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Abstract: Lithological mapping is a crucial tool for exploring minerals, reconstructing geological
formations, and interpreting geological evolution. The study aimed to investigate the application of
the back propagation neural network (BPNN) and particle swarm optimization (PSO) algorithm in
lithological mapping. The study area is the Beiliutumiao map-sheet (No. K49E011021) in Inner Mon-
golia, China. This area was divided into two parts, with the left side used for training and the right
side used for validation. Fifteen geological relevant factors, including geochemistry (1:200,000-scale)
and geophysics (1:50,000-scale), were used as predictor variables. Taking one lithology as an example,
the lithological binary mapping method was introduced in detail, and then the complete lithology
was mapped. The model was compared with commonly used spatial data mining methods using the
E-measure, S-measure, and Weighted F-measure values. In diorite testing, the accuracy and kappa
of the optimized model were 92.11% and 0.81, respectively. The validation results showed that our
method outperformed the traditional BPNN and weights-of-evidence approaches. In the extension of
the complete lithological mapping, the accuracy, recall, and F1-score were 82.66%, 74.54%, and 0.76,
respectively. Thus, the proposed method is useful for predicting the distribution of one lithology and
completing the whole lithological mapping at a fine scale. In addition, the trained network can be
extended to an adjacent area with similar lithological features.

Keywords: geological mapping; geochemical data; geophysical data; Inner Mongolia; BP neural
network

1. Introduction

Lithological mapping refers to the mapping of geological distribution and stratigraphic
boundaries on the geological base map according to the selected scale on the basis of a
field survey [1,2]. The lithological maps produced by this work lay the data foundation
for the exploration and research of regional lithology, minerals, and other resources [3].
The traditional work of lithological mapping is to collect scattered rocks or observe ex-
posed bedrocks to determine the lithology [4]. It can be seen that the traditional work is
time-consuming, labor-intensive and inefficient, and presupposes expert knowledge [5].
Thus, some researchers use machine learning for lithological mapping, which is a geo-
graphic information system (GIS)-based method involving correlation of lithology with
geochemical data [3,6], geophysical data [7,8], or remote sensing data [9,10] to map geo-
logical formations. Machine learning applied to lithological mapping is divided into two
main types: data-driven and knowledge-driven [11]. Knowledge-driven methods, such
as k-means [12] and principal component analysis [13], do not require previously known
lithological samples. Data-driven methods include neural network [14,15], random forest
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(RF) [16], weights of evidence (WofE) [17], and so on. Previous studies have shown that the
knowledge-driven methods require in-depth knowledge of the lithologic phenomena in
the study area [18]. In contrast, data-driven methods make it easier to deal with the com-
plex geological environment and immeasurable similarities between lithological samples.
Cracknell et al. showed that the neural network method had the shortest constructing time
and the best performance for a lithological prediction model [19]. Using a back propagation
neural network (BPNN) and support vector machine (SVM), Zhang et al. performed gold
mapping and demonstrated that the BPNN had superior predictive capability over the
SVM [15]. From the above research, it is found that the BPNN describes the relationship
between layers by an activation function and trains the network based on back propagation
error [20,21]. The BPNN includes the following steps. Firstly, the network topology needs
to be determined. Secondly, the output values of each node in the hidden and output layers
and the error between them and the expected value are calculated. Thirdly, the error is
propagated forward layer by layer to obtain the error value of each layer. It is indicated that
the BPNN possesses the merits of high fault tolerance, self-learning, and adaptability in
geology-related research. However, the BPNN’s shortcomings include difficult parameter
setting. The parameter setting of the BPNN can further significantly impact on the learning
process and model performance [22,23]. To minimize the impact of parameter setting and
prevent the overfitting problem, metaheuristic optimization algorithms (such as particle
swarm optimization (PSO) [24], imperialist competitive [25], whale optimization [26], etc.)
are employed to optimize the network structure determination. The PSO algorithm com-
pletes the search through cooperation and competition among individuals and has strong
global optimization ability [24,27]. Some studies demonstrated that machine learning
optimized by PSO outperformed those using machine learning alone [24,27]. However,
there is little research on whether PSO can enhance the lithological prediction ability of the
BPNN. Therefore, we improved the BPNN with PSO and applied it to lithological mapping.

In mainland China, about one-third of the territory can be divided into overburden
areas [7], most of which are covered by vegetation and Cenozoic sediments [3]. Inner
Mongolia in northern China is a typical coverage area [28]. Therefore, it is challenging
to obtain information about the underlying bedrock in these areas using remote sensing
data. Several studies have shown that geochemical and geophysical data are related to the
lithology of the underlying bedrock. [29]. Geochemical sampling has focused on stream
sediments and soils [30]. Stream sediments are products of rock weathering, formed by
erosion and transport by water flow. Their composition integrates the chemical composition
characteristics of the underlying bedrock [31]. The geophysics data for this study are
geomagnetic data. Each rock has a unique magnetic property, influenced by its type
and age. Using these data, we can infer regional geological information and solve the
problem of the poor quality of lithological mapping due to few geological outcrops and
lack of geological information. To date, more than 6 million square kilometers (km2) of
regional geochemical surveys (1:200,000 scale) have been completed in China. In contrast,
it is difficult to obtain large-scale, high-precision geophysical data due to economic and
confidentiality reasons [3]. Therefore, we selected geochemical data (1:200,000 scale) and
geophysical data (1:50,000 scale) for lithological mapping of the coverage area to ensure the
feasibility and applicability of the method.

In summary, we improved the BPNN based on the PSO algorithm and applied it to
lithological mapping with the aim of predicting the distribution of the underlying bedrock
at a fine scale. Using the geochemical and geophysical data of Inner Mongolia, taking
one lithology as an example, the above optimization method was applied to map the
lithology distribution, and we finally completed the lithological mapping of the study
area. In addition, we compared the improved method with the traditional BPNN and
WofE methods.
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2. Materials and Methods
2.1. Geological Setting

The study area, the Beiliutumiao map-sheet, extends between the coordinates
113◦00′–113◦15′N and 42◦10′–42◦20′E in Inner Mongolia, China (Figure 1a,b) [32]. Its
tectonics are the Bainaimiao arc and the Ondor Sum subduction–accretion complex [33].
The elevation ranges from 900 m to 1400 m and belongs to a layered high plain of denuda-
tion formed by the uplift of an ancient lake basin. The topography of the study area is
dominated by grasslands and mountains.
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Figure 1. The location (a,b) and regional lithological map (c) of Beiliutumiao map-sheet
at 1:50,000 scale. Abbreviations: (Є-O)B1 = Bainaimiao Group; C2b = Benbatu Formation;
J3mn = Manitu Formation; K1b = Baiyingaolao Formation; K1g = Guyang Formation; N1h = Han-
nuoba Formation; N2b = Baogedawula Formation; P1s1 = Sanmianjin Formation; Qbby = Baiyin-
baogela Formation; Qhal+pl = Quaternary Holocene alluvium-diluvium gravel bed; Qnh = Hujiertu
Formation; Qp3pal = Upper Pleistocene gravel, sandy soil, gravelly sand; q = Permian quartz
vein; γ1P2 = Middle Permian fine-granodiorite; γ2P2 = Middle Permian medium-fine-granodiorite;
γ3P2 = Middle Permian medium-granodiorite; γgЄ3 = Early silurian fine-pomegranate dolomite
granite; γδP1 = Early permian granodiorite; γδoS1 = Early silurian tonalite; γι= Permian gran-
ite aplite vein; γπK1 = early Cretaceous granitic porphyry; δµ = Permian diorite porphyrite vein;
δoP1 = Early permian quartz diorite; δoS1 = Early silurian quartz diorite; ηγ2P1 = Early permian
medium-fine-adamellite; ηγ3P1 = Early permian porphyric biotite adamellite; vP1 = Early permian
medium-fine-gabbro; ξγP2 = Middle permian moyite.
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The lithological map of the Beiliutumiao map-sheet was divided into two parts
(Figure 1c). The left side was used for training and the right side was used for valida-
tion. Lithology points were selected in the training area based on the existing lithological
map and the actual field lithology points. According to the spatial distribution of the
points, 80% of the lithology points were randomly selected as the training dataset, and the
remaining 20% as the test dataset. In this study, we selected field-investigated diorite as an
example of the underlying bedrock for lithological mapping, which specifically included
early silurian quartz diorite (δoS1), early silurian tonalite (γδoS1), and early permian gran-
odiorite (γδP1). The distribution of the training area, validation area, and lithology points
in this study is shown in Figure 1c.

2.2. Geochemical and Geophysical Data

The geophysical data, i.e., the geomagnetic data, were collected at a scale of 1:50,000.
The geochemical samples were collected at a scale of 1:200,000. Each geochemical layer
contains approximately 389 survey points. Geochemical surveys are typically sampled
every 5 km2. These survey points cover the entire study area. Each geochemical sam-
ple was analyzed for the concentrations of 14 trace elements (Ag, Al2O3, B, CaO, Cu, F,
Fe2O3, Hg, K2O, MgO, Na2O, Ni, SiO2, Zn). These elements were not heavily reactivated
by hydrothermal activity and mineralization and are mainly limited by the lithological
distribution. Moreover, these elements were components of the rocks and geology of the
study area. Continuous coverage of the data was essential for inferring the lithological
distribution throughout the study area. The original data were interpolated using the
inverse distance exponential weighting (IDW) method [34] to obtain 15 raster layers with
a pixel size of 152 m × 152 m (Figure 2). The IDW method was suitable for data with a
uniform distribution of sample points and covering the entire interpolation area. The data
were provided by the Development Research Center of the China Geological Survey.
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Figure 2. The geochemical and geophysical original sampling points and raster layers generated by
IDW: (a) Ag, (b) Al2O3, (c) B, (d) CaO, (e) Cu, (f) F, (g) Fe2O3, (h) Hg, (i) K2O, (j) MgO, (k) Na2O,
(l) Ni, (m) SiO2, (n) Zn, (o) geomagnetic layer.

2.3. General Methodology

The proposed method consists of four main steps: data preprocessing, improved
BPNN model training, lithological mapping based on the improved BPNN model, and
model evaluation (Figure 3).
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Figure 3. Illustration of the methodology in this study as workflow.

2.3.1. Data Preprocessing

Data preprocessing includes standardized geochemical and geophysical raster layers
and overlay analysis of the lithology points and raster layers. The Z-score standardization
method was used in this study (Formula (1)). This avoids the effect of extreme values of
raster layers becoming outliers.

xn =
xo − µ

σ
, (1)

where µ is the mean value of the original data, σ is the standard deviation of the original
data, xo is the original value of the index factor, and xn is the standardized result of the
index factor.
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2.3.2. Improved BPNN Model Training

Based on the BPNN with PSO algorithm, the lithological mapping model is constructed
and trained. The output of the model includes the probability of lithology presence (conf )
and the probability of its absence (unconf ). Lithology prediction value (res) can be calculated:

res =
con f + (100− uncon f )

2
, (2)

where the ranges of res, conf, and unconf are 0–100%.

2.3.3. Lithological Mapping Based on Improved BPNN Model

The lithology map of the study area was generated using the optimal model of diorite.
Most lithological maps are binary, i.e., 1 (presence) or 0 (absence), so the optimal cut-off
value needs to be determined by statistically analyzing the sample number of diorite
presence and absence.

2.3.4. Method Comparison and Assessment

We also compared the proposed method with the traditional BPNN and WofE. Ac-
curacy and kappa are used to assess lithological mapping. In lithological mapping, the
predicted distribution of a lithology usually results in a binary map. Therefore, to val-
idate the prediction performance, the binary maps of the validation area generated by
different methods can be evaluated by the E-measure (E-m) [35], S-measure (S-m) [36], and
Weighted F-measure (WF-m) [37]. These can be calculated using Saliency Evaluation Tool-
box [38,39] (https://github.com/Mehrdad-Noori/Saliency-Evaluation-Toolbox (accessed
on 20 August 2023)).

2.4. Improved BPNN
2.4.1. The Overall Flow of Improved BPNN

The improved BPNN includes the following process (Figure 4). The strategy to
combine the BPNN and the PSO algorithm is to encode the weights and biases of each layer
as particles according to the BPNN structure. Firstly, the particle swarm is initialized, and
the activity range and velocity of particles are limited according to the parameter-taking
range of the BPNN. Then, the particles completed by the iterative search are reduced to
the corresponding weights and biases of the BPNN. Finally, a local optimization search is
performed based on the BPNN.
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Determine the Structure of BPNN

The number of potential evaluation index factors is used to determine the number of
nodes of the input layer i. The number of output layer nodes o is fixed at two. The range of
the number of nodes h in the hidden layer is [hmin, hmax]:

h =
√

i + o + a, (3)

where a is a constant between [1,10].

Particle Encoding

The hidden layer control interval, weight parameter interval, and output node bias
interval of the individual particles are encoded according to the particle encoding approach
in Section 2.4.2., combined with the BPNN structure.

Initialize Particle Swarm

We set the parameters such as population size, weight range, and search range of
the particle population. The algorithm activated the weight parameter area by hiding the
encoding of the control area. We initialized the particle position and velocity and reset the
particle learning velocity. The initialized particles are multi-dimensional real vectors.

Iterative Updates

Of the sample data, 80% were randomly selected as the input training sample. The
position and velocity of each particle was updated iteratively. When searching for the ex-
tremes, the search boundary, velocity, and control code of the particles need to be monitored
in real time to ensure that the individual extremes and global extremes are searched.

Premature Particle Detection

It is necessary to determine whether or not the particles converge prematurely. If there
is no premature convergence, the fitness evaluation is performed. If there is premature
convergence, the particle velocity is mutated and the number of times required to reach
the threshold is calculated, then the particle population is reorganized, and finally iterative
update is performed.

Determine to Stop the Search

If the fitness evaluation value is within the threshold value or the number of iterations
is greater than the maximum set number, the search is stopped. A set of weights and biases
are selected to optimize the BPNN as the optimization result. The final BPNN optimal
model is obtained by training.

2.4.2. Encoding Based on PSO Algorithm

The PSO algorithm uses particle position vectors and velocity vectors to find the
optimal solution. Each particle finds its own optimal solution, namely, the individual
extreme value, and shares it with the other particles. The optimal solution of the individual
extreme value is the global extremum [40,41]. The algorithm has the characteristics of fast
convergence and strong global search ability.

The geochemical and geophysical indicators that affect lithological mapping are dif-
ferent in the study area. The number of nodes in the hidden layer have a range of values
based on the number of inputs and outputs. Therefore, we added the number of nodes in
the hidden layer in the existing individual particle encoding method. The optimal number
of nodes in the hidden layer and the weights and biases of each layer were searched using
the PSO algorithm. Our encoding method of the individual particles is as follows:

xi = [ThminThmin+1 . . . ThmaxWhmin+1Whmin+2 . . . WhmaxB1B2], (4)
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where the individual particle encoding includes three parts: the hidden layer control
interval Th, the weight parameter interval Wh, and the output node bias interval Bo. The
range of Th is [0, 1]. o takes the values 1 or 2. Wh is coded as follows:

WH =
[
w2
(hmin)1 . . . w2

(hmin)ow2
(hmin+1)1 . . . w2

(hmin+1)o . . . w2
(hmax)1 . . . w2

(hmax)o,

b2
hmin . . . b2

hmaxw3
1(hmin) . . . w3

1(hmax)w
3
2(hmin) . . . w3

2(hmax)

]
,

(5)

where Wh includes the connection weights from the input layer to the hidden layer, the
hidden layer bias, and the connection weights from the hidden layer to the output layer.
wij

l is the connection weight of the jth node at (l − 1)th layer and the ith node at lth layer.
bi

l is the bias of ith node at lth layer. The encoding length of the individual particle xi is
determined by both the range of nodes in the hidden layer and the number of nodes in
the input and output layers. The value of the hidden layer control interval determines the
number of nodes in the hidden layer. If the value of Tj in the hidden layer control interval
of a particle is greater than 0.5, the corresponding weight parameter interval is initialized
with it.

3. Results
3.1. Lithological Map of Diorite

With the improved PSO algorithm, we obtained the optimal model of the lithological
map. The number of network nodes in the input, hidden, and output layers is 15, 12, and 2,
respectively. The learning rate is 0.3. The impulse coefficient is 0.45. The error threshold
is 0.005. We obtained the optimal model by comprehensively considering the accuracy
and kappa of the models. The accuracy of the optimal model is 92.11% and the kappa is
0.81. Based on this model, 15 related factors were applied to generate a lithological map of
diorite (Figure 5a).
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The distribution of a specific lithology type is generally binary. To realize binary
mapping, we set a threshold by which the continuous probability was converted to a set
of binary data. By comparing the number and accuracy of prediction at different cut-off
values (Table 1), we found the optimal cut-off value to be 59%. The lithological map after
binarization is shown in Figure 5b. Black indicates that diorite is absent, while white
indicates that diorite is present.



Remote Sens. 2023, 15, 4134 10 of 16

Table 1. Partial cut-off value results.

Cut-Off Value
(%)

Number of
Diorite

Presences

Number of
Diorite

Absences

Presence of
Predictive

Accuracy (%)

Absence of
Predictive

Accuracy (%)

49 144 15 97.30 35.71
50 143 16 96.62 38.10
51 141 18 95.27 42.86
52 141 19 95.27 45.24
53 139 21 93.92 50.00
54 137 21 92.57 50.00
55 132 23 89.19 54.76
56 128 23 86.49 54.76
57 122 26 82.43 61.90
58 122 27 82.43 64.29
59 120 28 81.08 66.67
60 117 28 79.05 66.67
61 110 29 74.32 69.05
62 98 30 66.22 71.43
63 84 32 56.76 76.19
64 79 33 53.38 78.57
65 73 34 49.32 80.95
66 67 35 45.27 83.33

3.2. Model Evaluation
3.2.1. Model Validation

To verify our method, we extracted the predicted results of the validation area and com-
pared them with the actual distribution. In the lithological map of the validation area gen-
erated by the improved BPNN, E-m, S-m, and WF-m are 0.66, 0.44, and 0.25, respectively.

3.2.2. Comparison with Traditional BPNN

The model network structure of the traditional BPNN is set to 15-12-1, the learning
rate is 0.3, and the error threshold is 0.005. The prediction accuracy of the traditional BPNN
is 71.05%, which is 21.06% lower than the prediction accuracy of the improved BPNN. The
kappa of this model is 0.25, which is 0.56 lower than that of the improved BPNN. The
optimal cut-off value is 73%. The lithological map and binary map of diorite generated by
the traditional BPNN model is shown in Figure 6.
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In the lithological map of the validation area generated by the traditional BPNN, E-m,
S-m, and WF-m are 0.60, 0.39, and 0.18, respectively. The E-m of the traditional BPNN is
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0.06 lower than that of the improved BPNN. The S-m of the traditional BPNN is 0.05 lower
than that of the improved BPNN.

3.2.3. Comparison with WofE

In geological exploration, WofE is a mainstream spatial data mining method [42]. Both
WofE and the improved BPNN are supervised methods in spatial data mining methods.
So, we compared the geological prediction ability of both methods. WofE requires only a
dataset of samples to indicate the presence of diorite. The weight of each evidence layer is
calculated to build the model for predicting the target of the unknown area. The posterior
probability of each pixel is then calculated based on the prediction model. The probability
is positively correlated with the likelihood of occurrence of the target. Based on WofE, we
used the same geochemical and geophysical data to construct the prediction model and
generated a lithological map of diorite (Figure 7a). The optimal cut-off value is 61%. The
binary map of diorite generated by the WofE model is shown in Figure 7b.
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Figure 7. The lithological map (a) and binary map (b) of diorite based on WofE.

In the lithological map of the validation area generated by the WofE, the E-measure,
S-measure, and Weighted F-measure are 0.40, 0.43, and 0.11, respectively. The E-m of the
WofE is 0.26 lower than that of the improved BPNN. The S-m of the WofE is 0.01 lower
than that of the improved BPNN. The WF-m of the WofE is 0.14 lower than that of the
improved BPNN.

3.3. Extended Application of Regional Lithologic Mapping

We extended the above approach to predict lithologies across the study area. By
predicting additional rocks in the study area, the lithology was mapped (Figure 8). The pre-
diction accuracy of the lithologic map was 82.66%, the recall was 74.54%, and the F1-score
was 0.76. The experimental results show that lithological mapping can be effectively carried
out using geochemical and geophysical data, based on the BPNN with the PSO algorithm.
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4. Discussion

We constructed the lithological mapping model of diorite based on the improved
BPNN and integrated it into the self-developed platform AoGIS. In this section, sensitivity
analysis and error analysis are discussed by analyzing the whole experimental process.

4.1. Optimal Parameters from Sensitivity Analysis

This section focused on the sensitivity analysis of the combination of the number
of neurons in the hidden layer, initial learning rate, impulsivity coefficient, and error
threshold, finding that the different parameter combinations have a significant influence
on the training results of the BPNN [43].

Figure 9a illustrates the result of the sensitivity analysis of the number of neurons in
the hidden layer. When the hidden layer dimension is between 4 and 8, the model accuracy
is low, and the number of iterations is relatively small. When the number of neurons in the
hidden layer is above 10, the accuracy improves but the number of model iterations does
not increase significantly. The best result is obtained for a network containing 12 neurons in
the hidden layer, whose accuracy and kappa are 92.11% and 0.81, respectively. In summary,
the topological structure (15-12-2) of our model is optimal.

Figure 9b,c illustrate the result of the sensitivity analysis of the initial learning rate
and impulsivity coefficient. The optimal values are 0.3 and 0.45, respectively. These two
parameters generally take values between 0.005 and 0.8. With the increase of the impulse
coefficient, the number of iterations showed a downward trend, and the model accuracy
showed an overall upward trend. As the initial learning rate increases, the number of
iterations and model accuracy generally decline. When the initial learning rate is greater
than 0.45, the number of model iterations tends to be stable, and the model accuracy has no
prominent value. The impulse coefficient and the initial learning rate are important factors
in the adjustment of the network weight value, which directly determine the training time
and generalization ability of the model.

Figure 9d illustrates the result of the sensitivity analysis of the error threshold. Its
optimal value is 0.005. In this experiment, the error thresholds in the three ranges of
0.005–0.0075, 0.01–0.0275, and 0.03–0.04 are 92.11%, 89.47%, and 86.84%, respectively. The
number of iterations varies around 5000 times. With the decrease of the error threshold,
that is, the continuous relaxation of the end condition of model training, the accuracy of
the model will decrease. However, the model prediction performance does not change too
much due to the influence of the error threshold.
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4.2. Comparative Analysis

By comparing the accuracy and kappa of the different models, it can be seen that the
improved BPNN is better than the other two methods. By analyzing the results, if the
traditional BPNN is directly applied to the lithological mapping, the prediction results vary
greatly from the actual ones. WofE has poor prediction performance for the regions where
lithology points are absent. This can also be seen from the subsequent prediction results
within the validation area.

By comparing the E-m, S-m, and WF-m of the validation area based on different areas,
it can be seen that the improved BPNN is better than the other two methods. Since there
are no training lithology points in the validation area, these three results represent the
ability of the method to be extended to other neighboring areas with similar lithological
characteristics. The results show that the improved BPNN model can be better extended to
other areas for geological mapping at a fine scale.

In addition, we found that the elemental contents of Na2O, Al2O3, and SiO2 are low
and the remaining elements are high in the predicted diorite locations obtained. Based on
Pearson correlation coefficient analysis, there is a negative correlation between Na2O and
diorite [44] and a positive correlation between K2O and diorite [45]. The combination of
these elements can be used as an indicator element for predicting diorite in the Beiliutumiao
map-sheet and even in other areas. Ag, Pb, and Cu are typical syngenetic combinations
with high content in areas with a high diorite possibility.

4.3. Limitations of the Method

In the experiment of predicting the distribution of diorite in the Beiliutumiao map-
sheet, the accuracy of the model was 92.11% and the kappa was 0.81. In the lithological
map of the validation area generated by the improved BPNN, the E-m, S-m, and WF-m
are 0.66, 0.44, and 0.25, respectively. When extending the trained network to another
neighboring region, it is necessary to ensure that the input raster layers are of the same
class and order. If the input data have a different original scale, they need to be interpolated
or resampled to the same spatial resolution. The spatial resolution of the training raster
layers is 152 m × 152 m in this research.
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By analyzing the above experiments, it can be seen that the accuracy is not high when
the upper right corner area of the study area is considered. This situation is more obvious
in the lithological map generated by the traditional BPNN. Fe2O3, MgO, Ni, Zn, and other
input layers have a high value distribution in the upper right corner area, which affects the
final output map. Therefore, it can be inferred that certain extreme maximal and minimal
values in the input layer affect the output layer. We will analyze and discuss the reasons
why the predicted results differ from the actual distribution in the study area to improve
the method in the future.

5. Conclusions

Lithological mapping needs to determine the type and distribution of lithology. We
combine the BPNN and PSO algorithm and apply them to predict the spatial distribution of
the underlying bedrock, using diorite as an example. Firstly, the improved PSO algorithm
was used to obtain the optimal number of nodes in the hidden layer, and the weights and
bias of the BPNN. Then, the BPNN model was constructed for lithological mapping. Litho-
logical mapping was carried out using geochemical data (1:200,000-scale) and geophysical
data (1:50,000-scale) of the Beiliutumiao map-sheet. This area was divided into two parts,
with the left side used for training and the right side used for validation. The average
accuracy and kappa of the optimal model were 92.11% and 0.81, respectively. The diorite
distribution map generated by our method was consistent with the actual lithological
distribution. The prediction accuracy and kappa of the improved BPNN were, respectively,
21.06% and 0.56 higher than those of the traditional BPNN. The validation results of the
E-m, S-m, and WF-m showed that our method outperformed the traditional BPNN and
WofE. In addition to this, we extend the method to geological mapping of all lithologies in
the study area. The prediction accuracy of the lithologic map was 82.66%, the recall was
74.54%, and the F1-score was 0.76. The research showed that the proposed method could
be used to predict one lithology and complete lithological mapping at a fine scale. The
trained network could be extended to another adjacent area that shares similar lithological
features and can generate lithological maps at a fine scale.
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