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Abstract: Surface fine particulate matter (PM) with a diameter of less than 2.5 microns (PM2.5)
negatively impacts human health and the economy. However, due to data and model limitations,
obtaining high-quality, high-spatial-resolution surface PM2.5 concentration data is a challenging task,
and it is difficult to accurately assess the temporal and spatial changes in PM2.5 levels at a small
regional scale. Here, we combined multi-angle implementation of atmospheric correction (MAIAC)
aerosol products, ERA5 reanalysis data, etc., to construct an STW-LightGBM model that considers
the spatiotemporal characteristics of air pollution and estimate the PM2.5 concentration of China’s
surface at 1 km resolution from 2015 to 2020. Our model performed well, and the fitting accuracy of
the 10-fold cross-validation between years was 0.877–0.917. The fitting accuracy of the model was
>0.85 at different time scales (month, season, and year). The average slope of the regression prediction
was 0.9 annually. The results showed that PM2.5 pollution improved from 2015 to 2020. The average
PM2.5 concentration decreased by 4.55 µg/m3, and the maximum decrease reached 90.51 µg/m3. The
areas with high PM2.5 concentrations were predominantly in the North China Plain, Sichuan Basin,
and Xinjiang in the west, and the levels in areas with elevated PM2.5 levels were consistent across
most study years. The standard deviation ellipse for PM2.5 in China showed a ‘northeast–southwest’
spatial distribution. From an interannual perspective, the average values of the four seasonal stations
in the country showed a downward trend from 2015 to 2020, with the most obvious decline in winter,
from 70.67 µg/m3 in 2015 to 46.75 µg/m3 in 2020. Compared to earlier inversion studies, this work
provides a more stable and accurate method for obtaining high-resolution PM2.5 data, which is
necessary for local air governance and environmental ecological construction at a fine scale.

Keywords: aerosol optical depth; STW-LightGBM; surface PM2.5 estimation; air pollution; spatiotemporal
variation

1. Introduction

Globally, 3.3 million people die annually from diseases caused by outdoor particulate
matter (PM) with a diameter of less than 2.5 microns (PM2.5), and more than a quarter of
these premature deaths occur in China [1]. With the in-depth implementation of the “Air
Pollution Prevention Plan” and the “3-year Action Plan to Win the Blue Sky Defense War”,
ambient air quality in China has improved annually, and the average PM2.5 concentration
in the country has decreased significantly [2]. However, there are still some areas where
the average annual PM2.5 concentration exceeds the World Health Organization’s medium-
term target of 35 µg/m3 [3]. Long-term exposure to air pollution not only increases the risk
of cardiovascular and cerebrovascular diseases [4–7] but also creates financial pressure due
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to the consequent medical and health expenditures [8–10]. From 2016 to 2017, the additional
direct medical expenses related to urban workers in China due to short-term exposure to
atmospheric PM2.5 were as high as CNY 3.68 billion [11]. In addition to direct medical
costs, the reduction in labor productivity due to PM2.5 exposure also has a significant
indirect economic impact [12]. Therefore, the timely and accurate prediction of PM2.5 mass
concentrations could help people to effectively avoid the harm of air pollutants, and this
is one of the most important strategies for caring for the aging population of China and
facilitating high-quality economic development in the country [13].

Currently, research on the simulation of surface PM2.5 can be roughly divided into
two categories: temporal and spatial variation analyses based on ground stations and
temporal and spatial variation analyses based on various satellite remote-sensing datasets.
Environmental quality monitoring sites are the most direct sites for analyzing PM2.5 [14,15].
However, due to the small number of ground monitoring stations in China and their weak
spatial representation, the use of ground monitoring stations alone is not sufficient to
fully reflect the spatial characteristics of PM2.5 [16]. Compared with ground monitoring,
remote-sensing monitoring is characterized by high spatial resolution, wide monitoring
range, fast speed, low cost, and all-weather real-time monitoring, which can thus overcome
the shortcomings that occur due to the lack of or uneven spatial and temporal distributions
of ground monitoring data, and provide new ideas for the study of PM2.5 [17–19]. Remote-
sensing monitoring of PM2.5 mainly uses aerosol optical depth (AOD) and meteorological
data as independent variables to establish a regression model to estimate PM2.5. He et al.
used the improved geographical and time-weighted regression (GTWR) model to estimate
the daily PM2.5 concentration data at a 3 km resolution in mainland China [19]. Wang et al.
estimated hourly PM2.5 concentrations in the Beijing–Tianjin–Hebei (BTH) region from
Himawari-8 AOD products using a linear mixing effect (LME) model [20]. Xue et al.
proposed an improved geographical and time-weighted regression (IGTWR) model using
Himawari-8 AOD products to produce hourly PM2.5 datasets for central and eastern
China [21]. However, limited by the uneven optical properties and significant nonlinear
characteristics of AOD [22,23] and PM2.5 monitoring datasets, these regression models may
not fully capture the complex spatial and temporal relationships that exist between PM2.5
and AOD when evaluated at a large scale. The prediction accuracy is thus not currently
ideal, and the data products produced are insufficient to support specific regional research.

Machine learning and deep learning algorithms are providing new ways to solve
such problems. Deep learning, which is a branch of machine learning, is widely used in
ground object classification. However, compared with machine learning, deep learning is
more dependent on computer performance and has a lower computational efficiency [24];
therefore, it is not widely used for PM2.5. Conversely, machine learning algorithms such as
Random Forest (RF), Gradient Boosting Tree (GBDT), and Extreme Gradient Boosting Tree
(XGBoost) have been widely used to estimate local and global ground PM2.5 concentra-
tions [25–27]. RF has a good training speed and prediction accuracy, although it is prone to
overfitting with noisy classifications or regression problems. With GBDT, data processing
flexibility is improved, and the parameter adjustment time is reduced [28]; however, this
decision-tree-based learner does not support the parallel training of data. XGBoost reduces
the occurrence of overfitting and shortens the operation time; however, many model pa-
rameters exist, and the adjustment process is complicated [29]. Furthermore, the latter
model requires a large amount of computer memory, which affects the efficiency of fine
spatiotemporal inversion research for PM2.5. In contrast to the above models, the Light
Gradient Boosting Machine (LightGBM) model not only has low memory requirements and
high computational efficiency but also has high levels of accuracy. It also supports parallel
processing and can be run on a GPU, which effectively reduces the burden of computer
memory and improves the efficiency and accuracy of large-scale data processing [30–32].

To reduce the influence of the spatial and temporal heterogeneity of ground PM2.5
concentrations, this study employs a combination of spatial and temporal parameters
and an improved GBDT algorithm proposed by He et al. [33] to construct an improved
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LightGBM model (STW-LightGBM) using a spatiotemporal-weighted method. The fitting
accuracy of STW-LightGBM to surface PM2.5 was verified by combining the PM2.5 data
from ground environmental monitoring stations, satellite optical depth products (AOD),
meteorological data, and land-use data. The stability at different time scales was also
analyzed. Finally, a high spatial resolution (1 km) PM2.5 concentration map of China from
2015 to 2020 was created to provide a reference for the implementation of carbon emissions
reduction programs in China.

2. Datasets and Processing
2.1. In Situ PM2.5 Measurements

Hourly data for the ground PM2.5 concentrations from 2015 to 2020, were obtained
from the China National Environmental Monitoring CentreCNEMC, http://www.cnemc.
cn/, accessed on 26 June 2022). The conical element oscillation microbalance method or
attenuation monitor was used for on-site concentration measurements and was strictly
controlled according to the China Environmental Quality Standard (CNAAQS, GB3905-
2012) [34,35]. The PM2.5 data used were the daily averages from 1 January to 31 December
for each year. If there was a missing value for the concentration on a certain day, it was
ignored, and the daily average was calculated. The spatial distribution of PM2.5 ground
monitoring stations in mainland China is detailed in Supplementary Materials Figure S1.

2.2. MAIAC AOD

The 1 km resolution multi-angle atmospheric correction algorithm MAIAC AOD used
in this study was derived from the MODIS L1 B data product (https://ladsweb.nascom.
nasa.gov/, accessed on 26 June 2022). The MAIAC algorithm uses a time-series method
to dynamically obtain the surface reflection relationship between the blue and shortwave
infrared bands of MODIS in dark and bright regions [36] and can improve detection in
cloudy and snowy weather [37]. Compared with the commonly used MODIS DB and
DT algorithms, MAIAC AOD inversion has a wider range, higher resolution, and higher
inversion accuracy [38,39]. The AOD products of MAIAC also have higher accuracy and
smaller statistical errors than those of aerosol monitoring stations in China [40].

Due to the different observation periods of Terra and Aqua satellites equipped with
MODIS sensors, we referred to earlier studies [41] and used the linear regression method
for matching grid cells between Terra and Aqua AODs, which effectively reduces the loss
of AOD data.

2.3. Auxiliary Data

Meteorological data were included in the model (https://cds.climate.copernicus.eu/
cdsapp#!/home, accessed on 26 June 2022). Seven meteorological variables from the ERA5
reanalysis data were used: atmospheric boundary layer height (BLH), ground pressure
(SP), surface temperature above 2 m (T2M), relative humidity (RH), normalized difference
vegetation index (NDVI), total precipitation (Pst), and wind speed (Ws). The spatial
resolution of the data was 0.25◦ × 0.25◦ and the temporal resolution was 1 h. The monthly
NDVI had a 1 km resolution and annual land-use data with a 500 m spatial resolution were
obtained from MODIS L3 global products. The specific data and sources used are shown in
Supplementary Materials Table S1.

2.4. Data Processing

First, the nearest neighbor method was used to resample the raster image data to 1 km.
ArcGIS10.2 was then used to create a national 1 km × 1 km resolution grid and the grid
image data were matched. If multiple ground air quality monitoring stations were present
in a grid, the average value for all stations was calculated as the PM2.5 concentration value
of the unit grid. The matching results were sorted, and the missing values and outliers were
deleted. In traditional machine learning models, to avoid the influence of the dimensions of
variables on the research process, it is usually necessary to normalize or discretize the data

http://www.cnemc.cn/
http://www.cnemc.cn/
https://ladsweb.nascom.nasa.gov/
https://ladsweb.nascom.nasa.gov/
https://cds.climate.copernicus.eu/cdsapp#!/home
https://cds.climate.copernicus.eu/cdsapp#!/home
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to make different variables comparable. Our model is mainly based on the information
gain ratio of the dataset about the feature when the node is split and is not sensitive to the
feature value, hence, there is no need to normalize and discretize the data.

3. Models and Methods
3.1. STW-LightGBM Model

LightGBM is a distributed gradient boosting framework based on the decision tree
algorithm [30], which improves the slow serial speed of GBDT and its tendency to overfit.
LightGBM, provided by Microsoft, is an efficient implementation of GBDT with several
advantages over other implementations of GBDT such as XGBoost [42,43]. The negative
gradient of the loss function is used as a residual approximation of the current decision tree
to fit a new decision tree. LightGBM combines GOSS and EFB algorithms based on GBDT
and has the following advantages: faster training efficiency, low memory usage, higher
accuracy, parallel learning support, and an ability to handle large-scale data and support
the direct use of category features without increasing the complexity of the model while
ensuring accuracy [26,27,38]. Specifically, in the estimation of surface PM2.5, LightGBM
can easily achieve higher accuracy with fewer sample features, less memory, and faster
speed than other gradient enhancement algorithms.

Considering the complex surface environment in China, if only the results of ground
stations are considered when constructing and fitting a model for air pollution concentra-
tions, then the spatial representation of the data will be insufficient, and the prediction
results will be unreliable. To improve the accuracy and reliability of the data, we referred
to earlier research [39] and introduced the spatiotemporal characteristic parameter (Pst),
which we used to build the STW-LightGBM model, which can more accurately reflect the
spatiotemporal variation laws and future development trends for PM2.5.

For a given sample i, the spatiotemporal characteristic parameters can be represented
as follows:

PSt(i) = ∑m
j=1 wijPM2.5/ ∑m

j=1 wij (1)

wij = exp(−
(ds

ij)
2 + ρ ∗ (dT

ij)
2

h2
st

) (2)

where wij represents the weight of sample j relative to sample i and ds and dt represent the
space and time parameters, respectively, hst represents the temporal and spatial bands, ρ
represents time and space control factors, and m is the number of neighbors around sample
point i. According to the method adopted by He et al. [33], hst and ρ were set to 2 and 6000,
respectively.

The Haversin distance was used to calculate the spatial parameters in the formula. The pa-
rameter calculation methods for the time and space distances are shown in Equations (3)–(8):

Spacew = f (Lon, Lat) = haversin(α1 − α2) + cos α1 × cos α2 × haversin(β1 − β2) (3)

α = Lon× π

180
(4)

β = Lat× π

180
(5)

haversin(α) = sin2
(α

2

)
(6)

ds = 2× r× arcsin
(√

Spacew

)
(7)

dT = cos
(

2π
DOY
Year

)
(8)
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where Lon and Lat stand for pixel longitude and pixel latitude, respectively, dT is the
distance between two points determined by the latitude and longitude of the great circle, r
is the radius of Earth, DOY indicates the day of a year, and Year indicates the total number
of days in the year. Figure 1 shows the structure of the PM2.5 estimation framework
constructed in this current study.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 22 
 

 

𝛽 = 𝐿𝑎𝑡 × 𝜋180 (5)

ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛(𝛼) =  𝑠𝑖𝑛ଶ ቀ𝛼2ቁ (6)

𝑑௦ = 2 × 𝑟 × 𝑎𝑟𝑐𝑠𝑖𝑛൫ඥ𝑆𝑝𝑎𝑐𝑒௪൯ (7)

𝑑் = 𝑐𝑜𝑠 ൬2𝜋 𝐷𝑂𝑌𝑌𝑒𝑎𝑟൰ (8)

where 𝐿𝑜𝑛 and Lat stand for pixel longitude and pixel latitude, respectively, dT is the dis-
tance between two points determined by the latitude and longitude of the great circle, r is 
the radius of Earth, DOY indicates the day of a year, and Year indicates the total number 
of days in the year. Figure 1 shows the structure of the PM2.5 estimation framework con-
structed in this current study. 

 
Figure 1. Flowchart of the mapping process of the PM2.5 dataset in our study. 

3.2. Parameter Selection 
In this study, we adopted manual parameter adjustment and grid optimization to 

determine the appropriate parameter combination (Supplementary Materials Figure S2). 
By setting different numerical ranges for three parameters, namely, learning rate (LR), 
maximum depth (MD), and number of leaf nodes (NL), we performed traversal calcula-
tions to determine the optimal model parameter combination. The data from 2016 to 2020 
were used as the training set, and the data from 2015 were used as the test set to determine 
the optimal parameter combination. According to the cycle results, the optimal LR, MD, 
and NL values were determined to be 0.1, 10, and 375, respectively. 

3.3. Standard Deviational Ellipse 
The standard deviational ellipse (SDE) can accurately reveal the overall characteris-

tics of the spatial distribution of geographical elements [44,45]. Based on the spatial layout 
and structure of the research object, the characteristics of the spatial distribution of geo-
graphical elements, such as centrality, direction, and spatial form, can be quantitatively 
explained, and the spatial distribution and spatiotemporal evolution process of geograph-
ical elements can be revealed. Based on the site-based annual average PM2.5 concentra-
tion, the SDE of the PM2.5 spatial distribution was calculated to show the spatial variation 
trend for air pollution in China over the past 6 years. The change in the length of the pri-
mary and secondary axes and the change in the azimuth angle of the standard deviation 

Figure 1. Flowchart of the mapping process of the PM2.5 dataset in our study.

3.2. Parameter Selection

In this study, we adopted manual parameter adjustment and grid optimization to
determine the appropriate parameter combination (Supplementary Materials Figure S2).
By setting different numerical ranges for three parameters, namely, learning rate (LR),
maximum depth (MD), and number of leaf nodes (NL), we performed traversal calculations
to determine the optimal model parameter combination. The data from 2016 to 2020 were
used as the training set, and the data from 2015 were used as the test set to determine the
optimal parameter combination. According to the cycle results, the optimal LR, MD, and
NL values were determined to be 0.1, 10, and 375, respectively.

3.3. Standard Deviational Ellipse

The standard deviational ellipse (SDE) can accurately reveal the overall characteristics
of the spatial distribution of geographical elements [44,45]. Based on the spatial layout and
structure of the research object, the characteristics of the spatial distribution of geographical
elements, such as centrality, direction, and spatial form, can be quantitatively explained,
and the spatial distribution and spatiotemporal evolution process of geographical elements
can be revealed. Based on the site-based annual average PM2.5 concentration, the SDE
of the PM2.5 spatial distribution was calculated to show the spatial variation trend for
air pollution in China over the past 6 years. The change in the length of the primary and
secondary axes and the change in the azimuth angle of the standard deviation ellipse can
characterize the increasing or decreasing trend of PM2.5, coverage, and extension direction.
The oblateness is the ratio of the long and short half axes and the larger the oblateness, the
stronger the sense of data direction, and the more obvious the centrifugal force. At the
same time, this also implies that there is a greater degree of data dispersion.

In this study, standard error ellipse images of PM2.5 observations and the predicted
values for many years were drawn. Through superposition and comparison, the accuracy
of the model prediction could be verified more intuitively from a spatial perspective. The
calculation formulas for the main parameters of the standard error ellipse were as follows:
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P
(
X, Y

)
=

∣∣∣∣∑n
i=1 ω1Xi

∑n
i=1 ωi′

,
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i=1 ω1Yi
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∣∣∣∣ (9)
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C
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A =

(
n

∑
i=1

X̃i
2 −

n
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Ỹi
2
)

(11)

B =

√√√√( n
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X̃i
2 −

n

∑
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Ỹi
2

)2

+ 4

(
n

∑
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X̃iỸi

)2

(12)

C = 2
n

∑
i=1

X̃iỸi (13)

σx =

√
n

∑
i=1

(
ωiX̃i cos θ −ωiỸi sin θ

)2
/

n

∑
i=1

ωi
2 (14)

σy =

√
n

∑
i=1

(
ωiX̃i sin θ −ωiỸi cos θ

)2
/

n

∑
i=1

ωi
2 (15)

where P
(
X, Y

)
represents the center of gravity of the standard deviation ellipse, ωi rep-

resents weight, (Xi, Yi) represents the weighted average center, θ represents the azimuth
angle of the ellipse, X̃i and Ỹi represent the coordinate deviations from the location of each
research object to the average center, respectively, and σx and σy represent the standard
deviation along the X-axes and Y-axes, respectively.

3.4. Model Verification

A 10-fold cross-validation method was used to perform interannual and overall evalu-
ation training on the model. For all samples, time- and site-based methods were combined
to explore the universality of the model in time and space and to verify its robustness and
stability [46,47]. The determination coefficient (R2), root mean square error (RMSE), and
mean absolute error (MAE) were used to evaluate the fitting results. The formulas used
were as follows:

R2 = 1−∑n
i=1

(
yi − y∧i

)2/ ∑m
i=1(yi − avg(y))2 (16)

MAE =
1
n

n

∑
i=1

∣∣yi − y∧i
∣∣ (17)

RMSE =

√
1
n

n

∑
i=1

(
yi − y∧i

)2 (18)

4. Results
4.1. Model Fitting Performance and Overall Evaluation

The fitting ability of STW-LightGBM to PM2.5 on an interannual scale is shown in
Figure 2. The fitting method uses the 10-fold cross-validation idea commonly utilized in
machine learning. The CV-R2 of the model fitting results for each year from 2015 to 2020
were 0.877, 0.892, 0.915, 0.918, 0.917, and 0.917, respectively. As can be seen, the fitting
accuracy of the model steadily increased during the study period. Similarly, the MAE and
RMSE of the model decreased over time from 8.796 and 14.376 µg/m3 in 2015 to 4.446 and
7.833 µg/m3 in 2020, respectively. The slope of the regression equation for each year ranges
from 0.88 to 0.92 (Table 1). As the slope is high and the variation range small, this indicates
that the model has good fitting performance and high stability. From the multi-angle
evaluation of the numerical variation of the annual fitting results R2, MAE, and RMSE, and
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the slope stability of the regression equation, the STW-LightGBM was found to perform
well for PM2.5 fitting.
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Figure 2. Density scatter plots of the results of the 10-fold CV of the estimated daily PM2.5 concentra-
tion from 2015 to 2020 (a–f). The black dotted line denotes the 1:1 line and the red solid line denotes
the fitted regression line.

Table 1. Fitting results for the model used in this study at different time scales.

Time Scale R2 RMSE MAE Regression Equation

2015 0.877 14.376 8.796 Y = 0.88X + 6.68
2016 0.892 13.339 8.055 Y = 0.89X + 5.48
2017 0.915 11.131 6.79 Y = 0.91X + 4.2
2018 0.918 8.892 5.55 Y = 0.92X + 3.44
2019 0.917 8.689 5.168 Y = 0.92X + 3.28
2020 0.917 7.833 4.446 Y = 0.92X + 2.91

2015–2020 0.904 11.027 6.523 Y = 0.9X + 4.27
monthly 0.906 7.295 4.838 Y = 0.91X + 3.88

seasonally 0.907 6.342 4.838 Y = 0.9X + 4.25
yearly 0.866 5.78 3.929 Y = 0.85X + 6.53

To further verify the overall fitting accuracy of the model, this study used 983,140 sam-
ples from 2015 to 2020 and the trained model was used to predict the surface PM2.5
concentration and for model evaluation. The fitting of the observed and predicted values
on a daily scale for all samples is shown in Figure 3. The coefficient of determination (R2)
was 0.904, MAE was 6.523 µg/m3, and RMSE was 11.027 µg/m3.

4.2. Interannual-, Seasonal-, and Monthly Scale Performance

To further verify the model general performance for STW-LightGBM at different
time scales, monthly, seasonal-, and annual-scale datasets based on site were fitted. The
period March–May is defined as spring, June–August as summer, September–November as
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autumn, and December–February as winter. The fitting results of the model at different
time scales are shown in Figure 4.
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The R2 values for the annual, monthly, and seasonal scales were 0.866, 0.907, and 0.906,
respectively. The seasonal scale was the highest, followed by annual and monthly scales.
Maxima for the MAE and RMSE were no more than 5 µg/m3. By comparing and analyzing
the daily (Figure 3) and annual scales (Figure 2), the fitting accuracy of the model used in
this study was found to have reached a good level at each time scale, which shows that the
parameters adjusted in this study and the established model have good stability.

4.3. Site-Based and Time-Based Authentication

Distribution maps of the PM2.5 verification results in China from 2015 to 2020 using
a site-based 10-fold cross-validation method are shown in Figure 5. To make the results
statistically significant, we removed sites with fewer than 10 samples, calculated the 6-year
average value of the sites that met the requirements, and used 10-fold cross-validation. Due
to the different service lives of different sites, some differences in the sample sizes were
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observed. The site with the best verification result was located in the BTH region; this site
was used for the longest time, and its CV-R2 reached >0.95. The number of meteorological
stations in the southwestern region was small and weakly representative of the sample
space, and the site-based CV-R2 was generally <0.8. The RMSE distribution results are
similar to those for the CV-R2 distribution. The RMSE in most areas in the eastern part of
the country was <15 µg/m3, which was lower than that in the northwestern region without
site data.
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The distribution map for PM2.5 and the verification results from across China for 2015–
2020 using a time-based 10-fold cross-validation method are shown in Figure 6. As with the
site-based processing operation, daily station data containing fewer than 10 samples per day
were removed, the daily mean value of the remaining national daily PM2.5 concentration
observation data was calculated, and 10-fold cross-validation was applied. As can be seen,
the model had the best fitting effect at the beginning and end of each year, i.e., in winter,
when the PM2.5 concentration was high, and the average CV-R2 was greater than 0.82. In
the summer and autumn of each year, i.e., when PM2.5 was low, the fitting effect of the
model decreased, and the mean value of CV-R2 was <0.8. The fitting accuracy based on
time was comparatively lower than that based on site, which may be related to the fact that
the calculation of the mean value weakens the spatial characteristics of PM2.5 data.
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4.4. Standard Error Ellipse

In this study, the standard error ellipse is used to study the spatial and temporal
evolution of PM2.5 concentrations in China from 2015 to 2020, and the spatial characteristics
of the annual average PM2.5 at all stations for 6 years are quantitatively drawn based on
the stations (Supplementary Materials Figure S3). The main body of the ellipse was located
in the central and eastern regions of China, and a ‘northeast–southwest’ spatial distribution
pattern is generally presented (Figure 7). This is directly related to the dense distribution
of stations in the east and sparse distribution in the west and is indirectly related to the
population distribution and economic level of the different regions of China.

Specific data relating to the standard deviation ellipse between the observed and
predicted values of PM2.5 in this study period are shown in Table 2. As can be seen, the
length of the short axis of the ellipse decreased from 8.74 in 2015 to 8.70 in 2020 and the
ratio of the long axis to the short axis increased from 1.42 in 2015 to 1.44 in 2020. This
indicates that the shortening trend of the short axis is stronger than that of the long axis.
The standard deviation ellipse shrinks significantly in the east–west direction and does not
change significantly in the north–south direction. The directional trend of the standard
deviation ellipse of PM2.5 concentrations became increasingly obvious. Elliptical oblateness
increased from 0.295 to 0.305 during the 2015–2017 period, decreased rapidly in 2018, and
reached 0.289 in 2020. This was related to the promotion of the atmospheric governance
policies of China in different regions. The rate of fall of PM2.5 levels in the eastern region
is faster than that in the central and western regions, while the decreasing trend for the
PM2.5 concentration in the north and south is close, thus forming the aforementioned
northeast–southwest spatial distribution trend in the surface PM2.5 standard deviation
ellipse for China. The increase in PM2.5 in the east–west direction in recent years, enhanced
the oblateness of the ellipse, making the northeast–southwest tilt trend of the ellipse more
obvious, a situation that was verified by the subsequent PM2.5 concentration inversion
image. Deviations in the latitude and longitude of the center of gravity between the
observed and predicted ellipses were <0.01◦. The observed and predicted ellipses have a
high degree of coincidence between the major and minor axes and the center of gravity,
which reflects the prediction accuracy of the model on the spatial scale.

Table 2. Standard deviation ellipse information for the observed and predicted PM2.5 levels from
2015 to 2020.

Data Year Short Half-Axis Long Half-Axis Flattening Areal Coordinates

Observation
data

2015 8.741986 12.400678 0.295 (113.2846, 33.078364)
2016 8.743532 12.571961 0.305 (113.303646, 33.141384)
2017 8.743532 12.571961 0.305 (113.303646, 33.141384)
2018 8.704039 12.379003 0.297 (113.393208, 33.188897)
2019 8.6856 12.345031 0.296 (113.53484, 33.127374)
2020 8.711217 12.253378 0.289 (113.517829, 33.161107)

Prediction
data

2015 8.797358 12.469937 0.295 (113.293791, 33.102142)
2016 8.691407 12.51929 0.306 (113.335734, 33.115923)
2017 8.691407 12.51929 0.306 (113.335734, 33.115923)
2018 8.698212 12.361702 0.296 (113.381568, 33.166527)
2019 8.696882 12.344421 0.295 (113.537326, 33.145294)
2020 8.65032 12.172791 0.289 (113.558399, 33.152506)

To evaluate the ability of the model to predict PM2.5 pollution levels in different
regions of China, four typical regions in China were selected, BTH, Jiangsu–Zhejiang–Shanghai,
Xinjiang, and Sichuan–Chongqing, to analyze the trend in predicted PM2.5 levels and draw
the standard deviation ellipse (Figure 8). For the BTH region, the standard error ellipse
area began to shrink in 2015 and moved northeastward. The short half-axis of the ellipse in-
creased, the long half-axis decreased, the elliptical oblateness increased, and the centrifugal
force and directionality increased. The change in ellipse area in the Sichuan–Chongqing and
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Jiangsu–Zhejiang–Shanghai regions is not significant. The ellipse in the Jiangsu–Zhejiang–
Shanghai region shows a slight trend toward contraction to the northwest, while that in the
Sichuan–Chongqing region shows a gradual trend toward expansion to the northeast. The
difference in the size of the standard deviation ellipse in Xinjiang was the most obvious.
As the ellipse expands to the northeast, the long half-axis is shortened, the short half-axis
is increased, the elliptical flatness is reduced, and the centrifugal force and direction are
weakened.
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As the standard error ellipse is limited by the incomplete distribution of stations
and the weakness of the data due to errors in the annual average calculations, it cannot
accurately reflect the trend in surface PM2.5 concentrations. It needs to be combined with
more detailed remote sensing inversion mapping data to jointly characterize the spatial
and temporal variation characteristics and trends in near-surface PM2.5 concentration in
China from 2015 to 2020.

4.5. Mapping of PM2.5 Concentrations in China from 2015 to 2020

The mapping results for the PM2.5 concentration at a 1 km spatial resolution in
China from 2015 to 2020 based on the STW-LightGBM fitting are shown in Figure 9.
The fitting results show the full-coverage predictions for the surface concentration and
have similar spatial and temporal variation rules to other studies into surface PM2.5
concentrations [29,30]. In terms of spatial distribution, the areas with high PM2.5 values,
from 2015 to 2020, were mainly distributed in the eastern coastal areas, North China
Plain, Sichuan Basin, and western Xinjiang. Among them, the high value aggregation
phenomenon in the Tarim Basin in Xinjiang is the most significant, and the annual average
concentration of PM2.5 for this 6-year period is more than 110 µg/m3. Considering the
low intensity of human activities in the region, the presence of PM2.5 in the Tarim region
may be predominantly the result of natural weather conditions, such as dust. For the BTH,
Pearl River Delta, Yangtze River Delta, and other regions with high urbanization rates and
population densities, automobile exhausts and factory emissions were the two main causes
of high PM2.5 concentrations. Terrain is another important factor causing high PM2.5. For
example, in the Sichuan Basin, bowl-like terrain gives rise to local air pollutants such as
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PM2.5 as such terrain does not have the airflow experienced by flat plains, resulting in the
accumulation of local air pollutant concentrations and high PM2.5 concentrations.
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The surface PM2.5 concentrations in earlier PM2.5 hot spots such as the BTH region,
North China, the Pearl River Delta region, and the Jiangsu–Zhejiang–Shanghai region
showed a decreasing trend due to the implementation of pollution control measures in
China in 2013. Furthermore, the clean air plan [48] and the 3-year Blue Sky action plan
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were implemented in 2018 [49] and have had significant impacts. As shown in Supplemen-
tary Materials Figure S4, the average PM2.5, concentration in the Jiangsu, Zhejiang, and
Shanghai areas decreased by 10.82 µg/m3 in this 6-year period, and the average decrease
in Sichuan and Chongqing was 5.34 µg/m3. The average decrease in Beijing, Tianjin, and
Hebei was 11.88 µg/m3, and the maximum decrease was 72.88 µg/m3, which is second
only to the maximum decrease of 90.51 µg/m3 seen in Xinjiang. While PM2.5 levels in
the country have generally fallen, we found that local high PM2.5 emissions remain. For
example, the PM2.5 concentration in a mountainous area in the western part of Hebei
Province increased by 30.52 µg/m3 in this 6-year period. The northeastern part of the
Tianshan Mountains in Xinjiang and the central part of the Sichuan Basin experienced the
largest growth in pollution in the region, at 65.71 and 27.98 µg/m3, respectively.

However, with the improvement in the air-quality-related policies of China, industries
with high energy consumption and pollution are gradually being replaced by more envi-
ronmentally friendly and energy-saving technologies. Combined with vehicle restrictions,
the emissions of air pollutants have been effectively reduced. Additionally, the combined
effects of measures such as shutdowns, specifically those during the outbreak of the new
coronavirus epidemic in 2020, have also caused significant reductions in PM2.5 levels in
China compared with those seen in 2015.

To explore the interannual and seasonal variation characteristics of PM2.5 levels in
China, box plots can be used, as they are not affected by abnormal values, and thus, can
intuitively, accurately, and stably describe the discrete distribution of the data. In this
study, a box plot was used to analyze the trends in PM2.5 concentrations at different scales.
Figures 10 and 11 respectively show the discrete distributions of the annual mean and
means of different quarters in each year for the stations of China from 2015 to 2020. The
interannual scale shows the annual average value for PM2.5 concentrations at stations
across China and a first increasing and then decreasing trend was observed, although
overall, the trend was downward (Figure 10). In 2016, the median of the box-type diagram
was approximately 50 µg/m3, while in 2020 it was 40 µg/m3. Thus, a downward trend
was observed from 2016 to 2020. Outliers were also present in each box plot, which may be
due to the fact that the decrease in background PM2.5 concentration in most parts of the
country was not obvious or in some places, such as the Tarim Basin in Xinjiang, slightly
increased, resulting in abnormal values in this area relative to that of the other sites. From
the perspective of the box-plot changes shown in Figure 10, the distance between the upper
and lower quartiles represented by the box plot from 2015 to 2020 is shrinking, indicating
that the numerical fluctuations of different stations in China are getting smaller, and the
regional PM2.5 concentration differences are also getting smaller. Additionally, from the
perspective of changes in box shape, the upper and lower limit ranges of the boxes also
show a narrowing trend, indicating that the concentration of PM2.5, as monitored by most
stations, is increasing, and the regional differences are gradually decreasing.

The discrete distributions of the seasonal means of the stations in different years and
seasons are shown in Figure 11. Overall, the surface PM2.5 concentrations in the four
seasons showed a decreasing trend from 2015 to 2020. From the perspective of the data
distribution, the mean distribution of the PM2.5 at stations in the summer was relatively
concentrated, and the mean value was the smallest, indicating that in the summer, the
PM2.5 concentration was the lowest in any given year, while the differences between
regions were larger than in some other seasons. The box height of the box-type map in
winter was the highest, indicating that in winter, the average distribution of PM2.5 at
different stations was more dispersed and the regional differences were larger. This may be
the result of the weather and heating conditions in northern and southern China. The box
heights in spring and autumn were between the two; however, generally, the box height in
spring was lower than that in autumn, indicating that the PM2.5 concentration at each site
in spring was higher than that in autumn, and the regional differences were smaller in the
spring than those in autumn.
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Figure 11. Box chart showing the PM2.5 prediction value means by quarter for stations from 2015 to
2020. In each box, the black plus signs represent outliers, and the middle, lower, and upper horizontal
lines represent the median bias, 25th percentile, and 75th percentile, respectively.

According to the distribution of data during the year, the PM2.5 concentration in the
summer was the lowest in any given year, followed by the spring and autumn, and the
highest in winter, with the same change rules for different years. For the four seasons across
all years, the consistency in the average concentration of PM2.5 was highest in the summer,
lowest in the winter, and between the two in the spring and autumn, indicating that the
average values of the national stations in summer were relatively close when the surface
PM2.5 concentration in China was the lowest. PM2.5 levels were the highest in winter,
although the value varied greatly across the country. Interannually, the average value of the
four seasonal stations in the country from 2015 to 2020 showed a downward trend, with the
most obvious decline in winter. As shown in Figure 11, the surface PM2.5 concentration in
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winter decreased from 70.67 µg/m3 in 2015 to 46.75 µg/m3 in 2020. In autumn, it decreased
from 49.09 µg/m3 in 2015 to 32.28 µg/m3 in 2020, in spring, it decreased from 45.75 µg/m3

in 2015 to 32.66 µg/m3 in 2020, and in summer, it decreased from 33.30 µg/m3 in 2015 to
25.76 µg/m3 in 2020. The heights of the boxes for the four seasons showed a decreasing
trend, indicating that the average values for each station were gradually converging, and
differences in the surface PM2.5 concentration in different regions decreased. The results
point to the effective implementation of energy conservation and air quality management
policies.

5. Discussion
5.1. Model Fitting Performance

We combined MAIAC AOD ERA5 reanalysis data, etc., to construct an STW-LightGBM
model that considers the temporal and spatial characteristics of air pollution and estimate
the PM2.5 concentration of the surface at 1 km resolution in China from 2015 to 2020. The
model proposed in this study performs well and can maintain high prediction accuracy at
different timescales (the mean R2 is 0.902). Compared with the results of earlier studies,
the fitting slope of the model is the highest (ranging from 0.88 to 0.92, while the average
slope of the 10-fold cross-validation is 0.9), which indicates a good fit for the real surface
PM2.5 concentration. At different time scales, the change in the range of the predicted slope
was <0.2, and the R2 change range was <0.45, demonstrating the robustness and stability
of the model. This implies that our model is more sensitive to changes in independent
variables and can obtain more detailed PM2.5 concentration data under certain conditions.
This provides the possibility of obtaining pollution information using remote-sensing data
instead of ground monitoring data and could thus reduce the need for ground monitoring
stations, which are expensive and difficult to place.

To improve the prediction accuracy of the model, this study adopted a variety of
measures, including finding variables related to PM2.5, paying attention to data availability,
selecting model algorithms with high accuracy and low complexity for fitting, focusing on
overfitting and underfitting problems, selecting appropriate parameter combinations, and
providing large amounts of training sample data. The STW-LightGBM model developed in
this study is an optimized version of the GBDT machine learning algorithm that can signif-
icantly improve computational efficiency and reduce time complexity without affecting
accuracy. Simultaneously, this study incorporated the unique spatiotemporal relationship
of geography into the machine learning model, which effectively improved the prediction
accuracy of the model.

5.2. Comparison with Traditional Models

The model fitting results were compared with the verification results of five widely
used traditional statistical models (Supplementary Materials Table S2). The results show
that the prediction model proposed in this study is superior to the geographically weighted
model (GWR) [50], the spatiotemporal geographically weighted model (GTWR) [19], the
combination model for LME, and the generalized additive model (GAM) [27] in terms of
temporal and spatial resolution of PM2.5 levels. The spatial resolutions of the statistical
model research results in the literature were mostly 3 km, 5 km, or 10 km, and it was rarely
possible to achieve ≤1 km resolution. The verification results for R2 for these models are
generally lower than 0.9 and the fitting slope fluctuated around 0.7. Using statistical models
for predictions generally underestimates the surface PM2.5 concentration, and cannot fully
reflect the changes in regional pollutants. In the long run, these deficiencies will affect the
efficacy of the air pollution control measures adopted by decision-makers. Even with the
Geo-DBN model [51], which performs best in Table S2 and has an R2 that reaches 0.88, the
spatial resolution is only 10 km, the research time limit is only 2015, and there is a lack
of temporal and spatial resolution performance. The STW-LightGBM model used in this
study not only has a higher R2 than that of the above traditional models but also has a
fitting slope closer to 1, which can better reflect the real information for ground PM2.5



Remote Sens. 2023, 15, 4104 17 of 21

concentrations to provide a reference for formulating various relevant policies, maintaining
air quality, and improving the ecological environment.

5.3. Comparison with Relevant Studies

In terms of using machine learning to estimate PM2.5 research in China, the STW-
LightGBM used in this study had faster calculation speeds, uses less memory, and has a
more accurate performance than RF, XGBoost, GBDT, and other models. Compared to
traditional statistical models, the spatial resolution of PM2.5 levels in mainland China
estimated by machine learning can be improved to a 1 km resolution, the prediction
accuracy can be improved accordingly, and R2 can be maintained at approximately 0.8.
At a spatial resolution of 3 km, Zhang et al. [26] and Zhang et al. [52] used GBDT to
estimate surface PM2.5 concentrations in 2017 and 2013–2017, respectively. The predicted
R2 and RMSE in these two studies were 0.81 and 11.57 µg/m3, and 0.81 and 19.76 µg/m3,
respectively. Wei et al. [25] and He et al. [19] estimated the surface PM2.5 concentration
in 2016 and 2013–2018 at a spatial resolution of 1 km, and achieved predicted R2 and
RMSE values of 0.85 and 15.57 µg/m3 and 0.59 and 27.18 µg/m3, respectively. However,
their approaches had problems similar to those in the traditional statistical models. Their
machine learning models underestimate PM2.5 levels, which is manifested in the large
gap between the values for the slopes of their model predictions (between 0.6 and 0.8)
and the standard value of 1. Some studies also overestimate PM2.5 concentrations. For
example, when Chen et al. [17] predicted the PM2.5 concentration at a 10 km resolution in
China from 2014 to 2016 based on the RF model, the regression prediction equation was
Y = 1.07X − 4.64, which was higher than the real PM2.5 value.

With the rapid development of satellite big data, the construction of a spatiotemporal
prediction system for atmospheric PM2.5 concentration is expected to become a new
development direction for atmospheric fine PM concentration monitoring by combining
constructed time series prediction models and spatial models [53–55].

5.4. Model Prediction Results

This study uses the standard deviation ellipse to measure the accuracy of the model
prediction, which can more intuitively compare the difference between the predicted
and true values and distinguish the spatial and temporal prediction ability of the model.
By comparing the superposition of the standard deviation ellipse of the predicted and
observed values year by year and the detailed information of the ellipse, we can find
that the deviation of the longitude and latitude of the center of gravity of the two circles
in each year does not exceed 0.01◦, and the distance between the long and short axes is
within 0.01 km. The observed and predicted ellipses have a high degree of coincidence
in the long and short axes and the center of gravity, and thus, the model fitting results
are visually verified in space. During the study period, the standard deviation ellipse of
PM2.5 in China generally showed a spatial distribution pattern of ‘northeast–southwest’.
The decreasing trend in the east–west short axis of the ellipse is greater than that of the
north–south long axis, and the ratio of the long and short axes increases from 1.42 in 2015 to
1.44 in 2020. The north–south directional trend in the PM2.5 spatial distribution is enhanced,
and the east–west directional trend is weakened. The results show that in recent years, the
decreasing trend in the difference in pollution east-to-west in China is greater than that
north-to-south. Therefore, different pollution reduction and emission reduction policies
can be implemented according to the pollution characteristics of different regions.

Due to the large population density, the level of economic development and the degree
of industrialization east of the Mohe–Tengchong line in China are greater than those in
the central and western regions. Thus, the air pollution base in the latter is large and the
rate of decline is low. This is one of the reasons why the concentration of PM2.5 in the
eastern region has decreased significantly, and the pollution center is now located in the
central and western regions of China. In the future, targeted policies may be formulated
to improve the air quality level of high-PM2.5-level clusters. However, PM2.5 pollution
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in some parts of China is still rebounding, which shows that PM2.5 levels in the air over
China have not been fundamentally controlled. With the aggravation of ozone pollution
in China and the continuous study of the highly nonlinear relationship between ozone
and PM2.5, controlling the continued generation of PM2.5 pollution has become a major
challenge for China to realize the coordinated prevention and control of ozone and PM2.5
in the new era. In the future, our team plans to explore the phenomenon of combined
PM2.5 and ozone pollution at multiple scales and spatial dimensions and provide data
support for formulating more accurate, quantitative, and efficient control measures.

Generally, the temporal and spatial variations in surface PM2.5 concentration revealed
in this study correspond to those found in earlier studies, which provides a reference for
a more accurate estimation of PM2.5 concentration. However, some limitations persist
in this study. For example, the small number of stations in the western region may limit
the accuracy of model training. The spatial resolution of the fitted PM2.5 concentration is
1 km, and refined data could further improve the prediction ability of the model. Adding
more variable adjustment parameter combinations may further improve the accuracy of
the model.

6. Conclusions

In this study, a surface PM2.5 prediction method based on AOD and site pollution
information was proposed. Spatiotemporal-weighted methods are incorporated into the
modeling of the enhanced light gradient machine learning model, which effectively im-
proves the prediction efficiency and accuracy of the model. We applied the model to the
Chinese mainland for the years 2015 to 2020 and obtained PM2.5 data with a resolution of
1 km. The overall validation CV-R2 of the model is 0.904 µg/m3, the predicted slope of all
samples is 0.9 µg/m3, and the interannual predicted slope fluctuation is generally ≤0.2.
The 10-fold cross-validation fitting accuracy of the model used in this study is between 0.877
and 0.917 µg/m3. At different time scales of month, season, and year, the fitting accuracy
of the model is more than 0.85. Compared with approaches used in earlier studies, the
STW-LightGBM model can better fit PM2.5 concentration and also shows higher stability at
different time scales, which is suitable for long-term prediction of PM2.5.

We use the standard error ellipse to characterize the spatial distribution of PM2.5
pollution in China from 2015 to 2020. The ellipse generally presents a spatial distribution
pattern of ‘northeast–southwest’. The ratio of the long and short axes of the ellipse increased
from 1.42 in 2015 to 1.44 in 2020. The north–south directional trend in PM2.5 spatial
distribution is enhanced, and the east–west directionality is weakened. Next, based on the
model prediction results, we mapped the surface PM2.5 concentration map of China from
2015 to 2020. The results showed that during this 6-year period, the national PM2.5 pollution
situation improved. The national average concentration decreased by 4.55 ug/m3, and
the largest decline—in the Beijing–Tianjin–Hebei region—reached 90.51 ug/m3. However,
PM2.5 levels continue to rise in Xinjiang, the Sichuan Basin, and other places, which
brings challenges to the life and health of the residents of these regions. Therefore, our
research results make an important contribution to the analysis of the spatial and temporal
differentiation of PM2.5 and the national carbon emission reduction policy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15164104/s1, Figure S1: Spatial distribution of PM2.5 monitoring
stations included in this study; Figure S2: The visualization result of STW-LightGBM parameter
adjustment; Figure S3: The PM2.5 observed and predicted standard error ellipses for China from 2015
to 2020; Figure S4: Changes in PM2.5 levels in China from 2015 to 2020; Table S1: Summary of the
data sources used in this study; Table S2: Comparison of performances of the STW-LightGBM model
and other AOD-based models applied in previous studies at the national scale in China [56–60].
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