
Citation: Yin, Z.; Yang, J.; Ma, Y.;

Wang, S.; Chai, D.; Cui, H. A Robust

Adaptive Extended Kalman Filter

Based on an Improved Measurement

Noise Covariance Matrix for the

Monitoring and Isolation of Abnormal

Disturbances in GNSS/INS Vehicle

Navigation. Remote Sens. 2023, 15,

4125. https://doi.org/10.3390/

rs15174125

Academic Editors: Robert Odolinski

and Baocheng Zhang

Received: 28 July 2023

Revised: 20 August 2023

Accepted: 20 August 2023

Published: 22 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Robust Adaptive Extended Kalman Filter Based on an
Improved Measurement Noise Covariance Matrix for the
Monitoring and Isolation of Abnormal Disturbances in
GNSS/INS Vehicle Navigation
Zhihui Yin 1, Jichao Yang 2,*, Yue Ma 1,3 , Shengli Wang 2,4, Dashuai Chai 5 and Haonan Cui 2

1 College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
2 College of Ocean Science and Engineering, Shandong University of Science and Technology,

Qingdao 266590, China
3 College of Electronic Information, Wuhan University, Wuhan 430072, China
4 Key Laboratory of Ocean Geomatics, Ministry of Natural Resources, Qingdao 266590, China
5 College of Surveying and Geo-informatics, Shandong Jianzhu University, Jinan 250101, China
* Correspondence: yangjichao@sdust.edu.cn

Abstract: Global Navigation Satellite Systems (GNSS) integrated with Inertial Navigation Systems
(INS) have been widely applied in many Intelligent Transport Systems. However, due to the influence
of various factors, such as complex urban environments, etc., accurately describing the measurement
noise statistics of GNSS receivers and inertial sensors is difficult. An inaccurate definition of the
measurement noise covariance matrix will lead to the rapid divergence of the position error of the
integrated navigation system. To overcome this problem, this paper proposed a Robust Adaptive
Extended Kalman Filter (RAKF) method based on an improved measurement noise covariance
matrix. By analyzing and considering the position accuracy factors, measurement factor, and position
standard deviation in GNSS measurement results, this paper constructed the optimal measurement
noise covariance matrix. Based on the Huber model, this paper constructed a two-stage robust
adaptive factor expression and obtained the robust adaptive factors with and without abnormal
disturbances. And robust adaptive filtering was carried out. To assess the performance of this
method, the author conducted experiments on land vehicles by using a self-developed POS system
(GNSS/INS combined navigation system). The classic Extended Kalman Filter algorithm (EKF),
Adaptive Kalman Filter (AKF) algorithm, Robust Kalman Filter (RKF) algorithm, and the proposed
method were compared through data processing. Experimental results show that compared with the
classical EKF, AKF, and RKF, the positioning accuracies of the proposed method were improved by
72.43%, 2.54%, and 47.82%, respectively, in the vehicle land experiment. In order to further evaluate
the performance of this method, the vehicle data were subjected to different times and degrees of
disturbance experiments. Experimental results show that compared with EKF, AKF, and RKF, the
heading angle accuracy had obvious advantages, and its accuracy was improved by 34.65%, 31.53%,
and 18.36%, respectively. Therefore, this method can effectively monitor and isolate disturbance
and improve the robustness, reliability, accuracy, and stability of GNSS/INS integrated navigation
systems in complex urban environments.

Keywords: GNSS/INS; Robust Adaptive Kalman Filter; Extended Kalman Filter; measurement noise
covariance matrix; robust adaptive factor

1. Introduction

Resilient Positioning, Navigation, and Timing (PNT) services are essential elements
for ensuring a high-quality life and are fundamental to high-speed rail, aviation, and
highway transportation systems [1]. The continuous, robust, and reliable generation of PNT
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information forms the core of resilient PNT [2]. Therefore, the monitoring and isolation of
abnormal disturbances in aviation, marine, and land vehicles is one of the important means
to improve the accuracy, reliability, and stability of navigation and positioning results.

GNSS are widely used for positioning and navigation in aviation, maritime, and land
vehicle applications [3–7]. However, due to complex environmental factors [8], adverse
weather conditions, and multipath effects, GNSS measurements often contain disturbances
(see Figure 1a) [9]. Relying solely on GNSS positioning is challenging to meet the integrity
and reliability requirements for land vehicle navigation [10]. Inertial Navigation Systems
(INS) are independent systems immune to external environmental interference [11]. How-
ever, INS errors gradually accumulate over time [12], and the Inertial Measurement Unit
(IMU) data may also contain outliers due to road vibrations and other factors, as illustrated
in Figure 1b. Therefore, in order to achieve more accurate navigation and positioning
results, the method of integrating GNSS and INS is commonly used [13]. However, during
the measurement process, when GNSS measurements are affected by disturbances, reliable
position measurements cannot be obtained, resulting in abnormal updates of the mea-
surement results and rapid divergence of the integrated navigation system’s positioning
solution [14]. Therefore, when GNSS measurements are disturbed, how to effectively fuse
GNSS and INS in a combined navigation system and ensure its normal operation is an
urgent issue.
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The Kalman filter [15] is a commonly used method for fusing GNSS and INS data [16].
However, the performance of KF relies on the accurate definition of the stochastic and
state models [17]. The stochastic model describes the random characteristics of the system
process and measurement noises, and the state model describes the state change in the
system state with time [18]. The uncertainty in the covariance matrices of the system pro-
cess and measurement noises significantly affects the performance of the Kalman filter [19].
Typically, determining the system process and measurement noises covariance matrices re-
quires good empirical analysis, and in practice, the system process and measurement noises
covariance matrices are often fixed and lack flexibility [18]. Over the past decades, signifi-
cant research has been conducted on robust Kalman filtering [20] and adaptive filtering
algorithms [21] to mitigate the impact of inaccurately defined system processes and mea-
surement noises. Adaptive stochastic models include residual-based adaptive models [22]
and covariance-based adaptive models [23], which estimate the covariance matrices of the
system process and measurement noises directly, monitor the changes in the covariance
of innovations and residuals, and make timely adjustments. Hide et al. [24] developed a
covariance scaling approach to improve filter stability by introducing scaling factors in the
covariance matrix. Meng et al. [25] estimated the covariance of process and measurement
noises by maintaining consistency between the numerical values of innovations or residual
covariances and theoretical values. Yang et al. [26] adaptively adjusted the weights of the
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prediction parameters based on the difference between the system measurements and the
predicted innovations, combining robust maximum likelihood estimation with adaptive
filtering. Gao et al. [27] developed a robust adaptive filter that adaptively adjusts the
covariance matrix of the system state noise based on an adaptive factor constructed from
the prediction residuals.

Due to previous studies, the GNSS positioning error estimates, usually represented
by variance or standard deviation, have been used to determine the measurement noise
covariance matrix in GNSS/INS integrated navigation Kalman filters, thereby influencing
the integrated navigation results [28]. However, in challenging environments such as urban
complex environments or poor road conditions, there exists significant inconsistency be-
tween the estimated error from GNSS solutions and the actual GNSS positioning error [29].
Furthermore, previous research has mainly focused on detecting and mitigating GNSS
disturbances to minimize their impact on GNSS/INS integrated navigation systems, while
less attention has been given to the monitoring and isolation of abnormal disturbances in
the remaining GNSS measurement result data. Therefore, this paper primarily investigates
the construction method of an improved measurement noise covariance matrix R and a
robust adaptive factor v, aiming to effectively monitor and isolate abnormal disturbance,
thereby enhancing the robustness, reliability, accuracy, and stability of GNSS/INS inte-
grated navigation systems in complex urban environments or adverse road conditions. This
method utilizes different combinations of Position Dilution of Precision (PDOP), measure-
ment factors (Q), and position mean square deviation to construct the measurement noise
covariance matrix, and employs the Huber method [30] to generate the robust adaptive
factor based on the normalized residuals, achieving robust adaptive filtering.

The structure of this paper is as follows: Section 2 overviews the proposed method.
This section presents the overall framework and process of the improved robust adaptive
algorithm based on the construction of the measurement noise covariance matrix and intro-
duces the construction of the improved measurement noise covariance matrix for robust
adaptive filtering experiments and obtains the optimal measurement noise covariance
matrix R and robust adaptive factor v. Section 3 validates the performance of the proposed
method through vehicle experiments and experiments with different durations and levels of
disturbances. Section 4 discusses the results of the experiment. Finally, Section 5 concludes
this paper.

2. Materials and Methods
2.1. Steps of the Improved Robust Adaptive Factor Method

The framework of the Robust Adaptive Kalman Filter (RAKF) based on the con-
struction of an improved measurement noise covariance matrix is depicted in Figure 2.
The algorithm consists of four main modules: (1) the formulation of state measurement
equations and state update equations; (2) the construction of the improved measurement
noise covariance matrix; (3) the construction of the robust adaptive factor v, and (4) the
implementation of the robust adaptive filtering algorithm.

(1) The module for constructing the state measurement equations and state update
equations involves formulating the state equation and measurement equation using the
position, velocity, and attitude information obtained from INS and the position and velocity
information obtained from GNSS. These equations are essential for performing the state
update process in the Kalman filter.

(2) The module for constructing the improved measurement noise covariance matrix R
involves creating the covariance matrix of measurement noise using the Position Dilution of
Precision (PDOP), the measurement factor Q, and the standard deviation of position (STD).
Through experimental analysis with different values of parameters a and b, the relative optimal
results are obtained to determine the best measurement noise factors a and b.
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(3) The module for constructing the robust adaptive factor v involves evaluating
the standardized residuals and comparing their magnitude with a predefined constant.
Adaptive filtering can automatically adjust the parameters of the filter under different
dynamic conditions to adapt to changes in the system [31]. Robust filtering can maintain the
stability of the estimation in the face of abnormal disturbances and improve the reliability
of navigation [31]. The value of the robust adaptive factor is mainly based on the empirical
value. We set the robust adaptive factor under normal conditions to 0.85. That is, the
weight of the integrated navigation result obtained by adaptive filtering is set to 0.85, and
considering the combination of the results of adaptive filtering and robust filtering, the
sum of the weight of adaptive filtering and the weight of robust filtering should be 1, so
the weight of robust filtering is set to 0.15.

(4) The module for robust adaptive filtering involves performing both adaptive Kalman
filtering and robust Kalman filtering separately. The results obtained from these two
filters are then combined using the robust adaptive factor, which assigns different weights
to each filter’s output. Ultimately, the robust adaptive filtering result is obtained by
incorporating these weighted outputs. Finally, the feasibility of the algorithm is verified by
using measured onboard data, and the effectiveness of the algorithm is further verified by
adding different numerical perturbations for different time lengths.

2.2. Classical GNSS/INS Loosely Coupled Integrated Procedure

In this paper, we used an Extended Kalman Filter [32] GNSS/INS loose combination
model with a 21-dimensional state volume and a 3-dimensional volume measure.

The state equations and measurement equations for the GNSS/INS integrated naviga-
tion system can be formulated as follows [33]:

δ
.
x(t) = F(t)δx(t) + G(t)w(t) (1)

Zk = HkXk + vk (2)
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In the equation, F(t) represents the system’s state transition matrix, G(t) denotes the
system’s dynamic noise matrix, w(t) represents the process noise white noise vector of the
system, and δx(t) represents the state vector of the 21 unknown parameters, Zk represents
the measurement vector, Zk =

[
δrN δrE δrD

]T, Hk represents the measurement matrix,
and vk represents the measurement noise matrix.

The state vector is [34]:

δx(t) =
[(

δrn
INS
)T (

δvn
INS
)T

φT bT
g bT

a sT
g sT

a

]T
(3)

In the equation, δrn
INS represents the position error of INS, δvn

INS represents the velocity
error of INS, φ represents the attitude error of INS, bg denotes the gyroscope bias, ba
denotes the accelerometer bias, sg denotes the gyroscope scale factor error, and sa denotes
the accelerometer scale factor error.

The measurement matrix Hk for the position measurement values is defined as follows:

Hk =
[
I3 03

(
Cn

blb
GNSS×

)
03 03 03 03

]
(4)

In the equation, lb represents the lever arm, and I represents the identity matrix.

2.3. Robust Adaptive Filtering Algorithm with Improved Measurement Noise Covariance Matrix

The basic idea of constructing an improved measurement noise covariance matrix
robust adaptive filtering algorithm in this paper is as follows: First, the optimal mea-
surement noise covariance matrix is obtained by considering different combinations of
PDOP, Q, and position STD square. Second, adaptive filtering and robust filtering are
employed to calculate the robust adaptive factor v based on the magnitude of the residual
statistics. Finally, the adaptive filtering results and the robust filtering results are combined
using different robust adaptive factors to obtain the robust adaptive filtering results. The
flowchart of the improved measurement noise covariance matrix adaptive robust filtering
process is illustrated in Figure 3.
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2.3.1. Construction of the Improved Measurement Noise Covariance Matrix

Since the measurement noise statistics in the measurement process of the GNSS/INS
integrated navigation system are unknown, how to define the measurement noise statistics
is very important to the performance of the Kalman filter. And the GNSS positioning
error estimates, usually represented by an experience value or variance [28], have been
used to determine the measurement noise covariance matrix in GNSS/INS integrated
navigation Kalman filters in the previous studies. However, in challenging environments,
such as urban complex environments or poor road conditions, there exists significant
inconsistency between the estimated error from GNSS solutions and the actual GNSS
positioning error [29]. Therefore, this article, through considering a comprehensive analysis
of PDOP (Position Dilution of Precision), Q, and the standard deviation of the North, East,
and Down positions, determined the measurement noise covariance matrix R as follows:

R = PDOPaQbr2 (5)

In the equation, a denotes the number of PDOP, and b denotes the number of Q. And r
denotes the STD value of the position in the North, East, and Down directions. The Position
Dilution of Precision (PDOP) in the equation is a dimensionless factor that represents the
favorable extent of satellite geometry on the accuracy of three-dimensional positioning.
When the satellites are evenly distributed in the North, South, East, and West directions,
a strong satellite geometry structure occurs, resulting in a lower PDOP. PDOP values
within the range of 1 to 2 indicate excellent satellite geometry shape, while values within
2–3 are considered sufficient in a certain sense as they themselves usually do not limit
positioning accuracy. Values between 3 and 4 are regarded as marginal, while values close
to or exceeding 5 are considered poor.

The determination of the measurement factor Q is based on the values obtained from
3D Accurate and is presented in detail in Table 1.

Table 1. Variation in the measurement factor Q values for different 3D accuracies.

Measurement Factor (Q) Description 3D Accuracy (m)

1 Fixed integer 0.00–0.15
2 Converged float or noise Fixed integer 0.05–0.40
3 Converging float 0.2–1.0
4 Converging float 0.5–2.00
5 DGPS 1.00–5.00
6 DGPS 2.00–10.00

2.3.2. Robust Adaptive Filtering Construction

In this paper, when constructing the adaptive factor αk, the prediction residual
method [35] was employed to obtain the statistic, which is defined as follows:

∆X̃k =

 VT
kVk

tr
(

PVk

)
 1

2

(6)

In the equation, Vk represents residual vector [36] Vk = HkX̂k − Zk, ∆X̃k represents
residual statistic, PVk

represents the covariance matrix of the a priori state vector, which is
denoted as PVk

= ΦkPX̂k−1
ΦT + Qk.

On this basis, the two-stage method was employed to construct the adaptive factor αk,
which is given by:

αk =

 1
∣∣∣∆X̃k

∣∣∣ ≤ k
k
|∆X̃k|

∣∣∣∆X̃k

∣∣∣ > k
(7)



Remote Sens. 2023, 15, 4125 7 of 24

In the formula, k is a constant, generally set to 1.0~1.5. (k = 1.0)

• Calculate the gain matrix: Kak = 1
αk

Pk/k−1HT
k(

1
αk

HkPk/k−1HT
k + Rk)

−1;
• Calculate the state estimate at time k: X̂ak = X̂k/k−1 + Kak(Zk −HkX̂k/k−1);
• Calculate the estimate error covariance matrix at time k: Pak = 1

αk
(I−KakHk)Pk/k−1.

By utilizing the state Equation (1) and the measurement Equation (3), the innovation
vector V̂k can be obtained as follows:

V̂k = Lk −HkX̂k/k−1 (8)

In the formula, Lk is the observation vector. If the measurement vector at time k, de-
noted as Zk, and the predicted state vector Xk/k−1, both follow contaminated distributions,
the extremum condition can be constructed as follows [37]:

Ω = VT
kAkVk + αkVk

TAX̂k
Vk = min (9)

where Ak is the equivalent weight matrix of the measurement vector Zk. The weighting
function used in this paper was the IGGIII [38] weighting function:

ω
(

Ṽi

)
=


1

∣∣∣Ṽi

∣∣∣ ≤ k0

k0
|Ṽi|

(
k1−|Ṽi|
k1−k0

)3
k0 <

∣∣∣Ṽi

∣∣∣ ≤ k1

0
∣∣∣Ṽi

∣∣∣ > k1

(10)

From this, the corresponding equivalent weight is:

A(Ṽi) =


A(Ṽi)

∣∣∣Ṽi

∣∣∣ ≤ k0

A(Ṽi)w(Ṽi) k0 <
∣∣∣Ṽi

∣∣∣ ≤ k1

0
∣∣∣Ṽi

∣∣∣ > k1

=


A(Ṽi)

∣∣∣Ṽi

∣∣∣ ≤ k0

A(Ṽi)
k0
|Ṽi|

(
k1−|Ṽi|
k1−k0

)3
k0 <

∣∣∣Ṽi

∣∣∣ ≤ k1

0
∣∣∣Ṽi

∣∣∣ > k1

(11)

In the formula, A(Ṽi) = Ri
−1, Ṽi is the standardized residual; k0 and k1 are constants,

usually selected as k0 = 1.0 ∼ 1.5, (In the experiment k0 = 1.15 k1 = 4.45)

• Calculate the gain matrix: Krk = Pk/k−1HT
k(HkPk/k−1HT

k + Ak
−1)
−1;

• Calculate the state estimate at time k: X̂rk = X̂k/k−1 + Krk(Zk −HkX̂k/k−1);
• Calculate the estimate error covariance matrix at time k: Prk = (I−KrkHk)Pk/k−1.

Based on the adaptive filtering results obtained from X̂ak and the robust Kalman
filtering results obtained from X̂rk, the combined robust Kalman filtering result X̂k is
obtained as follows X̂k:

X̂k = v ∗ X̂ak + (1−v) ∗ X̂rk (12)

The covariance matrix corresponding to the state estimation X̂k is:

Pk = v ∗ Pak + (1−v) ∗ Prk (13)

The Huber model was used to construct the robust adaptive factor v according to
Equation (13):

v =

0.85
∣∣∣∆X̃k

∣∣∣ ≤ c

0.15
∣∣∣∆X̃k

∣∣∣ > c
(14)

In the formula, c is a constant (c = 1.0).
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2.4. Datasets and Processing Strategies

In this paper, we mounted a self-developed POS and the SPAN-LCI tactical-grade fiber
optic inertial guidance systems on the same vehicle to collect two different sets of INS data.
The GNSS data acquisition equipment used the Novatel OEM718D GNSS receiver with a data-
sampling frequency of 5 Hz, and the configuration of Novatel commands is shown in Figure 4.
And this paper used three global satellite systems: the Global Positioning System (GPS), the
Global Navigation Satellite System (GLONASS), and the BeiDou Navigation Satellite System
(BDS), in the Novatel OEM718D GNSS receiver. The data-sampling frequency was 100 Hz
for the self-developed POS system and 200 Hz for the SPAN-LCI tactical-grade fiber optic
inertial guidance system. The data were collected from 06:22:00 to 06:48:28 on 28 April 2022
and lasted approximately 30 min. The experiment used a single antenna model.
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The device parameters of the self-research POS system using inertial sensors are shown
in Table 2.

Table 2. Navigation and positioning sensor parameters.

Gyroscopes Accelerometers

Bias 0.25◦/h 0.025◦/h
Random noise 0.04◦/sqrt(h) 0.03m/s/sqrt(h)

The GNSS reference station was set up on the roof of the School of Marine Science
and Engineering of the Shandong University of Science and Technology, with open and
unobstructed surroundings, and the mobile station was mounted on the car. The experi-
mental equipment was fixed to the car to form the mobile station. In order to avoid human
interference factors, a route was determined so the equipment could accept data normally.
The carrier exacted a figure 8-type large corner movement, with the trajectory around the
Shandong University of Science and Technology constituting a rectangle. The experimental
equipment was installed, as shown in Figure 5. The trajectory is shown in Figure 6.
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3. Results
3.1. Experimental Results for the Measurement Noise Covariance Matrix

The numerical values of the measurement noise covariance matrix R were set as
presented in Table 3.

Table 3. Setting different values for the measurement noise covariance matrix.

Method R

1 R = r2

2 R = pdop*Q*r2

3 R = pdop*r2

4 R = pdop2*Q*r2

5 R = pdop3*Q*r2

6 R = pdop2*Q2*r2

7 R = pdop2*Q3*r2

Figure 7 illustrates the variations in the measurement noise covariance matrix R
obtained from the experiment.

Figure 7 illustrates the variations in the diagonal elements of the measurement noise
covariance matrix R for different selected values. The numbers 1–7 indicate that RAKF
takes different R values, and 1–7 correspond to the value of R in Table 3. It can be observed
from Table 4 that significant changes in the position standard deviation occurred around
400 s, 800 s, and 1000 s. The results of different R values during the experiment are shown
in Table 4.

Taking into consideration the different combinations of measurement noise covariance
matrices as shown in Table 3 and the results presented in Table 4, a comparison of the
Extended Kalman Filter (EKF) with mode 4 demonstrates improvements of 26.65%, 77.92%,
and 72.56% in the positioning accuracy of East, North, and Up directions, respectively,
for method 4. When compared with mode 2 and while maintaining similar positioning,
velocity, and attitude accuracies, the accuracy of upward velocity is improved by 25.76%.
Compared with mode 3, the position accuracy in the upward direction is improved by
4.91%. Compared with mode 5, the accuracy of the position in the upward direction is
increased by 21.89%, and the velocity in the upward direction is increased by 30.70%.
Compared with mode 6, the position accuracy in the upward direction is improved by
17.13%. Compared with mode 7, the position accuracy in the upward direction is improved
by 20.54%. Therefore, considering the positioning errors, velocity errors as well as attitude
errors, the optimal choice is to select the measurement noise factor with a = 2 and b = 1,
resulting in the measurement noise covariance matrix denoted as R = PDOP2 ∗Q ∗ r2.



Remote Sens. 2023, 15, 4125 10 of 24Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 28 
 

 

 
Figure 7. Variations in the R values for the measurement noise covariance matrix. (a) the change of 
R=r2; (b) the change of R=pdop*Q*r2; (c) the change of R=pdop*r2; (d) the change of R=pdop2*Q*r2, 
(e) the change of R=pdop3*Q*r2, (f) the change of R=pdop2*Q2*r2, (g) the change of R=pdop2*Q3*r2. 

Figure 7 illustrates the variations in the diagonal elements of the measurement noise 
covariance matrix R for different selected values. The numbers 1–7 indicate that RAKF 
takes different R values, and 1–7 correspond to the value of R in Table 3. It can be observed 
from Table 4 that significant changes in the position standard deviation occurred around 
400 s, 800 s, and 1000 s. The results of different R values during the experiment are shown 
in Table 4. 

Table 4. Different measurement noise covariance matrices to obtain the corresponding RMS values 
of the navigation results. 

Mode 
PE 

(m) 

PN 

(m) 

PU 

(m) 

VE 

(m/s) 

VN 

(m/s) 

VU 

(m/s) 
Pitch 

(°) 
Roll 
(°) 

Yaw 
(°) 

EKF 0.0703 0.2867 0.1833 0.0718 0.4025 0.0991 0.3230 0.2136 0.3824 
1 0.0509 0.0632 0.0508 0.0482 0.0555 0.1001 0.1287 0.1404 0.2514 
2 0.0514 0.0632 0.0542 0.0486 0.0558 0.0982 0.1301 0.1378 0.2453 
3 0.0512 0.0631 0.0529 0.0484 0.0557 0.0729 0.1307 0.1408 0.2453 
4 0.0513 0.0633 0.0503 0.0493 0.0562 0.0729 0.1307 0.1408 0.2409 
5 0.0531 0.0639 0.0644 0.0497 0.0566 0.1052 0.1307 0.1377 0.2409 
6 0.0520 0.0635 0.0607 0.0494 0.0563 0.0743 0.1295 0.1445 0.2406 
7 0.0521 0.0638 0.0633 0.0495 0.0565 0.0793 0.1298 0.1419 0.2396 

Improved (%) 26.65% 77.92% 72.56% 31.34% 86.04% 26.44% 59.54% 33.57% 37.00% 

Figure 7. Variations in the R values for the measurement noise covariance matrix. (a) the change
of R = r2; (b) the change of R = pdop*Q*r2; (c) the change of R = pdop*r2; (d) the change of
R = pdop2*Q*r2, (e) the change of R = pdop3*Q*r2, (f) the change of R = pdop2*Q2*r2, (g) the change
of R = pdop2*Q3*r2.

Table 4. Different measurement noise covariance matrices to obtain the corresponding RMS values of
the navigation results.

Mode PE
(m)

PN
(m)

PU
(m)

VE
(m/s)

VN
(m/s)

VU
(m/s)

Pitch
(◦)

Roll
(◦)

Yaw
(◦)

EKF 0.0703 0.2867 0.1833 0.0718 0.4025 0.0991 0.3230 0.2136 0.3824
1 0.0509 0.0632 0.0508 0.0482 0.0555 0.1001 0.1287 0.1404 0.2514
2 0.0514 0.0632 0.0542 0.0486 0.0558 0.0982 0.1301 0.1378 0.2453
3 0.0512 0.0631 0.0529 0.0484 0.0557 0.0729 0.1307 0.1408 0.2453
4 0.0513 0.0633 0.0503 0.0493 0.0562 0.0729 0.1307 0.1408 0.2409
5 0.0531 0.0639 0.0644 0.0497 0.0566 0.1052 0.1307 0.1377 0.2409
6 0.0520 0.0635 0.0607 0.0494 0.0563 0.0743 0.1295 0.1445 0.2406
7 0.0521 0.0638 0.0633 0.0495 0.0565 0.0793 0.1298 0.1419 0.2396

Improved (%) 26.65% 77.92% 72.56% 31.34% 86.04% 26.44% 59.54% 33.57% 37.00%

3.2. Vehicle Experimental Results
3.2.1. Vehicle Experimental 1 Results

The loosely coupled integration of DGNSS/INS was realized by robust adaptive
filtering software using the observation noise covariance matrix from experiment 3.1.
Four different schemes were designed for this dataset: Method 1 utilized the Extended
Kalman Filter (EKF) [39], Method 2 employed the Adaptive Kalman Filter (AKF) [40],
Method 3 employed the Robust Kalman Filter (RKF) [39], and Method 4 was based on the
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proposed Robust Adaptive Filtering with Measurement Noise Covariance Matrix (RAKF).
The high-precision navigation solution obtained through the tightly coupled integration of
GNSS/INS and post-processing smoothing was used as a reference ground truth.

The four different methods were implemented using custom software, and the result-
ing position and velocity errors in the East (E), North (N), and Up (U) directions are shown
in Figure 8.
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Figure 8 represents a comparison of position and velocity errors in the East, North,
and Up directions. Figure 8a,c,e illustrate the comparison of position errors in the East,
North, and Up directions. Figure 8b,d,f depict the comparison of velocity errors in the East,
North, and Up directions, respectively. Notably, in Figure 8e,f, the velocity and position
errors exhibit significant variations around 600 s in the Up direction. To further analyze
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this, we zoomed in on the intervals 560–600 s and 620–660 s, corresponding to markers
1© and 2© in Figure 6. It is evident that among the four approaches, RAKF showed smaller

variations in errors and was closer to zero.
Further investigation was conducted to examine the error variations in attitude for the

four approaches. The resulting attitude errors in the roll, pitch, and heading directions are
depicted in Figure 9.
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In order to further compare the position, velocity, and attitude accuracy of the four
schemes, the root mean square (RMS) of position and velocity errors were plotted in a
histogram, as shown in Figure 10. The corresponding results are summarized in Table 5.

Table 5. Position velocity attitude RMS.

ERROR EKF AKF RKF RAKF

Velocity
(m/s)

Eastward 0.0718 0.0750 0.0700 0.0493
Northward 0.4025 0.2507 0.2797 0.0562

Upward 0.0991 0.0623 0.0751 0.0729

Attitude
(deg)

Pitch 0.3230 0.2250 0.1931 0.1307
Roll 0.2136 0.1608 0.1667 0.1408

Heading 0.3824 0.3650 0.3061 0.2453

Position
(m)

Eastward 0.0703 0.0528 0.0663 0.0513
Northward 0.2867 0.0710 0.1313 0.0633

Upward 0.1833 0.0428 0.1098 0.0503
3D Accuracy(m) 0.3475 0.0983 0.1836 0.0958

improved accuracy (%) 72.43% 2.54% 47.82%
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Table 5 presents the RMS values of position, velocity, and attitude errors. Based on the
results in Table 5, the following conclusions can be drawn:

• Regarding position error: In terms of the East–North–Up (ENU) position error, compared
with EKF, the accuracy of RAKF increased by 27.03%, 77.92%, and 72.56%, respectively.
Compared with AKF, the accuracy of RAKF improved by 2.84% and 10.85%, respectively.
Compared with RKF, the accuracy of RAKF improved by 22.62%, 51.79%, and 54.19%,
respectively. In the position average accuracy, compared with the three algorithms, the
accuracy of RAKF improved by 72.43%, 2.54%, and 47.82%, respectively.

• Regarding velocity error: In terms of the East–North–Up (NEU) velocity error, compared
with EKF, the accuracy of RAKF increased by 31.34%, 86.04%, and 26.44%, respectively.
Compared with AKF, the accuracy of RAKF improved by 34.27% and 77.58%, respec-
tively. Compared with RKF, the accuracy of RAKF improved by 29.57%, 79.91%, and
2.93%, respectively.

• Regarding attitude errors: In terms of the pitch–roll–heading–attitude error, compared
with EKF, the accuracy of RAKF increased by 59.54%, 34.08%, and 35.85%, respectively.
Compared with AKF, the accuracy of RAKF improved by 41.91%, 12.44%, and 32.79%,
respectively. Compared with RKF, the accuracy of RAKF improved by 32.31%, 15.54%,
and 19.86%, respectively.

3.2.2. The Comparison Results of the Single GPS System and GPS+GLONASS+BDS
Three Systems

On the basis of vehicle experiment 1, this paper used the RAKF to test the single GPS
system and the GPS+GLONASS+BDS three systems, respectively. The comparison of the
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number of satellites between the single GPS system and the GPS+GLONASS+BDS three
systems is shown in Figure 11.
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The velocity and attitude change was small, so this paper compared the position error.
The experimental position results are shown in Figure 12.
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three systems. (a) Eastward position error; (b) northward position error; (c) upward position error.

The box in Figure 12 showed no GPS satellite when the single GPS was working. And
the accuracy of the GPS+GLONASS+BDS three systems was better than that of the single
GPS system. This paper used the GPS+GLONASS+BDS three systems in this experiment.
The position error results are shown in Table 6.

Table 6. The comparison of position error between the single GPS and the GPS+GLONASS+BDS
three systems.

Eastward Error
STD (m)

Northward Error
STD (m)

Upward Error
STD (m)

3D Accuracy
(m)

Single GPS 0.3059 0.5926 0.3148 0.7375
Three systems 0.0521 0.0643 0.0510 0.0972

improved
accuracy (%) 82.97% 89.15% 83.80% 86.82%

Compared with the single GPS system, the GPS+GLONASS+BDS three systems in the
eastward, northward, and upward increased by 82.97%, 89.15%, and 86.82%, respectively.

3.2.3. Vehicle Experiment 2 Results

On the basis of vehicle experiment 1, the same equipment as vehicle experiment 1 was
used for this vehicle experiment 2. The data collection time was from 15:36:00 to 15:54:04
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on 4 October 2022. The satellite systems involved in the calculations in this experiment
were GPS, GLONASS, and BDS. This experiment used the single antenna model. The
experimental trajectory is shown in Figure 13.
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The comparison of position and velocity errors obtained by the four modes is shown
in Figure 14.

Further investigation was conducted to examine the error variations in attitude for the
four approaches. The resulting attitude errors in the roll, pitch, and heading directions are
depicted in Figure 15.

In order to further compare the position, velocity, and attitude accuracy of the four
schemes, the root mean square (RMS) of position and velocity errors were plotted in a
histogram, as shown in Figure 16. The corresponding results are summarized in Table 7.

Table 7 presents the RMS values of position, velocity, and attitude errors. Based on the
results in Table 6, the following conclusions can be drawn:

• Regarding position error: In terms of the East–North–Up (ENU) position error, com-
pared with EKF, the accuracy of RAKF increased by 0%, 66.28%, and 9.53%, respec-
tively. Compared with AKF, the accuracy of RAKF improved by 5.34% and 64.86%,
and 3.22%, respectively. Compared with RKF, the accuracy of RAKF improved by
8.24%, 44.23%, and 9.35%, respectively. In the position average accuracy, compared
with the three algorithms, the accuracy of RAKF improved by 27.53%, 21.89%, and
15.63%, respectively.

• Regarding velocity error: In terms of the East–North–Up (ENU) velocity error, com-
pared with EKF, the accuracy of RAKF increased by 19.81%, 29.67%, and 20.22%,
respectively. Compared with AKF, the accuracy of RAKF improved by 16.16%, 27.82%,
and 7.89%, respectively. Compared with RKF, the accuracy of RAKF improved by
14.87%, 16.16%, and 18.21%, respectively.
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Table 7. Position velocity attitude RMS.

ERROR EKF AKF RKF RAKF

Velocity
(m/s)

Eastward 0.0207 0.0198 0.0195 0.0166
Northward 0.0273 0.0266 0.0229 0.0192

Upward 0.0366 0.0292 0.0317 0.0357

Attitude
(deg)

Pitch 0.0342 0.0335 0.0389 0.0333
Roll 0.0339 0.0349 0.0307 0.0283

Heading 0.0803 0.0868 0.0921 0.0862

Position
(m)

Eastward 0.1013 0.1067 0.1104 0.1010
Northward 0.1978 0.1749 0.1196 0.0667

Upward 0.1962 0.1834 0.1958 0.1775
3D Accuracy(m) 0.2964 0.2750 0.2546 0.2148

improved accuracy (%) 27.53% 21.89% 15.63%

3.3. Add Different Disturbance Vehicle Experiment Results

To further validate the effectiveness of the proposed algorithm, additional experiments
were conducted by artificially introducing gross errors on top of the aforementioned
vehicular experiments. The experiments were divided into two groups:

Group 1: Within a one-second interval centered around GPST 368,963 s, random errors
ranging from 0 to 1 were added.

Group 2: Within a five-second interval from GPST 369,398 s to 369,402 s, specific
perturbations of 0.2721 m, 1.0997 m, 1.1594 m, 0.3380 m, and 0.2899 m were added. The
details are presented in Table 8.

Table 8. Adding the length and value of different perturbations.

Experimental Add Perturbation
Time/s

Add Perturbation
Value/m

Disturbance
Duration/s

Group 1 368963

0.1576

1
0.9706
0.9572
0.4854
0.8003

Group 2

369398 0.2721 1

369399 1.0997 1

369400 1.1594 1

369401 0.3380 1

369402 0.2899 1
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Due to the possibility of the PDOP values and the standard deviation of the position in
the East, North, and Up directions remaining unchanged in the presence of perturbations or
gross errors, this study set the PDOP and position standard deviation values to be constant
when introducing perturbations. Based on different 3D accuracy values, the Q values for
the first group of experiments at GPST 368963s were set to 2, 3, 3, 3, and 3, respectively.
For the second group of experiments, the Q values at GPST 369,398 s, 369,399 s, 369,400 s,
369,401 s, and 369,402 s were set to 2, 4, 4, 2, and 2, respectively.

3.3.1. Experimental Results of the First Group

Figure 17 shows the comparison of position, velocity, and attitude errors in the pres-
ence of randomly added errors ranging from 0 to 1 during the 1-s interval at GPST 368,963 s.
The figure also includes localized zoomed-in error plots for the time interval from 368,942
s to 368,947 s, which contained the one-second interval with added perturbations. The
purpose of these plots is to observe the performance comparison of the four different
algorithms under the presence of perturbations.
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Figure 17. One-second perturbation position, velocity, and attitude error result diagrams. (a) Eastward
position error; (b) northward position error; (c) upward position error; (d) eastward velocity error;
(e) northward velocity error; (f) upward velocity error; (g) pitch error; (h) roll error; (i) heading error.

Figure 17 represents the plots of position, velocity, and attitude errors obtained by
adding a 1-s perturbation at GPST 368,963 s. Figure 17a–c illustrate the position error plots
in the East, North, and Up directions. Figure 17d–f show the velocity error plots in the East,
North, and Up directions. Figure 17g–i display the attitude error plots for pitch, roll, and
heading angles. Furthermore, an analysis of the overall error RMS histogram and the error
RMS values, as shown in Figure 18 and in Table 9, was conducted to further examine the
effects of the 1-s perturbation.
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Table 9. Adding a one-second perturbation at 368,963 s corresponds to the resulting error RMS values.

ERROR EKF AKF RKF RAKF

Velocity
(m/s)

Eastward 0.0729 0.0478 0.0500 0.0486
Northward 0.4126 0.0563 0.0570 0.0569

Upward 0.0993 0.1372 0.0766 0.0666

Attitude
(deg)

Pitch 0.3373 0.1283 0.1830 0.1295
Roll 0.2181 0.1372 0.1930 0.1483

Heading 0.3893 0.2304 0.3360 0.2359

Position
(m)

Eastward 0.0709 0.0510 0.0567 0.0534
Northward 0.2862 0.0626 0.0667 0.0635

Upward 0.1835 0.0517 0.0915 0.0701
3D

Accuracy(m) 0.3473 0.0959 0.1266 0.1086

improved
accuracy (%) 68.73% - 14.22%

The RMS values of the position, velocity, and attitude errors in the case of 1-s distur-
bance are shown in Table 9.

Table 9 presents the RMS values of position, velocity, and attitude errors obtained by
adding random perturbations within 1 s at GPST 368,963 s. The following conclusions can
be drawn from Table 9:

• Regarding position error: When adding 1-s random disturbances ranging from 0 to 1 m,
in terms of the East–North–Up (ENU) position error, compared with EKF, the accuracy
of RAKF increased by 24.89%, 77.78%, and 68.79%, respectively. Compared to RKF, the
accuracy of RAKF achieved improvements of 20.36%, 77.78%, and 68.79%, respectively.
Figure 17a–c illustrates the comparison of position errors with 1-s disturbances ranging
from 0 to 1 m. In this scenario, the RAKF algorithm outperformed RKF significantly.
Compared to EKF and AKF, RAKF demonstrated comparable anti-interference capability
but with slightly better performance and closer proximity to 0.

• Regarding velocity error: When adding 1-s random disturbances ranging from 0 to
1 m, in terms of the East–North–Up (ENU) velocity error, compared with EKF, the
accuracy of RAKF improved by 31.20%, 86.04%, and 41.88%, respectively. Compared
with AKF, the accuracy of RAKF improved by 34.13%, 77.58%, and 7.54%, respectively.
Compared with RKF, the speed accuracy of RAKF improved by 29.43%, 79.91%, and
23.30%, respectively.

• Regarding attitude error: When adding 1-s random disturbances ranging from 0 to
1 m, in terms of the pitch, roll, heading, and attitude error, compared with EKF, the
accuracy of RAKF improved by 59.38%, 30.15%, and 34.65%, respectively. Compared
with AKF, the accuracy of RAKF improved by 14.18%, 7.21%, and 31.53%, respectively.
Compared with RKF, the accuracy of RAKF improved by 32.06%, 10.50%, and 18.36%,
respectively.
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3.3.2. Experimental Results of the Second Group

Within a five-second interval at GPST 369,398 s to 369,402 s, perturbation errors of
0.2721 m, 1.0997 m, 1.1594 m, 0.3380 m, and 0.2899 m were added, and the position, velocity,
attitude errors of the four methods were compared. The results are shown in Figure 13. To
further analyze the advantages of the four methods under continuous perturbations for
five seconds, the position, velocity, and attitude errors were locally magnified during the
interval of 369,398 s to 369,402 s, and the comparative results are depicted in Figure 19.
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Figure 19. Five-second perturbation position, velocity, and attitude error result diagrams. (a) East-
ward position error; (b) northward position error; (c) upward position error; (d) eastward velocity
error; (e) northward velocity error; (f) upward velocity error; (g) pitch error; (h) roll error; (i) heading
error.

Figure 19 represents the comparison of position, velocity, and attitude error variations
under the influence of a 5-s perturbation. The magnified sections show the changes in
the four different algorithms with varying degrees of perturbation. In order to further
quantify the performance of the four algorithms under continuous perturbations of different
magnitudes, the variations in the error RMS histograms are plotted in Figure 20, and the
specific RMS values are provided in Table 10.
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Table 10. RMS value of the resultant errors caused by adding 5 s of successive different perturbations
at 369,398 s to 369,402 s.

ERROR EKF AKF RKF RAKF

Velocity
(m/s)

Eastward 0.0782 0.0478 0.0493 0.0486
Northward 0.4575 0.0563 0.0565 0.0569

Upward 0.1251 0.1375 0.0712 0.0666

Attitude
(deg)

Pitch 0.3858 0.1283 0.1387 0.1295
Roll 0.2377 0.1386 0.1633 0.1483

Heading 0.4327 0.2304 0.3858 0.2359

Position
(m)

Eastward 0.0889 0.0510 0.0553 0.0534
Northward 0.4099 0.0626 0.0651 0.0635

Upward 0.2914 0.0654 0.0981 0.0701
3D Accuracy(m) 0.5107 0.1039 0.1301 0.1086

improved accuracy (%) 78.74% - 16.53%

Table 10 presents a comparison of the root mean square (RMS) errors in position,
velocity, and attitude for the four algorithms under different levels of disturbance for a
duration of 5 s. Compared to EKF, RAKF demonstrated significant improvements in the
accuracy of position by 39.93%, 84.51%, and 75.94%, respectively. In terms of velocity, RAKF
achieved accuracy improvements of 37.85%, 87.56%, and 46.76%, respectively. Furthermore,
the precision of pitch, roll, and heading angles showed enhancements of 66.43%, 37.61%,
and 45.48%, respectively. Compared to RKF, RAKF exhibited minor improvements in
northward and eastward position accuracy but demonstrated a 28.54% improvement in
the upward position. While the improvements in northward and eastward velocity were
less than 10%, RAKF achieved a 38.85% increase in the accuracy of the heading angle. By
analyzing the precision of position, velocity, and attitude under 5 s of disturbance, it is
evident that the RAKF algorithm maintains superior stability and reliability compared to
the other three algorithms while achieving higher positioning and attitude accuracy.

4. Discussion

In this study, according to the experimental position–velocity error plots, as well as
attitude angle error plots in Figures 8 and 9, analyzed from position and attitude angle, the
method proposed did not have any obvious advantage over EKF, AKF, and RKF due to the
small influence of the perturbation. However, the error results corresponding to different
methods changed significantly due to the large influence of anomalous perturbations on
the celestial direction velocity. Analyzing the U-direction velocity, the RAKF method shows
smaller error changes compared to EKF, AKF, and RKF, and according to Figure 10 and
Table 5, the U-direction velocity accuracy improves compared to EKF, AKF, and RKF by
26.44%, 77.58%, and 2.93%, respectively. The stability and anti-interference ability of the
RAKF method is better than EKF, AKF, and RKF in the case of abnormal perturbation of
onboard data.
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In order to further verify the performance of the method, anomalous perturba-
tions of different durations and values were added to the GNSS elevation data, and
Figures 11 and 12 show the comparisons of the position velocity, as well as attitude er-
rors, of the four methods in the perturbed case. In the case of perturbation, the performance
of the classic anti-differential Kalman filter was greatly affected by the perturbation, mainly
because finding a reliable equivalent weight matrix under the perturbation is difficult [37],
resulting in an inaccurate setting of the observation noise covariance matrix. The RAKF,
AKF, and EKF were less affected by the perturbation, and the RMS values of the different
methods are shown in Tables 6 and 7 for the cases of 1-s and 5-s perturbation, respec-
tively. In the case of 1-s perturbation, the 3D position error accuracy of the RAKF method
improved by 68.73% and 14.22% compared to the EKF and RKF accuracy, respectively.
There was no significant advantage of RAKF positional accuracy over AKF, but RAKF
outperformed AKF in attitude and velocity.

When anomalous perturbations frequently occur in the GNSS/INS system processing,
the observation noise covariance matrix often adopts a fixed value for representation
during data processing [18], which lacks flexibility and is prone to cause dispersion in
the combined navigation results. Therefore, constructing an improved observation noise
covariance matrix by comprehensively considering the GNSS observation information
overcomes the shortcomings of the GNSS positioning error estimation value technique
using measures such as variance or standard deviation and has a unique advantage in
solving the problem that it is difficult to accurately define the observation noise covariance
matrix in terms of a model.

5. Conclusions

In the process of GNSS measurement, accurately describing the measurement noise
statistics of GNSS receivers and inertial sensors is difficult due to the influence of various
factors, such as complex urban environments. With the aiming of solving this problem,
this paper proposed a robust adaptive GNSS/INS integrated navigation method based
on an improved measurement noise covariance matrix. The method mainly synthesizes
the dynamic measurement noise covariance matrix through the position accuracy factor,
the measurement factor, and the position standard deviation, increases the measurement
noise covariance matrix when the measurement is abnormally disturbed, and combines
robust adaptive filtering to resist the outliers. To assess the performance of this method, the
author conducted experiments on land vehicles. The positioning errors of the integrated
navigation system using the four solution strategies of the EKF algorithm, AKF algorithm,
RKF algorithm, and the proposed method were compared. The experimental results show
that compared with the other three algorithms, RAKF has better anti-interference and
stability and effectively reduces the influence of abnormal disturbance on GNSS/INS
integrated navigation results. In addition, RAKF can better use the position accuracy
factor, measurement factor, and position standard deviation in GNSS solution results. And
RAKF can overcome the shortcomings of GNSS positioning error estimation technology
represented by variance or standard deviation. Limitations of the proposed method still
exist. For example, the proposed method only considered the position accuracy factor,
measurement factor, and position standard deviation in GNSS measurement results. In
the future, the author will consider other prior information to realize the monitoring
and isolation of abnormal disturbances. In addition to the monitoring and isolation of
abnormal disturbances in vehicle application scenarios, the monitoring and isolation of
abnormal disturbances in other application scenarios, such as unmanned ships, is also
more important. Therefore, the follow-up to this study will be carried out in the field of
navigation and aviation to further test the ability of the algorithm to monitor and isolate
abnormal disturbances. And the integrated navigation and positioning results of reliability,
accuracy, and stability can be obtained in case of abnormal disturbance.
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