, high-resolution geological investigations.

Keywords: machine learning; maximum-likelihood classification; mineral prospectivity; random
forest; support vector machine

1. Introduction

Mineral prospectivity mapping aids the discovery of new ore deposits and plays a vital
role in mineral exploration and the mining industry. Geological, geochemical, geophysical,
and remotely sensed datasets are commonly employed in mineral prospectivity mapping
approaches, by analysing them with various geo-computational techniques to identify
key mineralisation patterns (e.g., Refs. [1–4]). Geophysical methods, such as seismic and
electromagnetic (EM) surveys, help detect subsurface variations in the physical properties
that may indicate mineralization [5,6]. Geochemical analyses of rock and soil samples
unveil elemental compositions, helping in identifying anomaly patterns associated with
mineral deposits [7,8]. Remote sensing methods, like satellite imagery and airborne surveys,
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enable the detection of surface alterations, mineral signatures, and topographic features,
enhancing the identification of potential exploration targets [9–11]. The integration of these
multidisciplinary datasets and methods offers a robust approach to mineral exploration,
aiding in the delineation and assessment of prospective areas for further investigation [12].

Mineral prospectivity mapping techniques can be classified mainly into two categories:
(i) expert-knowledge-driven (EKD, e.g., Refs. [13–15]); and (ii) data-driven (e.g., Refs. [16–18])
approaches. EKD approaches employ geological expertise who possess a deep under-
standing of the geological formations and mineral indicators to identify and interpret new
deposits, whereas data-driven approaches employ the spatial associations of different geo-
science datasets to map mineral potential. The EKD methods incorporate domain-specific
insights, leading to targeted and informed exploration efforts. However, it might be limited
by subjectivity and biases associated with human decision-making, potentially overlooking
unconventional mineralization patterns or rare deposits. On the contrary, data-driven
approaches employ advanced technologies such as remote sensing, machine learning, and
geospatial analysis to process large datasets and identify spatial patterns and anomalies.
While data-driven methods offer objectivity, speed, and the potential to find unrecognized
mineral occurrences, they can be limited by data quality issues, algorithmic uncertainties,
and the risk of false positives. Probabilistic methods, such as weights-of-evidence (WofE)
and logistic regression, have been previously used for many mineral prospectivity mapping
studies across the globe [19–22] and are now more widely accepted in the mining industry.
Still, the prevalent method for generating new targets and evaluating the potential of
mineralisation, especially in mid-tier and junior mineral houses, remains EKD in some
aspects. However, these EKD methods require more specialised human resources, often
implying higher costs, as well as longer project timeframes.

Classification can be identified as the main process used in data-driven mineral
prospectivity mapping. The outputs of classification methods classify locations as prospec-
tive or non-prospective, as binary maps or maps showing a prospectivity confidence range.
Classification approaches are primarily categorised into (i) supervised and (ii) unsuper-
vised methods. In supervised methods, the model is trained with given training samples,
whereas in unsupervised methods, clusters are generated based on the similarities and
dissimilarities of the spatial data.

Often the association between mineralisation patterns and geospatial datasets is com-
plex and non-linear. In this context, machine learning algorithms can be a viable option
to capture these complex relationships between input data and mineralisation patterns.
Many researchers have tested machine learning methods to map mineral prospectivity,
which often outperform the traditional statistical and empirical explorative models [23–28].
Brown et al. [23] have used a multilayer feed-forward neural network, trained with a
gradient descent back-propagation algorithm to map Au prospectivity in Tenterfield, NSW,
Australia. The neural network performed well, even with one-third less data than a WofE
method. Zuo and Carranza [29] tested a support vector machine (SVM) algorithm to map
Au prospectivity in the western Meguma Terrain of Canada. Their results showed that the
SVM method outperformed the WofE approach. McKay and Harris [25] tested random
forest (RF) methods to map Au mineralisation in Hearn Geologic Province in Nunavut,
Canada and observed a better performance than knowledge-driven methods. A RF-based
data-driven method employed by Carranza and Laborte [16] outperformed the evidential
belief modelling in mapping the hydrothermal Au-Cu prospectivity in Catanduanes Island,
Philippines. However, the results of different classification methods can never be entirely
identical due to the nature of the algorithms. Therefore, outputs from a single algorithm
can inherit particular errors or biases.

This study aims to assess a simple data-driven machine learning approach to map
mineral prospectivity, which can produce quick results on a large scale and can be used
as an initial guide for more detailed geological evaluations. This data-driven approach
has minimal involvement of geological expertise (i.e., it remains more objective with less
potential for human-induced bias). Therefore, less human resources and time are required



Remote Sens. 2023, 15, 4074 3 of 20

for this method. This study aims to investigate the performance of three machine learning
algorithms, (i) RF, (ii) SVM, and (iii) maximum-likelihood classification (MaxL) in south-
eastern Australia to map Cu-Au and Pb-Zn mineralisation patterns over the Cobar Basin,
NSW, Australia with a unique combination of input geoscience datasets. Given the possible
errors inherited in the outputs of a single classification algorithm, a simple ensemble method
is employed in this study to combine the results of the three classification algorithms.

2. Study Area

The Cobar Superbasin in the Central Lachlan Orogen (Figure 1) is a mineral-rich Late
Silurian to Early Devonian basin found in central-western NSW, about 700 km northwest
of Sydney. The basin is NSW’s most heavily mineralised Siluro-Devonian basin, enriched
with precious and base metal mineral systems [30,31]. An overview of the geology of the
Cobar Basin is described by Folkes et al. [32], and a detailed description of its structural
framework is given by Glen et al. [33]. The Cobar area has a long history of mining and
exploration dating back to 1869, when copper was discovered in the area. The Cobar
Basin is a major polymetallic mineral province, including Au-only, Au- and Ag-rich, and
Cu-and Pb-Zn-rich systems, with a total estimated metal endowment (past production plus
known resources) exceeding 224.54 t Au, 2.519 Mt Cu, 2.801 Mt Pb, 4.760 Mt Zn, and 6924 t
Ag [34,35].
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Figure 1. Study area, the Central Lachlan Orogen and the Cobar Superbasin, NSW.

Fitzherbert and Downes [35] and Ford et al. [31] provide good overviews of the tectonic
and mineralisation history of the basin. The following is taken from these sources (and refer-
ences therein). Geologically, the Cobar Basin rocks underwent three main tectonic phases,
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I. Rift phase deposition and widespread volcanism in discrete volcanic troughs/belts
ca. 420 Ma;

II. Transition to sag phase deposition at ca. 410 Ma, with stable sag phase deposition
continuing until ca. 400 Ma. Bindian extension/contraction at ca. 410 Ma; and

III. Inversion phase during the Tabberabberan Orogeny ca. 390–380 Ma.

Fault-focused mineralisation is associated with these three tectonic phases, often
resulting in the formation of complex polymetallic orebodies. The mineralisation mainly
occurred after the transition to the sag phase basin deposition, whereas only a few orebodies
have been formed at the rift phase volcanism/basin deposition.

Three major mineralisation systems can be found in and around the Cobar Basin:
(i) Cu-Au-±Zn mineralisation; (ii) Pb-Zn mineralisation; and (iii) Sn-W mineralisation.
The Cobar Cu-Au mineralisation extends mainly along the eastern boundary of the basin,
with fewer occurrences in the western and southern parts of the basin. The style of these
deposits varies from the massive sulphide-rich zones to the breccia, vein, or shear-hosted
mineralisation. Some zones form multiple narrow ore lenses with short strike lengths and
a more considerable vertical extent.

Cobar Pb-Zn-±Ag mineralisation occurs as individual orebodies predominantly ad-
jacent to, or over parts of earlier formed Cobar Cu-Au(±Zn) systems. The fault/shear
hosted Pb-Zn sulphide-rich zones often ‘piggyback’ on the previously formed Cu-Au(±Zn)
orebodies (e.g., CSA Mine, Great Cobar Mines) along the major faults on the eastern bound-
ary of the basin. The style of the deposits varies from low-temperature replacement to
fault/shear-hosted massive sulphide orebodies with a similar deposit-scale morphology as
the Cu-Au-(±Zn) orebodies.

Granite-related Sn-W deposits of the Central Lachlan Orogen form along a 250 km
N-NW belt that extends from northern Victoria to the Tallebung region of central NSW.
This belt is the second-largest tin field in NSW after New England. These deposits formed
outside the Cobar Basin (sensu stricto) and are therefore not included in this study.

2.1. Mineral Prospectivity Mapping in Central Lachlan Orogen Using WofE Method

The WofE approach has been previously used to map mineral prospectivity over the
Central Lachlan Orogen area by Kenex Pty Ltd., in colloboration with the Geological Survey
of NSW (GSNSW) [31]. The expertise of the GSNSW staff was employed in developing
mineral system models for three mineral systems in the central Lachlan Orogen, i.e.,
(i) Cobar Cu-Au, (ii) Cobar Pb-Zn, and (iii) granite-related Sn-W. The key predictive
variables representing different critical ore-forming processes of these mineral systems (i.e.,
source, transport, trap, and deposition) were determined using these models. Between
138 to 196 predictive maps were developed using the pre-competitive geoscience data
from the GSNSW, and analysed for the three mineral system models using the EKD
method. Then, spatial data tables were developed by using the information about all the
predictive maps, their relevance to the mineral systems and spatial correlation with known
mineralisation. Based on multiple criteria (e.g., regional coverage of data, spatial correlation
with training points, minimal duplication of predictive map patterns), between 8 to 10
predictive maps were chosen to develop mineral prospectivity maps for these three major
mineral systems in the central Lachlan Orogen.

3. Methodology
3.1. Overview of the Methodology

A spatial data-driven ensemble machine learning (SDDEML) approach using three
supervised learning algorithms, i.e., (i) RF, (ii) SVM and (iii) MaxL, was employed in this
study to assess Cobar Cu-Au and Pb-Zn mineral prospectivity using geo-spatial data inputs.
The method employed in this study is herein called the SDDEML approach. The produced
prospectivity maps were compared against the results of the WofE method (see Section 2.1)
and the existing mineral occurrence datasets for validation. ArcGIS 10.8 was used as the
main data processing platform in this study.
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3.2. Datasets

Data layers that are associated with the mineralisation patterns were chosen as the
input datasets. Mineral occurrence points from the NSW MetIndEx database (https://
datasets.seed.nsw.gov.au/dataset/nsw-mineral-occurrences, accessed on 1 October 2021)
were used as training data in supervised classification. The datasets used in this work, with
their sources, are given in Table 1.

Table 1. Datasets used in this study.

Dataset Source

Total Magnetic Intensity with variable
reduction to the pole (VRTP)

Geoscience Australia
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/131519,

accessed on 5 August 2021

Total Magnetic Intensity–First Vertical
Derivative (1VD)

Geoscience Australia
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/132275,

accessed on 5 August 2021

Gravity anomaly
Geoscience Australia

https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/133023,
accessed on 5 August 2021

The Australian Lithospheric
Architecture Magnetotelluric Project

(AusLAMP) data

Geoscience Australia
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/131889,

accessed on 20 August 2021

Cobar AEM data

GSNSW and Geoscience Australia
https://minview.geoscience.nsw.gov.au/#/(dlmodal:

geophys-survey-air/AIR0759)?lon=148.5&lat=-32.5&z=7&bm=bm1&l=gp118:y:100,
accessed on 30 July 2021

Fault attribution of Zone 55W GSNSW

AusMOHO
Australian Passive Seismic Server (AusPass) and the Australian National University

Data Commons
http://rses.anu.edu.au/seismology/AuSREM/AusMoho, accessed on 10 October 2021

Depth to basement
GSNSW

https://geonetwork.geoscience.nsw.gov.au/geonetwork/srv/eng/catalog.search#
/metadata/97772139-31b0-412b-ab0a-86a6b2f66c2d, accessed on 20 August 2021

Mineral Occurrence
(NSW MetIndEx) data

GSNSW
http://portal.auscope.org.au/geonetwork/srv/eng/catalog.search#/metadata/fd5

9b712f10394e68f07261981ac6d771d72aacd, accessed on 1 October 2021

The association of gravity and magnetic layers with the mineral occurrences is well
established; therefore, these layers were used in testing the many mineral exploration
models (e.g., Ref. [36]). The variable reduction to the pole (VRTP) [37] and the first vertical
derivative (1VD) magnetic grids [38] with an 80 m cell size obtained from Geoscience
Australia were used for this work. Magnetic data provides vital information about the
distribution of magnetic minerals in rocks. For example, most sedimentary rocks consist of
negligible amounts of magnetic minerals, while igneous and metamorphic rocks consist of
appreciable amounts of magnetic minerals. Magnetic data provides valuable information
on the boundaries of extensive rock units due to the contrast of magnetic properties between
different rocks. These magnetic gradients are enhanced in the derivatives of the total field
and can not only map the lithological contacts, but also the fault zones that control fluid
flow, and hence the location of many mineral systems.

Gravity anomaly data is commonly used in mineral exploration, considering its vari-
ability over different rocks. Gravity anomaly values are higher over the dense rocks
compared to the lighter rocks. The Bouguer Anomaly gravity grid of Australia has been de-
veloped with airborne gravity/gravity gradiometry data from the National Australian Geo-
physical Database (NAGD), data from the Australian National Gravity Database (ANGD),

https://datasets.seed.nsw.gov.au/dataset/nsw-mineral-occurrences
https://datasets.seed.nsw.gov.au/dataset/nsw-mineral-occurrences
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/131519
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/132275
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/133023
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/131889
https://minview.geoscience.nsw.gov.au/#/(dlmodal:geophys-survey-air/AIR0759)?lon=148.5&lat=-32.5&z=7&bm=bm1&l=gp118:y:100
https://minview.geoscience.nsw.gov.au/#/(dlmodal:geophys-survey-air/AIR0759)?lon=148.5&lat=-32.5&z=7&bm=bm1&l=gp118:y:100
http://rses.anu.edu.au/seismology/AuSREM/AusMoho
https://geonetwork.geoscience.nsw.gov.au/geonetwork/srv/eng/catalog.search#/metadata/97772139-31b0-412b-ab0a-86a6b2f66c2d
https://geonetwork.geoscience.nsw.gov.au/geonetwork/srv/eng/catalog.search#/metadata/97772139-31b0-412b-ab0a-86a6b2f66c2d
http://portal.auscope.org.au/geonetwork/srv/eng/catalog.search#/metadata/fd59b712f10394e68f07261981ac6d771d72aacd
http://portal.auscope.org.au/geonetwork/srv/eng/catalog.search#/metadata/fd59b712f10394e68f07261981ac6d771d72aacd
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and the Global Gravity Grid from National Oceanic and Atmospheric Administration
(NOAA) over a 400 m grid [39]. Gravity data can again attribute to, for example, the hidden
intrusions with particular shapes that are either less or more dense than the surrounding
rocks. Gravity gradients can also show the deep-seated lithospheric structures that many
studies have recognised to be the important controlling features of mineral systems [40,41].

The lithospheric-scale structural features can also be mapped by measuring the resis-
tivity of the rocks through the deep looking magnetotelluric method. The Australian Litho-
spheric Architecture Magnetotelluric (MT) Project (AusLAMP) dataset for NSW [42–45],
which was developed through a collaboration between Geoscience Australia and the
GSNSW, was used to assess the deep conductivity/resistivity features that were previously
recognised to delineate the corridors and anomalies associated with major mineral sys-
tems [46]. This MT dataset is available in an ascii grid format with 285 depth slices (from
2190 m to 337,290 m) over a half degree (~55 km) grid.

Data from an Airborne EM (AEM) survey conducted by Geoscience Australia and
the GSNSW, to measure the natural electrical properties of rocks and soil in the Cobar–
Lake Cargelligo area, was also used in this work as an input dataset. Electromagnetic
surveying can, apart from directly detecting conductive ore minerals, enhance the mapping
the lithostructural features in the magnetically quiet regions such as sedimentary basins.
Only the footprint of the AEM survey (Figure 1) was chosen as the area of interest (AOI)
for this study. This inversion of the AEM dataset consists of 32 depth slices extending from
5 m to 500 m. Currently, the AEM datasets only cover selected parts of Australia and do
not provide continent-wide coverage. Therefore, the methodology was tested both with
and without the AEM datasets to evaluate their impact on the results when expanding the
methodology over other areas in future work.

The mineralisation patterns of the Lachlan Orogen region have a strong association
with faults and intrusions [47]. Therefore, the fault attribution geodatabase of the area [35]
was also used in this work. The AusMOHO [48,49] and depth to basement data layers [50]
were also used as input data, because both the basin morphology and the deep structures
that reach the base of the lithosphere could have played a role in the local and regional
fluid flow.

The training data for the supervised classification were acquired from the GSNSW
MetIndEx mineral occurrence dataset. MetIndex is the mineral occurrence database for
NSW, with records of known mineral occurrences across the state. These records have been
compiled by the GSNSW, with resource and production data acquired from both historical
and current mining operations.

3.3. Data Pre-Processing

As the first step, the input data layers were prepared for the classification process.
The datasets were clipped to the extent of the study’ (i.e., the footprint of the Cobar AEM
survey) including the gravity anomaly layer, and the magnetic-VRTP and 1VD layers.

The depth to Moho across the Cobar Basin varies from ~26 km to 42 km as per
the AusMOHO dataset. A relationship between the MT data and gold mineralisation
in western Victoria and south-eastern South Australia was found by Heinson et al. [46]
across the low resistivity zone from ~20 km depth to the depth of Moho. Using similar
conditions over the Cobar Basin, MT depth slices from 25 km to 42 km across the AOI (11
in total) were extracted. In order to reduce the dataset by choosing the layers exhibiting
the highest significance, a principal component analysis (PCA) was applied to the depth
slices, and subsequently, covariance and correlation matrices were developed. The first
PC demonstrated an accumulated percentage of eigenvalues of 95.2%, which means that
a significant portion of the variability of the dataset is captured by this component. The
two input MT layers having high loading on the first PC were chosen for the classification
process. Similarly, significant AEM layers were chosen after applying a PCA on the AEM
depth slices.
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The association between the Cu-Au and Pb-Zn mineral occurrences and faults were
also considered in selecting the model inputs. The faults over the study area were classified
into five separate layers (Figure 2a–e), based on the fault order that is an attribute of the
data layer [47]. This association between the mineral occurrences and the faults is seen
visually when the MetIndEx mineral occurrence (training) points are overlain on the faults
layer (Figure 2a–e). Euclidean distances up to 50 km from the faults were calculated for
these layers on a grid with the same size as the magnetic layers. These values were then
inverted to have higher values for the pixels closer to the faults and lower values for the
pixels far from the faults (Figure 2f–j). Based on the density of the mineral occurrences
within a 5 km buffer from the faults, weights varying from 55 to 80 were assigned to each
of these five layers. Then, the five weighted layers were combined together by choosing
the highest pixel value at each point (Figure 2k). All the input layers were standardised to
avoid any bias in classification caused by varied value ranges.
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For training the model, ninety-seven Cu-Au and sixty-six Pb-Zn occurrence points
over the study area were extracted from the MetIndEx dataset (see Figure 3). Given that
the Cobar Basin is extensively explored for mineral occurrences, random negative points
were created over the outcropping areas outside a 3 km buffer from the Cu-Au and Pb-Zn
occurrence points. The outcropping regions were identified using the ‘depth to basement
layer’ (i.e., data gaps or white regions within the depth to basement layer in Figure 3). Over
100 random negative points for Cu-Au and Pb-Zn were generated, separately.
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3.4. Classification

The supervised classification algorithms were applied to the magnetic-VRTP, magnetic-
1VD, gravity anomaly, MT, distance to faults, and AEM data layers (Figure 4) based on
the training points shown in Figure 3. The algorithms were tested both with and without
the AEM layer to assess its impact as an input dataset (to take into account that the AEM
datasets are not available for all parts of the country).

Three machine learning algorithms, (i) RF, (ii) SVM, and (iii) MaxL, were tested to
produce binary maps showing the Cu-Au and Pb-Zn mineral prospectivity. The selection
of these algorithms is made by considering their specific strengths and adaptability to
the complex challenges posed by mineral mapping. RF’s robustness in handling complex
and noisy data, and small sample sizes suits the complex geological and geophysical
variations associated with mineral mapping [51]. SVM’s capability to handle both linear
and nonlinear relationships [52] aids in classifying the mineral systems based on various
properties. MaxL’s probabilistic approach is valuable for estimating the class probabilities
and uncertainty [53], which is crucial in providing confidence levels in mineral occurrence
predictions. Here, 70% of the data points (Figure 3) were used for training, and 30% for
validation. Subsequently, the three binary maps showing the mineral prospectivity (1 for
prospective pixels and 0 for non-prospective pixels) for each mineralisation group (i.e.,
Cu-Au or Pb-Zn) were summed together to identify the regions classified as prospective
areas by all three algorithms. i.e.,

MapFinal = MapRandom_forest + MapSVM + MapMaxL (1)
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where MapFinal is the map showing the combined value of the mineral prospectivity from
all three algorithms, and MapRandom_forest, MapSVM, and MapMaxL are the binary values of
the mineral prospectivity maps produced by RF, SVM and MaxL algorithms, respectively.
The collective integration of these carefully chosen algorithms enables the capture of
intricate interrelationships between the input layers and the training data. The summary
of this process is illustrated in Figure 5. The possible final pixel values and their mineral
prospectivity classification based on the combinations of the resultant binary maps of RF,
SVM and MaxL classification are shown in Table 2.
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over the Cobar AEM survey footprint.
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Figure 5. The ensemble approach of combining the mineral prospectivity maps produced using RF,
SVM, and MaxL algorithms.

Table 2. The possible pixel values of the map showing the summed value of the RF-, SVM-, and
MaxL-based binary mineral prospectivity maps.

Pixel Value Mineral
ProspectivityMapRandom_Forest MapSVM MAPMaxL Final Map

0 0 0 0 None

1 0 0 1
Low0 1 0 1

0 0 1 1

1 1 0 2
Moderate0 1 1 2

1 0 1 2

1 1 1 3 High

The binary map produced by the MaxL algorithm (MapMaxL) was merged with its
confidence (MapMaxL-confidence) of classification using,

MapMaxL−classified = MapMaxL × MapMaxL−confidence (2)

Here, MapMaxL-classified gives the classification confidence of the pixels only in prospec-
tive areas.

4. Results

The results of the MaxL classification algorithm-based Cu-Au and Pb-Zn mineral
prospectivity mapping are shown in Figures 6 and 7, respectively. Here, panels a and
b show the results of the MaxL classification performed by excluding and including the
AEM data, respectively. The outputs of the MaxL algorithm-based binary maps (panels
a(i) and b(i) of Figures 6 and 7) combined with the classification confidence layers (panels
a(ii) and b(ii) of Figures 6 and 7) are shown in panels a(iii) and b(iii) of Figures 6 and 7
(see Equation (2)). Values of 0 in the binary maps show pixels with no mineral prospectivity,
whereas values of 1 show prospective pixels. Equation (2) eliminates the areas having
0 values (i.e., no prospectivity) in the final maps. The classification confidence shown in
these maps should not be mistaken for the confidence of the mineral prospectivity. However,
the classification confidence can indirectly indicate the mineral prospectivity constrained
by the input datasets. The areas with high classification confidence (>70%) show a good
agreement with the mineral occurrence points (panels a(iii) and b(iii) of Figures 6 and 7).
These figures depict that the prospective areas are confined to much smaller regions
when the classification algorithm was run, including the AEM data. However, the two
output maps produced with and without the AEM data showed similar spatial patterns.
Three Cu-Au occurrence points over the northwest region of the AOI have not been well-
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captured by the MaxL algorithm (Figure 6a(iii),b(iii)). This should be further investigated
in detailed explorations.
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Figure 6. Panels (a) and (b), respectively, show the results of the Cu-Au prospectivity mapping
tested with MaxL classification by excluding and including the AEM data over the Cobar AEM
survey footprint. (a(i)) and (b(i)) show the binary maps showing the Cu-Au prospectivity (i.e., pixel
value 1 = prospective and pixel value 0 = no prospectivity), (a(ii)) and (b(ii)) show the classification
confidence over the entire area, and (a(iii)) and (b(iii)) shows the Cu-Au prospective areas combined
with the classification confidence with the overlain Cu-Au mineral occurrence points.

The prospectivity of Cu-Au and Pb-Zn mineralisation as captured by the three machine
learning algorithms, i.e., RF, SVM and MaxL, is shown in Figures 8–11. In allcases, the
models demonstrated over 80% overall validation accuracy. Figures 8 and 10 show the result
of the algorithms tested without the Cobar AEM data as an input, whereas Figures 9 and 11
show the results of the algorithms tested with the Cobar AEM data. In the binary output
maps of the RF, SVM and MaxL (panels a–c of Figures 8–11), pixels assigned with a class
value of 1 (i.e., class-1) show the prospective areas. Pixels assigned with a value of 0
(i.e., class-0) show areas with no prospectivity as per each machine learning algorithm.
Panel d shows the combined result of the RF, SVM and MaxL after summing the three
binary maps (i.e., panels a–c). The resultant map consists of four pixel values, i.e., 0 to 3
(see Table 1). Pixels captured by all three algorithms as prospective areas are assigned with
a value of 3 (i.e., class-3, high prospectivity), pixels captured by only two algorithms as
prospective areas are assigned with a value of 2 (i.e., class-2, moderate prospectivity) and
pixels captured by prospective areas by only one algorithm are assigned with a value of
1 (i.e., class-1, low prospectivity). Pixels not captured by any of the three algorithms as
prospective areas were assigned with a value of 0 (i.e., class 0, no prospectivity).
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Figure 7. Panels (a) and (b), respectively, show the results of the Pb-Zn prospectivity mapping
tested with MaxL classification by including and excluding the AEM data over the Cobar AEM
survey footprint. (a(i)) and (b(i)) show the binary maps showing the Pb-Zn prospectivity (i.e., pixel
value 1 = prospective and pixel value 0 = no prospectivity), (a(ii)) and (b(ii)) shows the classification
confidence over the entire area, and (a(iii)) and (b(iii)) shows the Pb-Zn prospective areas combined
with the classification confidence with the overlain Pb-Zn mineral occurrence points.
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Figure 8. Cu-Au prospectivity maps developed with (a) RF, (b) SVM, and (c) MaxL without using
Cobar AEM data as an input layer. Class values 1 and 0 show prospective and non-prospective
areas, respectively. Map (d) shows the ensembled result after summing (a–c). Class value 3, 2, and 1
depict areas which were captured as prospective areas by (i) all three machine learning algorithms
(high confidence), (ii) only two algorithms (moderate confidence), and (iii) only one algorithm (low
confidence), respectively. Class value 0 depicts areas that are classified as non-prospective areas by
all three algorithms.
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Figure 9. Cu-Au prospectivity maps developed with (a) RF, (b) SVM, and (c) MaxL, including Cobar
AEM data as an input layer. Class values 1 and 0 show prospective and non-prospective areas,
respectively. Map (d) shows the ensembled result after summing (a–c). Class value 3, 2, and 1
depict areas which were captured as prospective areas by (i) all three machine learning algorithms
(high confidence), (ii) only two algorithms (moderate confidence), and (iii) only one algorithm (low
confidence), respectively. Class value 0 depicts areas that are classified as non-prospective areas by
all three algorithms.
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Cobar AEM data as an input layer. Class values 1 and 0 show prospective and non-prospective areas,
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respectively. Map (d) shows the ensembled result after summing (a–c). Class value 3, 2, and 1
depict areas which were captured as prospective areas by (i) all three machine learning algorithms
(high confidence), (ii) only two algorithms (moderate confidence), and (iii) only one algorithm (low
confidence), respectively. Class value 0 depicts areas that are classified as non-prospective areas by
all three algorithms.
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spective areas show a general North-South orientation that correlates with the general 
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tivity mapping using the SVM algorithm (Figures 9 and 10) showed a better agreement 
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the AEM data showed similar spatial patterns of mineral potential, suggesting that the 

Figure 11. Cu-Au prospectivity maps developed with (a) RF, (b) SVM, and (c) MaxL, including
Cobar AEM data as an input layer. Class values 1 and 0 show prospective and non-prospective
areas, respectively. Map (d) shows the ensembled result of summing (a–c). Class value 3, 2, and 1
depict areas which were captured as prospective areas by (i) all three machine learning algorithms
(high confidence), (ii) only two algorithms (moderate confidence), and (iii) only one algorithm (low
confidence), respectively. Class value 0 depicts areas that are classified as non-prospective areas by
all three algorithms.

The prospective regions became confined to slightly smaller regions when the AEM
dataset was introduced as an input layer to the classification. However, the mineral
prospectivity maps of Cu-Au and Pb-Zn prepared with and without the AEM data show
similar spatial patterns.

5. Discussion
5.1. Interpretation and Comparison of Results with Existing Studies

Large areas of the northern- (>~6,560,000 mS) and southern-most (<~6,320,000 mS)
parts of the AOI, as well as the eastern and western margins of the central area, have
been identified as prospective regions for the Cobar Cu-Au mineral systems. The Cu-
Au prospective areas show a general North-South orientation that correlates with the
general strike of the major geological units in the Cobar Basin. The results of the Cu-
Au prospectivity mapping using the SVM algorithm (Figures 9 and 10) showed a better
agreement with the MetIndEx Cu-Au mineral occurrence/training points than the MaxL
and RF methods. For example, the Cu-Au occurrences in the northwest of the study area
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have largely been captured by prospective areas using the SVM-based classification but
were not well-captured by the RF and MaxL methods (Figure 8).

Including the AEM data as an input layer for the classification models confined the
prospective areas to a slightly smaller extent. However, the classification results without
the AEM data showed similar spatial patterns of mineral potential, suggesting that the
SDDEML approach tested in this study can be effectively applied over regions where AEM
datasets are unavailable.

Class 3 (i.e., highly prospective class where all three algorithms detected a pixel as
a prospective area) areas of our Cu-Au mineral prospectivity maps (Figure 12) show a
moderate to a strong agreement with the MetIndEx Cu-Au mineral occurrence points. A
moderate agreement is observed between class 2 (i.e., pixels where the results of only
two algorithms identified them as prospective areas) and the Cu-Au mineral occurrence
points. Class 1 (i.e., pixels where the results of only one algorithm identified them as
prospective areas) showed a low correlation compared to the MetIndEx data. This implies
the robustness of ensembling the three machine learning models to get better results that
are less affected by the errors and biases in the individual algorithms.
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Figure 12. Comparison between the Cu-Au prospectivity mapping results from the (a) ensemble
data-driven approach (this study), and (b) the WofE approach used by GSNSW [31].

A moderate to strong agreement was observed between the class 3 (highly prospective)
areas of the SDDEML method-based Cu-Au prospectivity maps developed in this study
and the prospective areas of the equivalent map produced with the existing WofE approach
(Figure 12; Ford et al. [31]—see Section 2.1). A moderate agreement was observed between
class 2 of the mineral prospectivity map using the SDDEML approach and the WofE-based
results. The agreement between class 1 and the EKD method-based result is less significant.

Importantly, the results of the data-driven-ensemble method presented in this paper
showed the Cu-Au prospectivity in the northern- and southern-most parts of the AOI,
which were not captured by the WofE approach (Figure 12). Differences in the input data
and the algorithms might have caused this disparity. However, it is worth performing
a more detailed investigation of these regions to assess any further mineral potential.
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Using the data-driven SDDEML methods in this study, prospective areas for the Cobar
Pb-Zn mineral systems were observed in approximately North-South oriented bands in the
AOI’s north-eastern, south-eastern, and southern areas. Notably, many of the predicted
prospective areas for the Pb-Zn mineral systems overlap with those for the Cu-Au mineral
systems. A possible explanation for this is the documented ‘piggyback’ style of the mineral
systems of many mineral occurrences for the Cu-Au and Pb-Zn mineral systems in the
Cobar Basin (see Section 2 of this paper and Ford et al. [31]).

The existing EKD method-based mineral prospectivity maps and the data-driven
SDDEML method-based mineral prospectivity maps produced by this study showed
similar prospectivity patterns across the AOI. There is a strong agreement between the
class 3 (highly prospective) areas of the SDDEML method-based Pb-Zn prospectivity
maps and the prospective areas of the equivalent map produced by the existing EKD
approach (Figure 13). A moderate agreement was observed between class 2 of the mineral
prospectivity map using the SDDEML approach and EKD based results. The agreement
between class 1 (least prospective) and the EKD method-based result is less significant.
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The mineral prospectivity maps produced in this study with the SDDEML meth-
ods showed a good agreement with the MetIndEx mineral occurrence (training) points
(Figures 8–12). This further demonstrates that the SDDEML approach is an effective method
to assess the mineral prospectivity of the major mineral systems in the Cobar Basin. The
results of ensembling three robust machine learning models (specifically class 3 and 2)
showed a better agreement to the results of the WofE method, compared to binary maps
produced by using only one model. Although this is a simple approach, ensembling the
results makes the SDDEML approach robust in identifying the prospective mineral zones.
The results also indicate that the AEM data is not an essential requirement for this analysis;
therefore, the SDDEML method could be used to assess mineral prospectivity over other
areas where AEM datasets are unavailable.
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5.2. Potential Future Work

The results of the spatial data-driven approach in this study are highly encouraging,
and the method could be tested in other areas, over different spatial scales, to map the
mineral prospectivity using the available geoscience datasets as a preliminary method of
investigation. However, it is necessary to conduct a field validation of the results prior to a
detailed exploration. When applying this method over other regions, the random negative
data points used for training the algorithms could also be collected from drillholes showing
no indication of mineralisation. The processing speed of the SDDEML method is much
more effective than the more complex and time-consuming knowledge-driven mineral
prospectivity mapping methods.

The SDDEML method can be further improved and modified by including different
data combinations, classification algorithms, and their combinations. However, it would
be worthwhile comparing the results of this method with more complex algorithms such
as spatial random forest (e.g., Ref. [36]) and logistic regression methods over a similar
AOI to get a better insight into the results. The algorithms for the SDDEML method could
also be tested at different depths based on the effective depth resolution/confidence or
DOI (depth of investigation) of the different input layers. Although this method should
not replace detailed geological investigations, given the speed and simplicity of this data-
driven method, the results could be used as an initial assessment and a validation method
to compare the results with other mineral prospectivity mapping methods of more poorly
investigated areas. Such results can be used as an initial, less biased, guiding step at
regional or district scales before performing more detailed geological assessments, such as
drilling, and exploration programs at the camp and prospect scales.

6. Conclusions

A spatial data-driven ensemble machine learning (SDDEML) approach was tested in
this study to map Cu-Au and Pb-Zn mineral prospectivity in the Cobar Basin of New South
Wales, Australia. Three machine-learning approaches, RF, SVM and MaxL, were used in
identifying potential deposits and the results were ensembled to achieve maps with higher
classification accuracy. Here, magnetic-VRTP, magnetic-1VD, gravity anomaly, distance to
faults (weighted), AusLAMP magnetotelluric and, Cobar AEM datasets were used as input
data considering their influence on Cu-Au and Pb-Zn mineralisation. Ensembling multiple
models provided a better accuracy compared to the individual classification algorithms
and provides a more robust approach in mapping mineral prospectivity over different
spatial extents. The method was tested using AEM data and without the use of AEM data
to examine its potential over areas where AEM data are unavailable. The results indicated
that AEM data can somewhat narrow down the extent of mineral prospectivity into slightly
smaller regions. The method tested here can be modified and further tested with different
combinations of input layers and classification algorithms. The findings of this study are
promising for expanding this method over other regions to identify mineral prospectivity
with different input datasets. The results of the proposed method can provide an initial
assessment and valuable insights for more detailed geological assessments and exploration
in prospective mineralised terranes.
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