Inside Late Bronze Age Settlements in NE Romania: GIS-Based Surface Characterization of Ashmound Structures Using Airborne Laser Scanning and Aerial Photography Techniques
Abstract
:1. Introduction
2. Study Area
2.1. Geoarchaeological Framework
2.2. Noua Culture (LBA) Habitation in NE Romania
3. Data Acquisition and Methodology
3.1. LBA Settlements Inventory and NC Site Selection
3.2. Airborne Laser Scanning (ALS) Data
3.3. Oblique and Vertical Aerial Photography
3.4. Morphometric Indices Computation
- The RF reflects the ashmound’s shape complexity;
- The RC helps determine the feature’s degree of circularity;
- The RE provides information on the ashmound’s length-to-breadth ratio, indicating the degree of elongation.
4. Results and Discussion
4.1. Morphometric Description of the Selected Ashmound Structures
4.2. Trends in Ashmound Structures’ Evolutionary Pattern
4.3. Limitation of the GIS-Based Ashmound Features Characterization
5. Conclusions
- Based on the shape parameters, the area (A) of the visible ashmound structures ranges from 191.5 m2 to 2656.6 m2, with an average of 905.2 m2. The perimeter (P) of these structures ranges from 51.93 m to 187.72 m, with an average value of 108.34 m. Furthermore, the maximum length (L) of the investigated archaeological structures varies from 20.14 m to 66.6 m, with an average value of 38.55 m. The variation in the values of the A, P, and L parameters can be attributed to anthropogenic activities, such as mechanized agriculture, which have disturbed the top layer of the ashmound structures and caused the material to stretch along the plowing direction.
- Based on the computed shape indices, the form factor (RF) of the visible ashmound surfaces ranges from 0.37 to 0.77, with an average of 0.59. The circularity ratio (RC) ranges from 0.79 to 0.98, with an average of 0.93. Notably, 175 ashmound structures exhibit circularity ratio values higher than 0.9. Additionally, the elongation ratio (RE) ranges from 0.68 to 0.99, with an average of 0.86. The values of the RF, RC, and RE consistently indicate a transformation process of the visible ashmound surfaces. In most cases, the original circular shape, believed to be the initial form of the ashmounds, has been altered into an ellipsoid with a longer axis aligned with agricultural operations.
- Based on the relief aspects of the visible ashmound structures, the computed values for the terrain slope (S) range from 1.17° to 19.69°, with an average of 4.58° for each investigated archaeological structure. In terms of the hypsometric indices (HI), the results indicate that 112 ashmounds still maintain convex landforms in the landscape (HI > 0.5), 26 ashmound structures have a flat surface (HI = 0.5), and only 62 ashmound structures currently exhibit concave landforms (HI < 0.5). Overall, considering the relief aspects, it can be concluded that all the analyzed ashmound structures are either in the first erosion phase, affecting both the older soil layer and the ashmound structure, or in the second erosion phase, where the destruction of the upper settlement layers is nearly complete, leaving only the ashmound basin intact. Thus, the analysis carried out in the present study has been able to demonstrate that, out of the few models of ashmound formation stated so far [9,16,18], the closest to reality is the one formulated by L. Dietrich, according to which the ashmounds, as we know nowadays, have been subjected to various transformations that can be synthetized in five stages: first, an oval basin was dug up from the LBA stepping level; next, the basin starts to slowly fill up, while on the LBA ground surface, the cultural layer starts to build up; the third stage is represented by the abandonment of the settlements, and it corresponds to the maximum height of the ashmound; the next two phases are the ones addressed in the current paper, and they include the ulterior anthropic activities that flatten the surface of the ashmound, until it no longer presents any elevation, as evidenced by the analysis performed on the various shape and surface characteristics of 200 such features.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Area |
ALS | Airborne Laser Scanning |
BA | Bronze Age |
BP | Before Present |
DEM | Digital Elevation Model |
GIS | Geographic Information System |
H | Elevation |
HI | Hypsometric Indices |
IA | Iron Age |
L | Maximum length |
LBA | Late Bronze Age |
LiDAR | Light Detection and Ranging |
MBA | Middle Bronze Age |
NARW-PBWA | Romanian Waters—Prut–Bîrlad Water Administration |
NC | Noua Culture |
NSC | Noua-Sabatinovka-Coslogeni |
P | Perimeter |
PBRB | Prut–Bîrlad River Basin |
RC | Circularity ratio |
RE | Elongation ratio |
RF | Form factor |
RS | Remote sensing |
S | Terrain slope |
S1-S21 | NC-LBA sites |
SD | Standard Deviation |
SRTM | Shuttle Radar Topography Mission |
UAV | Unmanned aerial vehicle |
References
- Feurdean, A.; Klotz, S.; Mosbrugger, V.; Wohlfarth, B. Pollen-based quantitative reconstructions of Holocene climate variability in NW Romania. Paleogeogr. Paleoclimatol. Paleoecol. 2008, 260, 494–504. [Google Scholar]
- Harding, A.F. European Societies in the Bronze Age; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2000. [Google Scholar]
- Wittenberger, M. Economical life in Noua Culture in the Transylvanian Late Bronze Age. Acta Musei Napoc. 2008, 43–44, 5–46. [Google Scholar]
- Petrescu-Dîmbovița, M. Perioada târzie a Epocii Bronzului. In Istoria Românilor, 2nd ed.; Petrescu-Dîmbovița, M., Vulpe, A., Eds.; Editura Enciclopedică: București, Romania, 2010; pp. 266–281. [Google Scholar]
- Florescu, A.C. Contribuții la cunoașterea culturii Noua. Arheol. Mold. 1964, II–III, 143–216. [Google Scholar]
- Petrescu-Dîmbovița, M. Perioada târzie a Epocii Bronzului. In Istoria Românilor, 1st ed.; Petrescu-Dîmbovița, M., Vulpe, A., Eds.; Editura Enciclopedică: București, Romania, 2010; pp. 272–287. [Google Scholar]
- Mihu-Pintilie, A.; Brașoveanu, C.; Stoleriu, C.C. Using UAV Survey, High-Density LiDAR Data and Automated Relief Analysis for Habitation Practices Characterization during the Late Bronze Age in NE Romania. Remote Sens. 2022, 14, 2466. [Google Scholar] [CrossRef]
- Sava, E. Die spätbronzezeitlichen Aschehügel („Zol’niki“)-ein Erklärungsmodell und einige historisch-wirtschaftliche Aspekte. Prähistorische Z. 2005, 80, 65–109. [Google Scholar]
- Dietrich, L. Visible workshops for invisible commodities. Leatherworking in the Late Bronze Age Noua culture’s ‚ashmounds’. In Din Preistoria Dunării de Jos. 50 de ani de la Începutul Cercetărilor Arheologice la Babadag (1962–2012); Ailincăi, S.C., Țârlea, A., Micu, C., Eds.; Editura Istros: Brăila, Romania, 2013; pp. 227–246. [Google Scholar]
- Dietrich, L. Purity and holy dumps of garbage: Organising rubbish disposal in the Middle and Late Bronze Age of the Carpathian Basin. In Archaeologies of Waste. Encounters with the Unwanted; Sosna, D., Brunclíková, L., Eds.; Oxbow Books: Oxford, UK, 2017; pp. 23–40. [Google Scholar]
- Zaretskyi, I.A. Za-metka o drevnostyakh Khar’kovskoy gub. In Bogodukhovskogo Uyezda, Slobody Likha-Chevki; Khar’kovskiy sbornik: Kharkiv, Ukraine, 1888. [Google Scholar]
- Gorodčov, V.A. Dnevnik arkheologicheskikh issledovaniy v Zen’kovskom uyezde Poltavskoy gubernii v 1906 g. Issledovaniye Bel’skogo gorodishcha. In Trudy 14 Arkheologi-Cheskogo s”yezda v Chernigove; Moskva, Russia, 1911; Volume 3, pp. 93–161. [Google Scholar]
- Sava, E. Așezări din Perioada Târzie a Epocii Bronzului în Spațiul Pruto-Nistrean (Noua-Sabatinovka); Bons Offices: Chișinău, Republic of Moldova, 2014. [Google Scholar]
- Petrescu-Dîmbovița, M. Contribuții la problema sfîrșitului epocii bronzului și începutului epocii fierului în Moldova. Stud. Cercet. Istor. Veche Arheol. 1953, IV, 3–25. [Google Scholar]
- Terenožkin, A.I. Predskifskiy period na Dneprov-skom Pravoberezh’ye (Pre-Scythian period on the Dnieper Right Bank); Izd-vo Akademii nauk Ukr. SSR: Kiyev, Ukraine, 1961. [Google Scholar]
- Gershkovich, J.P. Farmers and Pastoralists of the Pontic Lowland during the Bronze Age. In Prehistoric Steppe Adaptation and the Horse; Levine, M., Renfrew, C., Boyle, K., Eds.; McDonald Institute for Archaeological Research: Cambridge, UK, 2003; pp. 307–318. [Google Scholar]
- Dobrinescu, C.; Haită, C. Așezări de tip cenușar din bronzul târziu în Sud-Estul României. Cult. Civilizație Dunărea Jos 2005, XXII, 421–428. [Google Scholar]
- Sava, E.; Kaiser, E. Poselenie s „zolnicami” u acela Odaia-Miciurin, Respublica Moldova (Arheologhicesne i Estestvennonaucinie Issledovaniia)/Die Siedlung mit „Aschenhügeln” beim Dorf Odaia-Miciurin, Republik Moldova (Archäologische und Naturwissenschaftliche Untersuchungen); Bons Offices: Chișinău, Republic of Moldova, 2011. [Google Scholar]
- Kaiser, E.; Sava, E.; Sîrbu, M.; Mistreanu, E.; Bubulici, V. Similar but Different! Late Bronze Age Settlement Features in the Steppe and Forest Steppe. In Objects, Ideas and Travelers. Contacts between the Balkans, the Aegean and Western Anatolia during the Bronze and Early Iron Age; Maran, J., Băjenaru, R., Ailincăi, S.-C., Popescu, A.-D., Hansen, S., Eds.; Verlag Dr. Rudolf Habelt GmbH: Bonn, Germany, 2020; pp. 395–415. [Google Scholar]
- Wilson, D.R. Air Photo Interpretation for Archaeologists; B.T. Batsford: London, UK, 1982. [Google Scholar]
- Bewley, R.H. Aerial photography for archaeology. In Archaeological Method and Theory: An Encyclopedia; Ellis, L., Ed.; Garland Publishing: New York, NY, USA; London, UK, 2000; pp. 3–10. [Google Scholar]
- Stular, B.; Kokalj, Z.; Ostir, K.; Nuninger, L. Visualization of LiDAR-derived relief models for detection of archaeological features. J. Archaeol. Sci. 2012, 39, 3354–3360. [Google Scholar] [CrossRef]
- Ceraudo, G. Aerial Photography in Archaeology. In Good Practice in Archaeological Diagnostics. Non-Invasive Survey of Complex Archaeological Sites; Corsi, C., Slapšak, B., Vermeulen, F., Eds.; Springer: Cham, Switzerland, 2013; pp. 11–30. [Google Scholar]
- Yokoyama, R.; Sirasawa, M.; Pike, R.J. Visualizing topography by openness: A new application of image processing to digital elevation models. Photogramm. Eng. Remote Sens. 2002, 68, 257–265. [Google Scholar]
- Kokalj, Ž.; Zakšek, K.; Oštir, K. Visualization of LiDAR derived relief models. In Interpreting Archaeological Topography: Airborne Laser Scanning, 3D Data and Ground Observation; Opitz, R.S., Cowley, D., Eds.; Oxbow Books: Oxford, UK, 2013; Volume 5, pp. 100–114. [Google Scholar]
- Chase, A.S.Z.; Chase, D.Z.; Chase, A.F. LiDAR for Archaeological Research and the study of Historical Landscapes. In Sensing the Past: From Artifact to Historical Site; Masini, N., Soldovieri, F., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 89–100. [Google Scholar]
- Palmer, R. Implicații ale arheologiei aeriene pentru arheologia din România. In Arheologie Aeriană în România și în Europa; Palmer, R., Târnoveanu, I.O., Bem, C., Eds.; Institutul de Memorie Culturală (CIMEC): București, Romania, 2009; pp. 8–61. [Google Scholar]
- Târnoveanu, I.O.; Bem, C. România: Un viitor pentru trecut. Fotografiile aeriene în repertorierea siturilor arheologice. In Arheologie Aeriană în România și în Europa; Palmer, R., Târnoveanu, I.O., Bem, C., Eds.; Institutul de Memorie Culturală (CIMEC): București, Romania, 2009; pp. 62–88. [Google Scholar]
- Asăndulesei, A. GIS (Geographic Information System), fotogrametrie și geofizică în arheologie. In Investigații Non-Invazive în Așezări Cucuteni din România; Editura Universității „Alexandru Ioan Cuza” din Iași: Iași, Romania, 2015. [Google Scholar]
- Asăndulesei, A. Inside a Cucuteni Settlement: Remote Sensing Techniques for Documenting an Unexplored Eneolithic Site from Northeastern Romania. Remote Sens. 2017, 9, 41. [Google Scholar]
- Niculiță, M. Geomorphometric Methods for Burial Mound Recognition and Extraction from High-Resolution LiDAR DEMs. Sensors 2020, 20, 1192. [Google Scholar] [CrossRef]
- Sîrbu, V.; Ștefan, M.-M.; Ștefan, D. A Monumental Hellenistic Funerary Ensemble at Callatis on the Western Black Sea. The Documaci Tumulus; Archaeopress Publishing: Oxford, UK, 2021; Volume 1. [Google Scholar]
- Bicbaev, V.; Sava, E. Interpretarea fotografiilor aeriene ale unor situri Noua. Mem. Antiq. 2004, XXIII, 335–353. [Google Scholar]
- Brașoveanu, C. Perioada Târzie a Epocii Bronzului în Bazinul Jijiei (România). Habitat și materialitate. Ph.D. Thesis, Alexandru Ioan Cuza University of Iași, Iași, Romania, 2021. [Google Scholar]
- Agapiou, A.; Hegyi, A.; Gogâltan, F.; Stavilă, A.; Sava, V.; Sarris, A.; Floca, C.; Dorogostaisky, L. Exploring the largest known Bronze Age earthworks in Europe through medium resolution multispectral satellite images. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103239. [Google Scholar] [CrossRef]
- Roberts, K.C.; Lindsay, J.B.; Berg, A.A. An Analysis of Ground-Point Classifiers for Terrestrial LiDAR. Remote Sens. 2019, 11, 1915. [Google Scholar] [CrossRef]
- Stoleriu, C.C.; Urzica, A.; Mihu-Pintilie, A. Improving flood risk map accuracy using high-density LiDAR data and the HEC-RAS river analysis system: A case study from north-eastern Romania. J. Flood Risk Manag. 2020, 13, e12572. [Google Scholar] [CrossRef]
- Romanescu, G.; Pascal, M.; Mihu-Pintilie, A.M.; Stoleriu, C.C.; Sandu, I.; Moisii, M. Water Quality Analysis in Wetlands Freshwater: Common Floodplain of Jijia-Prut Rivers. Rev. Chim. (Buchar.) 2017, 68, 553–561. [Google Scholar] [CrossRef]
- Huţanu, E.; Mihu-Pintilie, A.; Urzica, A.; Paveluc, L.E.; Stoleriu, C.C.; Grozavu, A. Using 1D HEC-RAS Modeling and LiDAR Data to Improve Flood Hazard Maps Accuracy: A Case Study from Jijia Floodplain (NE Romania). Water 2020, 12, 1624. [Google Scholar] [CrossRef]
- Mihu-Pintilie, A.; Nicu, I.C. GIS-based Landform Classification of Eneolithic Archaeological Sites in the Plateau-plain Transition Zone (NE Romania): Habitation Practices vs. Flood Hazard Perception. Remote Sens. 2019, 11, 915. [Google Scholar] [CrossRef]
- Niculiță, M.; Mărgărint, M.C.; Santangelo, M. Archaeological evidence for Holocene landslide activity in the eastern Carpathian lowland. Quat. Int. 2016, 415, 175–189. [Google Scholar] [CrossRef]
- Haase, D.; Fink, J.; Haase, G.; Ruske, R.; Pécsi, M.; Richter, H.; Altermann, M.; Jäger, K.-D. Loess in Europe—Its spatial distribution based on a European loess map, scale 1:250,000. Quat. Sci. Rev. 2007, 26, 1301–1312. [Google Scholar] [CrossRef]
- Romanescu, G.; Cîmpianu, C.I.; Mihu-Pintilie, A.; Stoleriu, C.C. Historic flood events in NE Romania (post-1990). J. Maps 2017, 13, 787–798. [Google Scholar] [CrossRef]
- Mihu-Pintilie, A.; Gherghel, I. Eco-cultural niche breadth and overlap within the Cucuteni–Trypillia Culture groups during the Eneolithic. Front. Earth Sci. 2022, 10, 910836. [Google Scholar] [CrossRef]
- Dascălu, L. Bronzul Mijlociu și Târziu în Câmpia Moldovei; Editura Trinitas: Iași, Romania, 2007. [Google Scholar]
- Chirica, V.; Tanasachi, M. Repertoriul Arheologic al Județului Iași, Volume I; Institutul de Istorie și Arheologie “A. D. Xenopol”: Iași, Romania, 1984. [Google Scholar]
- Chirica, V.; Tanasachi, M. Repertoriul arheologic al județului Iași, Volume II; Institutul de Istorie și Arheologie “A. D. Xenopol”: Iași, Romania, 1985. [Google Scholar]
- Păunescu, A.; Șadurschi, P.; Chirica, V. Repertoriul Arheologic al Județului Botoșani; Institutul de Arheologie București: București, Romania, 1976. [Google Scholar]
- Șovan, O.L. Repertoriul Arheologic al Județului Botoșani, 2nd ed.; Editura Pim: Botoșani, Romania, 2016. [Google Scholar]
- Vizireanu, I.; Mateescu, R. The Potential of Airborne LiDAR for Detection of New Archaeological Site in Romania. In Diversity in Coastal Marine Sciences; Finkl, C., Makowski, C., Eds.; Coastal Research Library; Springer: Cham, Switzerland, 2018; pp. 617–630. [Google Scholar]
- Doneus, M. Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. Remote Sens. 2013, 5, 6427–6442. [Google Scholar] [CrossRef]
- Garcia-Molsosa, A.; Orengo, H.A.; Lawrence, D.; Philip, G.; Hopper, K.; Petrie, C.A. Potential of deep learning segmentation for the extraction of archaeological features from historical map series. Archaeol Prospect. 2021, 28, 187–199. [Google Scholar] [CrossRef] [PubMed]
- SMIS-CSNR 17945 (Water Administration Prut—Bîrlad, Romania) Works for Reducing the Flood Risk in Prut—Bîrlad Basin. Available online: http://www.romair.ro (accessed on 28 March 2023).
- Mihu-Pintilie, A.; Cîmpianu, C.I.; Stoleriu, C.C.; Pérez, M.N.; Paveluc, L.E. Using High-Density LiDAR Data and 2D Streamflow Hydraulic Modeling to Improve Urban Flood Hazard Maps: A HEC-RAS Multi-Scenario Approach. Water 2019, 11, 1832. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Anders, N.; Valente, J.; Masselink, R.; Keesstra, S. Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones 2019, 3, 61. [Google Scholar] [CrossRef]
- Pinto, M.; Melo, A.G.; Honório, L.M.; Marcato, A.L.M.; Conceição, A.G.S.; Timotheo, A.O. Deep Learning Applied to Vegetation Identification and Removal Using Multidimensional Aerial Data. Sensors 2020, 20, 6187. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Koo, K.-Y. Vegetation Removal on 3D Point Cloud Reconstruction of Cut-Slopes Using U-Net. Appl. Sci. 2022, 12, 395. [Google Scholar] [CrossRef]
- Themistocleous, K. Themistocleous, K. The Use of UAVs for Cultural Heritage and Archaeology. In Remote Sensing for Archaeology and Cultural Landscapes; Chini, M., Ehlers, M., Lakshmi, V., Mueller, N., Refice, A., Rocca, F., Skidmore, A., Vadrevu, K., Eds.; Springer: Cham, The Netherlands, 2020; pp. 241–269. [Google Scholar] [CrossRef]
- Zimmerman, D.; Pavlik, C.; Ruggles, A.; Armstrong, M.P. An experimental comparison of ordinary and universal Kriging and Inverse Distance Weighting. Math. Geol. 1999, 31, 375–390. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Dimple, D.; Rajput, J.; Al-Ansari, N.; Elbeltagi, A.; Zerouali, B.; Santos, C.A.G. Determining the Hydrological Behaviour of Catchment Based on Quantitative Morphometric Analysis in the Hard Rock Area of Nand Samand Catchment, Rajasthan, India. Hydrology 2022, 9, 31. [Google Scholar] [CrossRef]
- Sassolas-Serrayet, T.; Cattin, R.; Ferry, M. The shape of watersheds. Nat. Commun. 2018, 9, 3791. [Google Scholar] [CrossRef] [PubMed]
Id | Site Name | Lat. N | Long. E | Elevation (m a.s.l.) | Area (ha) | Landform Corresponding to NC-LBA Sites 1 | Number of Visible Ashmounds |
---|---|---|---|---|---|---|---|
S1 | Todireni—Hârtopul Căldării | 47.41 | 27.02 | 109.9 | 8.9 | Local ridges/hills in valley | 16 |
S2 | Pleșani—Cracalia | 47.35 | 27.24 | 82.0 | 5.1 | Local ridges/hills in valley | 10 |
S3 | Alexandru cel Bun—Dealul Iacobeni | 47.35 | 27.27 | 76.8 | 7.6 | Hill tops, high ridges | 2 |
S4 | Bădeni—Dealul Moara de Vânt | 47.34 | 27.29 | 168.5 | 11 | Hill tops, high ridges | 16 |
S5 | Fântânele—Vatra Satului | 47.32 | 27.40 | 106.7 | 16.6 | Local ridges/hills in valley | 13 |
S6 | Coarnele Caprei—Dealul Aramei I | 47.34 | 27.43 | 140.2 | 7.2 | Upper slopes | 8 |
S7 | Bădeni—Gurguieta II | 47.57 | 27.28 | 98.2 | 4.8 | U-shaped valleys | 6 |
S8 | Coarnele Caprei—Arama | 47.65 | 27.17 | 126.9 | 4.1 | Hill tops, high ridges | 7 |
S9 | Coarnele Caprei—Dealul Aramei II | 47.41 | 27.09 | 103.8 | 4.8 | Local ridges/hills in valley | 5 |
S10 | Ceplenița—Dealul Ion Clacă | 47.46 | 27.29 | 94.5 | 8.4 | U-shaped valleys | 11 |
S11 | Bulbucani—La țarina veche | 47.33 | 27.31 | 101.7 | 10.1 | Deeply incised streams | 19 |
S12 | Focuri—Dealul Rotund | 47.41 | 27.10 | 72.4 | 3.6 | Deeply incised streams | 5 |
S13 | Focuri—Dealul Păișului | 47.24 | 27.47 | 87.9 | 15.7 | U-shaped valleys | 13 |
S14 | Mihail Kogălniceanu | 47.44 | 27.04 | 94.9 | 9.2 | Hill tops, high ridges | 4 |
S15 | Gropnița I—Dealul de ceea parte | 47.37 | 27.26 | 64.8 | 3.7 | Deeply incised streams | 10 |
S16 | Focuri—Dealul Lacului | 47.38 | 27.06 | 65.9 | 2.8 | Deeply incised streams | 9 |
S17 | Gropnița II—SE of the village | 47.40 | 27.10 | 65.8 | 3.7 | Deeply incised streams | 10 |
S18 | Potângeni—Buda | 47.31 | 27.19 | 95.2 | 7.3 | Deeply incised streams | 5 |
S19 | Larga Jijia—La grădină | 47.41 | 27.19 | 45.0 | 5.3 | U-shaped valleys | 5 |
S20 | Erbiceni—Iazul Spinoasei | 47.36 | 27.15 | 113.7 | 8.1 | Deeply incised streams | 16 |
S21 | Tăutești—Hârtopul Lingurariului | 47.37 | 27.19 | 101.4 | 7.2 | Local ridges/hills in valley | 10 |
Site Id | Number of Ashmounds | Area (m2) | Perimeter (m) | Length (m) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Med | Max | SD | Min | Med | Max | SD | Min | Med | Max | SD | ||
S1 | 16 | 445.9 | 937.5 | 1847.7 | ±356.1 | 78.62 | 111.3 | 160.46 | ±20.19 | 29.34 | 40.27 | 59.23 | ±7.32 |
S2 | 10 | 764.8 | 1119.8 | 1519.7 | ±225.4 | 101.3 | 122.99 | 140.94 | ±13.55 | 31.9 | 43.55 | 54.44 | ±7.04 |
S3 | 2 | 497.5 | 799.4 | 1101.4 | ±302 | 81.37 | 100.31 | 119.25 | ±18.94 | 27.61 | 33.48 | 39.35 | ±5.87 |
S4 | 16 | 469.5 | 990.2 | 2224.4 | ±434.3 | 79.4 | 113.39 | 171.89 | ±23.11 | 26.62 | 39.9 | 58.77 | ±8.28 |
S5 | 13 | 470.3 | 1257.6 | 2656.6 | ±684.1 | 79.54 | 126.7 | 187.72 | ±32.68 | 27.43 | 45.79 | 66.6 | ±11.6 |
S6 | 8 | 300.1 | 889.5 | 1332.3 | ±348.5 | 62.79 | 107.34 | 135.49 | ±23.83 | 20.69 | 37.79 | 50.8 | ±9.2 |
S7 | 6 | 407.4 | 947.8 | 1369.4 | ±291.1 | 74.88 | 112.83 | 139.82 | ±19.87 | 28.03 | 41.15 | 49.76 | ±7.44 |
S8 | 7 | 314.7 | 681.4 | 1033.7 | ±278.7 | 67.23 | 94.03 | 118.29 | ±20.58 | 23.38 | 33.13 | 41.99 | ±7.16 |
S9 | 5 | 272.8 | 608.7 | 851.3 | ±215.2 | 61.06 | 88.88 | 106.76 | ±16.95 | 21.8 | 31.58 | 39.34 | ±6.36 |
S10 | 11 | 533.2 | 980.3 | 1804.6 | ±329.4 | 88.71 | 113.93 | 153.8 | ±16.94 | 34.16 | 41.19 | 53.57 | ±5.45 |
S11 | 19 | 662.4 | 1042 | 1744.7 | ±269.8 | 94.8 | 117.85 | 157.04 | ±15.31 | 33.86 | 41.94 | 60.18 | ±6.54 |
S12 | 5 | 570.3 | 901.9 | 1032.5 | ±169.6 | 86.72 | 109.49 | 119.7 | ±11.73 | 30.65 | 38.86 | 42.87 | ±4.45 |
S13 | 13 | 567.3 | 916.2 | 1231.9 | ±189.6 | 86.47 | 110.17 | 127.03 | ±11.9 | 30.61 | 38.81 | 44.22 | ±4.24 |
S14 | 4 | 562.9 | 897.6 | 1067 | ±200.9 | 87.32 | 108.8 | 120.1 | ±12.85 | 31.35 | 38.37 | 43.33 | ±4.49 |
S15 | 10 | 191.5 | 550 | 1110.4 | ±242.9 | 51.93 | 85.64 | 121.13 | ±18.85 | 20.14 | 32.2 | 47.18 | ±7.57 |
S16 | 9 | 286.2 | 686.7 | 1674.5 | ±367.1 | 61.42 | 92.73 | 147.79 | ±21.72 | 21.41 | 32.11 | 49.75 | ±7.17 |
S17 | 10 | 504.1 | 879.6 | 1101.2 | ±179.8 | 84.02 | 107.7 | 119.71 | ±11.07 | 31.28 | 37.97 | 44.42 | ±3.87 |
S18 | 5 | 590.1 | 1087.7 | 1487.3 | ±289.5 | 89.98 | 119.08 | 139.36 | ±16.21 | 33.72 | 41.51 | 48.82 | ±5.06 |
S19 | 5 | 404.8 | 841.6 | 1511.1 | ±394 | 73.44 | 104.8 | 144.78 | ±24.84 | 24.71 | 37.41 | 53.14 | ±9.93 |
S20 | 16 | 335.5 | 765 | 1307.4 | ±287.4 | 66.31 | 99.38 | 130.16 | ±18.92 | 22.84 | 35.43 | 45.91 | ±7.14 |
S21 | 10 | 388.6 | 814.5 | 1584.8 | ±361.4 | 71.23 | 101.6 | 143.31 | ±22.17 | 24.03 | 35.81 | 47.63 | ±7.66 |
Total | 200 | 191.5 | 905.2 | 2656.6 | ±381.3 | 51.93 | 108.34 | 187.72 | ±22.37 | 20.14 | 38.55 | 66.6 | ±8.21 |
Site Id | Number of Ashmounds | Form Factor (RF) | Circularity Ratio (RC) | Elongation Ratio (RE) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Med | Max | SD | Min | Med | Max | SD | Min | Med | Max | SD | ||
S1 | 16 | 0.41 | 0.56 | 0.66 | ±0.07 | 0.82 | 0.92 | 0.96 | ±0.04 | 0.72 | 0.84 | 0.92 | ±0.06 |
S2 | 10 | 0.44 | 0.6 | 0.75 | ±0.1 | 0.85 | 0.92 | 0.97 | ±0.04 | 0.75 | 0.88 | 0.98 | ±0.07 |
S3 | 2 | 0.65 | 0.68 | 0.71 | ±0.03 | 0.94 | 0.96 | 0.97 | ±0.02 | 0.91 | 0.93 | 0.95 | ±0.02 |
S4 | 16 | 0.39 | 0.6 | 0.68 | ±0.08 | 0.79 | 0.93 | 0.96 | ±0.04 | 0.7 | 0.87 | 0.93 | ±0.06 |
S5 | 13 | 0.45 | 0.57 | 0.7 | ±0.08 | 0.85 | 0.92 | 0.98 | ±0.03 | 0.75 | 0.85 | 0.94 | ±0.06 |
S6 | 8 | 0.5 | 0.61 | 0.77 | ±0.08 | 0.9 | 0.93 | 0.96 | ±0.02 | 0.8 | 0.88 | 0.99 | ±0.06 |
S7 | 6 | 0.47 | 0.55 | 0.67 | ±0.06 | 0.88 | 0.91 | 0.96 | ±0.02 | 0.78 | 0.84 | 0.93 | ±0.05 |
S8 | 7 | 0.5 | 0.59 | 0.7 | ±0.06 | 0.88 | 0.93 | 0.95 | ±0.02 | 0.8 | 0.87 | 0.95 | ±0.04 |
S9 | 5 | 0.54 | 0.59 | 0.7 | ±0.06 | 0.92 | 0.93 | 0.97 | ±0.02 | 0.83 | 0.87 | 0.94 | ±0.04 |
S10 | 11 | 0.46 | 0.56 | 0.63 | ±0.06 | 0.85 | 0.92 | 0.96 | ±0.03 | 0.76 | 0.84 | 0.89 | ±0.05 |
S11 | 19 | 0.47 | 0.59 | 0.67 | ±0.06 | 0.87 | 0.93 | 0.96 | ±0.02 | 0.77 | 0.87 | 0.93 | ±0.05 |
S12 | 5 | 0.52 | 0.6 | 0.67 | ±0.05 | 0.91 | 0.94 | 0.96 | ±0.02 | 0.81 | 0.87 | 0.92 | ±0.04 |
S13 | 13 | 0.48 | 0.6 | 0.65 | ±0.04 | 0.89 | 0.94 | 0.96 | ±0.02 | 0.78 | 0.88 | 0.91 | ±0.03 |
S14 | 4 | 0.57 | 0.6 | 0.64 | ±0.03 | 0.93 | 0.94 | 0.95 | ±0.01 | 0.85 | 0.87 | 0.90 | ±0.02 |
S15 | 10 | 0.37 | 0.52 | 0.61 | ±0.07 | 0.82 | 0.9 | 0.95 | ±0.04 | 0.68 | 0.81 | 0.88 | ±0.06 |
S16 | 9 | 0.51 | 0.63 | 0.69 | ±0.06 | 0.88 | 0.95 | 0.97 | ±0.03 | 0.81 | 0.89 | 0.94 | ±0.04 |
S17 | 10 | 0.51 | 0.61 | 0.68 | ±0.07 | 0.9 | 0.94 | 0.97 | ±0.02 | 0.8 | 0.88 | 0.93 | ±0.05 |
S18 | 5 | 0.52 | 0.62 | 0.69 | ±0.06 | 0.92 | 0.94 | 0.96 | ±0.01 | 0.81 | 0.88 | 0.94 | ±0.05 |
S19 | 5 | 0.51 | 0.58 | 0.66 | ±0.06 | 0.85 | 0.91 | 0.96 | ±0.04 | 0.81 | 0.86 | 0.92 | ±0.04 |
S20 | 16 | 0.43 | 0.6 | 0.75 | ±0.09 | 0.84 | 0.94 | 0.98 | ±0.04 | 0.74 | 0.87 | 0.98 | ±0.07 |
S21 | 10 | 0.52 | 0.61 | 0.73 | ±0.07 | 0.91 | 0.95 | 0.97 | ±0.02 | 0.81 | 0.88 | 0.96 | ±0.05 |
Total | 200 | 0.37 | 0.59 | 0.77 | ±0.08 | 0.79 | 0.93 | 0.98 | ±0.03 | 0.68 | 0.86 | 0.99 | ±0.06 |
Site Id | Number of Ashmounds | Slope (°) | HI | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Med | Max | SD | Min | Med | Max | SD | ||
S1 | 16 | 0.23 | 4.93 | 12.38 | ±2.12 | 0.45 | 0.5 | 0.55 | ±0.02 |
S2 | 10 | 0.4 | 4.17 | 8.47 | ±1.30 | 0.45 | 0.49 | 0.53 | ±0.02 |
S3 | 2 | 0.03 | 0.58 | 1.43 | ±0.27 | 0.57 | 0.58 | 0.59 | ±0.01 |
S4 | 16 | 0.57 | 3.92 | 7.49 | ±1.12 | 0.43 | 0.53 | 0.58 | ±0.04 |
S5 | 13 | 0.69 | 5.26 | 11.16 | ±1.66 | 0.42 | 0.49 | 0.56 | ±0.04 |
S6 | 8 | 1.88 | 5.64 | 7.93 | ±0.98 | 0.49 | 0.5 | 0.52 | ±0.01 |
S7 | 6 | 0.69 | 4.70 | 8.47 | ±1.34 | 0.47 | 0.53 | 0.58 | ±0.03 |
S8 | 7 | 0.36 | 4.53 | 12.16 | ±2.16 | 0.43 | 0.49 | 0.57 | ±0.05 |
S9 | 5 | 1.17 | 5.15 | 9.40 | ±1.52 | 0.48 | 0.53 | 0.59 | ±0.04 |
S10 | 11 | 0.22 | 3.52 | 7.74 | ±1.28 | 0.44 | 0.52 | 0.57 | ±0.04 |
S11 | 19 | 0.57 | 4.59 | 9.06 | ±1.38 | 0.45 | 0.48 | 0.51 | ±0.02 |
S12 | 5 | 0.36 | 5.91 | 14.28 | ±2.48 | 0.44 | 0.48 | 0.51 | ±0.03 |
S13 | 13 | 0.87 | 5.58 | 10.41 | ±1.68 | 0.44 | 0.5 | 0.57 | ±0.03 |
S14 | 4 | 0.2 | 4.40 | 12.11 | ±2.08 | 0.44 | 0.51 | 0.54 | ±0.04 |
S15 | 10 | 0.79 | 5.11 | 10.82 | ±1.70 | 0.35 | 0.5 | 0.58 | ±0.06 |
S16 | 9 | 0.64 | 2.98 | 4.63 | ±0.87 | 0.42 | 0.5 | 0.58 | ±0.04 |
S17 | 10 | 0.43 | 6.26 | 13.64 | ±2.17 | 0.44 | 0.48 | 0.51 | ±0.02 |
S18 | 5 | 0.09 | 6.33 | 19.69 | ±3.35 | 0.46 | 0.49 | 0.51 | ±0.02 |
S19 | 5 | 0.06 | 2.80 | 7.26 | ±1.41 | 0.34 | 0.47 | 0.58 | ±0.1 |
S20 | 16 | 1.11 | 6.65 | 12.12 | ±1.76 | 0.43 | 0.49 | 0.55 | ±0.03 |
S21 | 10 | 0.33 | 3.14 | 7.12 | ±1.22 | 0.49 | 0.53 | 0.61 | ±0.04 |
Total | 200 | 1.11 | 4.58 | 19.69 | ±1.61 | 0.34 | 0.50 | 0.61 | ±0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brașoveanu, C.; Mihu-Pintilie, A.; Brunchi, R.-A. Inside Late Bronze Age Settlements in NE Romania: GIS-Based Surface Characterization of Ashmound Structures Using Airborne Laser Scanning and Aerial Photography Techniques. Remote Sens. 2023, 15, 4124. https://doi.org/10.3390/rs15174124
Brașoveanu C, Mihu-Pintilie A, Brunchi R-A. Inside Late Bronze Age Settlements in NE Romania: GIS-Based Surface Characterization of Ashmound Structures Using Airborne Laser Scanning and Aerial Photography Techniques. Remote Sensing. 2023; 15(17):4124. https://doi.org/10.3390/rs15174124
Chicago/Turabian StyleBrașoveanu, Casandra, Alin Mihu-Pintilie, and Radu-Alexandru Brunchi. 2023. "Inside Late Bronze Age Settlements in NE Romania: GIS-Based Surface Characterization of Ashmound Structures Using Airborne Laser Scanning and Aerial Photography Techniques" Remote Sensing 15, no. 17: 4124. https://doi.org/10.3390/rs15174124
APA StyleBrașoveanu, C., Mihu-Pintilie, A., & Brunchi, R. -A. (2023). Inside Late Bronze Age Settlements in NE Romania: GIS-Based Surface Characterization of Ashmound Structures Using Airborne Laser Scanning and Aerial Photography Techniques. Remote Sensing, 15(17), 4124. https://doi.org/10.3390/rs15174124