An Application of Machine-Learning Model for Analyzing the Impact of Land-Use Change on Surface Water Resources in Gauteng Province, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Acquisition
2.3. Image Preprocessing, Interpretation, and Analysis
2.4. Surface Water Content Detection, Analysis, and Mapping
2.5. The Statistical Relationship between the MNDWI and NDWI
3. Results and Discussion
3.1. Land-Use Diversity Analysis at the Province Level
3.2. Land-Use Diversity Class Analysis at the District Municipality Level
3.3. Surface Water Bodies Analysis
3.4. Relationships of Various Surface Water Content Indicators at Various Radiuses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef]
- Martínez-Núñez, C.; Martínez-Prentice, R.; García-Navas, V. Land-use diversity predicts regional bird taxonomic and functional richness worldwide. Nat. Commun. 2023, 14, 1320. [Google Scholar] [CrossRef]
- Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A., Jr.; Shevliakova, E. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 2017, 8, 989. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.C.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef]
- Scharsich, V.; Mtata, K.; Hauhs, M.; Lange, H.; Bogner, C. Analysing land cover and land use change in the Matobo National Park and surroundings in Zimbabwe. Remote Sens. Environ. 2017, 194, 278–286. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Houghton, R.A.; Nassikas, A.A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A. Modeling the Spatio-temporal dynamics and evolution of land use and land cover (1984–2015) using remote sensing and GIS in Raya, Northern Ethiopia. Model. Earth Syst. Environ. 2017, 3, 1285–1301. [Google Scholar] [CrossRef]
- Roy, P.S.; Ramachandran, R.M.; Paul, O.; Thakur, P.K.; Ravan, S.; Behera, M.D.; Sarangi, C.; Kanawade, V.P. Anthropogenic land use and land cover changes—A review on its environmental consequences and climate change. J. Indian Soc. Remote Sens. 2022, 50, 1615–1640. [Google Scholar] [CrossRef]
- Gidey, E.; Dikinya, O.; Sebego, R.; Segosebe, E.; Zenebe, A.; Mussa, S.; Mhangara, P.; Birhane, E. Land Use and Land Cover Change Determinants in Raya Valley, Tigray, Northern Ethiopian Highlands. Agriculture 2023, 13, 507. [Google Scholar] [CrossRef]
- Katusiime, J.; Schütt, B.; Mutai, N. The relationship of land tenure, land use and land cover changes in Lake Victoria basin. Land Use Policy 2023, 126, 106542. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Joshi, D.R.; Clay, D.E.; Henebry, G.M. Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier. Remote Sens. Environ. 2020, 238, 111017. [Google Scholar] [CrossRef]
- Azzari, G.; Lobell, D.B. Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sens. Environ. 2017, 202, 64–74. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, F.; Cong, K.; Liu, X. Scenario simulation of land use and land cover change in mining area. Sci. Rep. 2021, 11, 12910. [Google Scholar] [CrossRef] [PubMed]
- Comber, A.; Balzter, H.; Cole, B.; Fisher, P.; Johnson, S.C.; Ogutu, B. Methods to quantify regional differences in land cover change. Remote Sens. 2016, 8, 176. [Google Scholar] [CrossRef]
- Maviza, A.; Ahmed, F. Analysis of past and future multi-temporal land use and land cover changes in the semi-arid Upper-Mzingwane sub-catchment in the Matabeleland south province of Zimbabwe. Int. J. Remote Sens. 2020, 41, 5206–5227. [Google Scholar] [CrossRef]
- Odebiri, O.; Mutanga, O.; Odindi, J.; Naicker, R.; Slotow, R.; Mngadi, M. Evaluation of projected soil organic carbon stocks under future climate and land cover changes in South Africa using a deep learning approach. J. Environ. Manag. 2023, 330, 117127. [Google Scholar] [CrossRef]
- Gbedzi, D.D.; Ofosu, E.A.; Mortey, E.M.; Obiri–Yeboah, A.; Nyantakyi, E.K.; Siabi, E.K.; Abdallah, F.; Domfeh, M.K.; Amankwah-Minkah, A. Impact of mining on land use land cover change and water quality in the Asutifi North District of Ghana, West Africa. Environ. Chall. 2022, 6, 100441. [Google Scholar] [CrossRef]
- Malede, D.A.; Alamirew, T.; Kosgie, J.R.; Andualem, T.G. Analysis of land use/land cover change trends over Birr River Watershed, Abbay Basin, Ethiopia. Environ. Sustain. Indic. 2023, 17, 100222. [Google Scholar] [CrossRef]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Schlautman, M.A.; Sharp, J.L. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 175–185. [Google Scholar] [CrossRef]
- Thonfeld, F.; Steinbach, S.; Muro, J.; Kirimi, F. Long-term land use/land cover change assessment of the Kilombero catchment in Tanzania using random forest classification and robust change vector analysis. Remote Sens. 2020, 12, 1057. [Google Scholar] [CrossRef]
- Bijeesh, T.V.; Narasimhamurthy, K.N. A comparative study of spectral indices for surface water delineation using Landsat 8 Images. In Proceedings of the 2019 International Conference on Data Science and Communication (IconDSC), Bangalore, India, 1–2 March 2019; IEEE: Manhattan, NY, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Shih, H.C.; Stow, D.A.; Chang, K.C.; Roberts, D.A.; Goulias, K.G. From land cover to land use: Applying random forest classifier to Landsat imagery for urban land-use change mapping. Geocarto Int. 2022, 37, 5523–5546. [Google Scholar] [CrossRef]
- Aigbokhan, O.J.; Pelemo, O.J.; Ogoliegbune, O.M.; Essien, N.E.; Ekundayo, A.A.; Adamu, S.I. Comparing Machine Learning Algorithms in Land Use Land Cover Classification of Landsat 8 (OLI) Imagery. Asian Res. J. Math. 2022, 18, 62–74. [Google Scholar] [CrossRef]
- Ruiz Hernandez, I.E.; Shi, W. A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis. Int. J. Remote Sens. 2018, 39, 1175–1198. [Google Scholar] [CrossRef]
- Midekisa, A.; Holl, F.; Savory, D.J.; Andrade-Pacheco, R.; Gething, P.W.; Bennett, A.; Sturrock, H.J. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS ONE 2017, 12, e0184926. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Ortega–Martorell, S.; Al–Bugharbee, H.; Olier, I.; Hashim, K.S.; Gharghan, S.K.; Kot, P.; Al–Khaddar, R. Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study. Water 2020, 12, 1885. [Google Scholar] [CrossRef]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto Int. 2015, 30, 650–661. [Google Scholar] [CrossRef]
- Landau, L.B.; Gindrey, V. Migration and Population Trends in Gauteng Province 1996–2055; Migration Studies Working Paper; University of the Witwatersrand: Johannesburg, South Africa, 2008. [Google Scholar]
- Obaid, A.; Adam, E.; Ali, K.A. Land Use and Land Cover Change in the Vaal Dam Catchment, South Africa: A Study Based on Remote Sensing and Time Series Analysis. Geomatics 2023, 3, 205–220. [Google Scholar] [CrossRef]
- Shikwambana, L.; Kganyago, M.; Mhangara, P. Temporal analysis of changes in anthropogenic emissions and urban heat islands during COVID-19 restrictions in Gauteng province, South Africa. Aerosol Air Qual. Res. 2021, 21, 200437. [Google Scholar] [CrossRef]
- Abiye, T.A. Contribution of hydrogeology to solving community water supply problems in South Africa. South Afr. J. Sci. 2023, 119, 14599. [Google Scholar] [CrossRef]
- Ponnusamy, D.; Elumalai, V. Determination of potential recharge zones and its validation against groundwater quality parameters through the application of GIS and remote sensing techniques in uMhlathuze catchment, KwaZulu-Natal, South Africa. Chemosphere 2022, 307, 136121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google earth engine applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef]
- Shuai, G.; Basso, B. Subfield maize yield prediction improves when in-season crop water deficit is included in remote sensing imagery-based models. Remote Sens. Environ. 2022, 272, 112938. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 9, 595. [Google Scholar]
- Alzahrani, A.; Kanan, A. Machine Learning Approaches for Developing Land Cover Mapping. Appl. Bionics Biomech. 2022, 2022, 5190193. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- Shalaby, A.; Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar] [CrossRef]
- Gautam, V.K.; Gaurav, P.K.; Murugan, P.; Annadurai, M.J.A.P. Assessment of surface water Dynamicsin Bangalore using WRI, NDWI, MNDWI, supervised classification and KT transformation. Aquat. Procedia 2015, 4, 739–746. [Google Scholar] [CrossRef]
- Amiri, K.; Seyed Kaboli, H.; Mahmoodi-kohan, F. Study and monitoring of wetland area changes and its impact on wetland surface temperature using NDWI, MNDWI, and AWEI indices (Case study: Hor-alazim and Shadegan wetlands). Irrig. Sci. Eng. 2021, 44, 59–74. [Google Scholar] [CrossRef]
- Haibo, Y.; Zongmin, W.; Hongling, Z.; Yu, G. Water body extraction methods study based on RS and GIS. Procedia Environ. Sci. 2011, 10, 2619–2624. [Google Scholar] [CrossRef]
- Bolboaca, S.D.; Jäntschi, L. Pearson versus Spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds. Leonardo J. Sci. 2006, 5, 179–200. [Google Scholar]
- Szabo, S.; Gácsi, Z.; Balazs, B. Specific features of NDVI, NDWI and MNDWI as reflected in land cover categories. Acta Geogr. Debrecina. Landsc. Environ. Ser. 2016, 10, 194. [Google Scholar] [CrossRef]
- Mawasha, T.; Britz, W. Detecting land use and land cover change for a 28-year period using multi-temporal Landsat satellite images in the Jukskei River catchment, Gauteng, South Africa. S. Afr. J. Geomat. 2022, 11. [Google Scholar] [CrossRef]
- Van Zanten, H.H.; Herrero, M.; Van Hal, O.; Röös, E.; Muller, A.; Garnett, T.; Gerber, P.J.; Schader, C.; De Boer, I.J. Defining a land boundary for sustainable livestock consumption. Glob. Chang. Biol. 2018, 24, 4185–4194. [Google Scholar] [CrossRef] [PubMed]
- Fitton, N.; Alexander, P.; Arnell, N.; Bajzelj, B.; Calvin, K.; Doelman, J.; Gerber, J.; Havlik, P.; Hasegawa, T.; Herrero, M.; et al. The vulnerabilities of agricultural land and food production to future water scarcity. Glob. Environ. Chang. 2019, 58, 101944. [Google Scholar] [CrossRef]
- Madasa, A.; Orimoloye, I.R.; Ololade, O.O. Application of geospatial indices for mapping land cover/use change detection in a mining area. J. Afr. Earth Sci. 2021, 175, 104108. [Google Scholar] [CrossRef]
- Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of climate variability and drought on surface water resources in Sub-Saharan Africa using remote sensing: A review. Remote Sens. 2020, 12, 4184. [Google Scholar] [CrossRef]
Level of Agreement | Kappa Coefficient |
---|---|
Excellent | 0.8–1.0 |
Good | 0.6–0.8 |
Moderate | 0.4–0.6 |
Weak | 0.2–0.4 |
Bad | −1.0–0.2 |
Surface Water Detection Indices | Landsat 4–5 (TM) and 8 OLI | Reference |
---|---|---|
NDWI | Green–NIR/Green + NIR | McFeeters (1996) [40] |
MNDWI | Green–SWIR1/Green + SWIR1 | Xu (2005, 2006) [24,41] |
LC | 1993 | 2003 | 2013 | 2022 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CA% | PA% | F-Score | CA% | PA% | F-Score | CA% | PA% | F-Score | CA% | PA% | F-Score | |
WB | 93.8 | 96.8 | 95.2 | 97.1 | 100.0 | 98.5 | 100.0 | 100.0 | 100.0 | 91.2 | 100.0 | 95.4 |
MQ | 86.8 | 80.5 | 83.5 | 100.0 | 100.0 | 100 | 97.8 | 95.8 | 96.8 | 84.6 | 83.0 | 83.8 |
DF | 98.5 | 100.0 | 99.3 | 87.8 | 98.5 | 92.8 | 97.2 | 99.7 | 98.5 | 90.7 | 98.2 | 94.3 |
GL | 88.9 | 88.9 | 88.9 | 97.4 | 100.0 | 98.7 | 97.8 | 93.8 | 95.7 | 93.6 | 100.0 | 96.7 |
ShL | 90.7 | 97.5 | 94.0 | 95.8 | 65.7 | 78.0 | 97.0 | 86.5 | 91.4 | 86.8 | 82.5 | 84.6 |
BuA | 89.1 | 87.5 | 88.3 | 100.0 | 100.0 | 100.0 | 89.2 | 94.3 | 91.7 | 75.0 | 69.8 | 72.3 |
WeL | 94.9 | 92.5 | 93.7 | 94.6 | 70.0 | 80.5 | 89.1 | 83.7 | 86.3 | 85.0 | 58.6 | 69.4 |
AL | 71.4 | 80 | 75.5 | 90.2 | 84.6 | 87.3 | 92.1 | 90.6 | 91.3 | 93.6 | 84.6 | 88.9 |
BL | 90.2 | 74 | 81.3 | 92.4 | 93.8 | 93.1 | 81.3 | 81.3 | 81.3 | 95.4 | 95.4 | 95.4 |
OA% | 92 | – | 93 | 95 | – | 90 | – | |||||
K% | 90 | 91 | 93 | 87 |
L-Class | 1993 | 2003 | 2013 | 2022 | ||||
---|---|---|---|---|---|---|---|---|
Area in km2 | % | Area in km2 | % | Area in km2 | % | Area in km2 | % | |
MQ | 213.80 | 1.18 | 3627.10 | 20.00 | 593.80 | 3.30 | 281.60 | 1.50 |
DF | 182.60 | 1.00 | 210.70 | 1.20 | 1426.50 | 7.90 | 1041.40 | 5.70 |
GL | 553.30 | 3.05 | 3525.20 | 19.40 | 250.70 | 1.40 | 715.80 | 3.90 |
ShL | 2071.20 | 11.40 | 260.80 | 1.40 | 1433.10 | 7.90 | 2395.80 | 13.00 |
BuA | 2713.40 | 14.93 | 1059.60 | 5.80 | 1053.90 | 5.80 | 1490.70 | 8.20 |
WeL | 1646.90 | 9.06 | 4913.50 | 27.00 | 3878.80 | 21.30 | 4243.00 | 23.00 |
AL | 6156.00 | 33.88 | 2502.50 | 13.80 | 7569.60 | 41.70 | 6241.50 | 34.00 |
BL | 4565.60 | 25.13 | 1633.10 | 9.00 | 1876.40 | 10.30 | 1654.70 | 9.10 |
Surface water bodies’ coverage | ||||||||
WB | 67.10 | 0.37 | 437.60 | 2.40 | 87.10 | 0.50 | 105.70 | 0.60 |
Total area coverage | 18,170.00 | 100.00 | 18,170.0 | 100.00 | 18,170.0 | 100.00 | 18,170.0 | 100.00 |
Year | Indices | DM | Min | Max | Mean | STD | CV% |
---|---|---|---|---|---|---|---|
1993 | MNDWI | JHB | −0.48 | 0.32 | −0.19 | 0.06 | −30.11 |
TSH | −0.75 | 0.39 | −0.22 | 0.05 | −21.54 | ||
EKU | −0.61 | 0.38 | −0.21 | 0.06 | −28.54 | ||
DC42 | −0.75 | 0.27 | −0.22 | 0.06 | −27.96 | ||
DC48 | −0.73 | 0.34 | −0.24 | 0.04 | −17.77 | ||
NDWI | JHB | −0.46 | 0.20 | −0.14 | 0.04 | −31.79 | |
TSH | −0.50 | 0.22 | −0.15 | 0.03 | −21.15 | ||
EKU | −0.46 | 0.22 | −0.13 | 0.04 | −29.48 | ||
DC42 | −0.46 | 0.19 | −0.14 | 0.04 | −28.70 | ||
DC48 | −0.47 | 0.26 | −0.15 | 0.03 | −20.80 | ||
2003 | MNDWI | JHB | −0.71 | 0.50 | −0.19 | 0.05 | −27.54 |
TSH | −0.75 | 0.47 | −0.24 | 0.05 | −19.64 | ||
EKU | −0.76 | 0.37 | −0.22 | 0.06 | −26.55 | ||
DC42 | −0.63 | 0.48 | −0.23 | 0.06 | −27.07 | ||
DC48 | −0.75 | 0.47 | −0.24 | 0.04 | −17.79 | ||
NDWI | JHB | −0.75 | 0.51 | −0.17 | 0.06 | −34.45 | |
TSH | −0.75 | 0.52 | −0.16 | 0.04 | −22.47 | ||
EKU | −0.73 | 0.29 | −0.16 | 0.05 | −29.42 | ||
DC42 | −0.74 | 0.52 | −0.14 | 0.04 | −28.89 | ||
DC48 | −0.73 | 0.50 | −0.16 | 0.04 | −24.04 | ||
2013 | MNDWI | JHB | −0.98 | 0.35 | −0.18 | 0.06 | −31.44 |
TSH | −0.87 | 0.41 | −0.24 | 0.05 | −22.33 | ||
EKU | −0.92 | 0.40 | −0.22 | 0.06 | −28.93 | ||
DC42 | −0.77 | 0.33 | −0.24 | 0.07 | −29.95 | ||
DC48 | −0.83 | 0.43 | −0.26 | 0.05 | −17.44 | ||
NDWI | JHB | −0.96 | 0.35 | −0.15 | 0.05 | −32.36 | |
TSH | −0.80 | 0.34 | −0.16 | 0.04 | −22.54 | ||
EKU | −0.89 | 0.28 | −0.15 | 0.05 | −31.11 | ||
DC42 | −0.50 | 0.32 | −0.15 | 0.05 | −33.80 | ||
DC48 | −0.76 | 0.32 | −0.17 | 0.04 | −21.79 | ||
2022 | MNDWI | JHB | −0.89 | 0.41 | −0.18 | 0.05 | −29.93 |
TSH | −0.86 | 0.40 | −0.23 | 0.05 | −22.92 | ||
EKU | −0.97 | 0.38 | −0.21 | 0.06 | −28.23 | ||
DC42 | −0.77 | 0.34 | −0.23 | 0.07 | −29.16 | ||
DC48 | −0.74 | 0.39 | −0.25 | 0.05 | −18.59 | ||
NDWI | JHB | −0.86 | 0.37 | −0.15 | 0.05 | −30.58 | |
TSH | −0.84 | 0.40 | −0.16 | 0.04 | −25.38 | ||
EKU | −0.96 | 0.29 | −0.15 | 0.04 | −29.31 | ||
DC42 | −0.48 | 0.22 | −0.16 | 0.05 | −32.87 | ||
DC48 | −0.50 | 0.27 | −0.16 | 0.04 | −23.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gidey, E.; Mhangara, P. An Application of Machine-Learning Model for Analyzing the Impact of Land-Use Change on Surface Water Resources in Gauteng Province, South Africa. Remote Sens. 2023, 15, 4092. https://doi.org/10.3390/rs15164092
Gidey E, Mhangara P. An Application of Machine-Learning Model for Analyzing the Impact of Land-Use Change on Surface Water Resources in Gauteng Province, South Africa. Remote Sensing. 2023; 15(16):4092. https://doi.org/10.3390/rs15164092
Chicago/Turabian StyleGidey, Eskinder, and Paidamwoyo Mhangara. 2023. "An Application of Machine-Learning Model for Analyzing the Impact of Land-Use Change on Surface Water Resources in Gauteng Province, South Africa" Remote Sensing 15, no. 16: 4092. https://doi.org/10.3390/rs15164092
APA StyleGidey, E., & Mhangara, P. (2023). An Application of Machine-Learning Model for Analyzing the Impact of Land-Use Change on Surface Water Resources in Gauteng Province, South Africa. Remote Sensing, 15(16), 4092. https://doi.org/10.3390/rs15164092