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Abstract: Optical satellite image change detection has attracted extensive research due to its com-
prehensive application in earth observation. Recently, deep learning (DL)-based methods have
become dominant in change detection due to their outstanding performance. Remote sensing (RS)
images contain different sizes of ground objects, so the information at different scales is crucial for
change detection. However, the existing DL-based methods only employ summation or concate-
nation to aggregate several layers of features, lacking the semantic association of different layers.
On the other hand, the UNet-like backbone is favored by deep learning algorithms, but the gradual
downscaling and upscaling operation in the mainstream UNet-like backbone has the problem of
misalignment, which further affects the accuracy of change detection. In this paper, we innovatively
propose a hierarchical feature association and global correction network (HFA-GCN) for change
detection. Specifically, a hierarchical feature association module is meticulously designed to model
the correlation relationship among different scale features due to the redundant but complementary
information among them. Moreover, a global correction module on Transformer is proposed to
alleviate the feature misalignment in the UNet-like backbone, which, through feature reuse, extracts
global information to reduce false alarms and missed alarms. Experiments were conducted on several
publicly available databases, and the experimental results show the proposed method is superior to
the existing state-of-the-art change detection models.

Keywords: change detection (CD); semantic association; feature reuse; global information; optical
satellite images

1. Introduction

Change detection, which is dedicated to monitoring the dynamic change of land
surface features, plays an increasing role in remote sensing applications [1], such as ur-
ban sprawl monitoring [2], forest cover change surveys [3], disaster damage assessment
(e.g., landslides, earthquakes) [4,5], and others [6].

1.1. Background Studies

To date, there have been proposed various change detection methods, and the existing
work can be divided into two major categories: traditional methods and deep learning
(DL)-based methods.

(1) Traditional methods. Traditional change detection methods can be distinguished into
arithmetic-operation-based methods [7–11], image-transformation-based methods [12,13],
classification-based methods [14], and clustering-based methods [15–17]. The arith-metic-
operation-based method obtains the difference map of remote sensing images in different
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phases, and then the threshold value is determined to classify the changed and un-
changed areas. The typical approach includes the image-difference-based method [7,8],
image-ratio-based method [9], and change-vector-based method [10,11], etc. However,
the arithmetic-operation-based methods are generally computed at the pixel level and
ignore the overall information. The image-transformation-based method increases the
image difference by transferring images to feature space through image transforma-
tion, such as principal component analysis (PCA) [12] and tasseled cap transformation
(KT) [13], and then the final result is obtained through the division of a threshold
value. The classification-based method obtains the change detection result on the clas-
sification map [14]; however, the accuracy may be affected by the classification results.
The clustering-based method clusters the difference map to obtain change detection
results. For example, Liu et al. [15] used the typical K-mean clustering, Cui et al. [16]
introduced fuzzy c-means (FCM) clustering, and Shao et al. [17] proposed a new fuzzy
clustering change detection method. Most of the clustering-based methods consider
the spectral information of the image but ignore the spatial texture information. In
general, traditional methods with simple and fast features are in demand in most
applicable cases; however, the accuracy is barely satisfactory.

(2) Deep-learning-based methods. DL-based change detection methods have attracted
attention in recent years. Most existing DL-based methods are established on con-
volutional neural networks (CNN) [18–20] or Transformer networks [21,22]. The
characteristics of CNN networks brought by their convolutional operators enable
them to extract rich local detail information, and, due to the characteristics brought by
the cascade of convolutional layers, they extract detail-rich information and abstract
information with semantic associative properties. Transformer can be good at extract-
ing global information and has a nonlinear fitting capability, no less than that of the
CNN. Most deep learning methods achieved competitive results [23–25], and analysis
of existing DL-based change detection methods to further improve their performance
is necessarily expected.

1.2. Analysis of Existing Deep-Learning-Based Methods

In change detection tasks, the fundamental task is to determine whether the semantic
state of a feature changes in different images; though there are various implementations
of existing methods, it is possible to analyze the methods which are effective for change
detection tasks, to learn the advantages and improve the shortcomings.

1.2.1. CNN

There are many CNN-based change detection methods. Here, we summarize some
useful structures and methods for change detection from existing CNN-based algorithms.

(1) Feature extraction on a Siamese network

Feature extraction by convolutional neural networks is the first and critical step of
the CNN-based change detection algorithms. In early CNN-based change detection algo-
rithms [18], bitemporal RS images are generally stacked in the channel dimension and fed
into the feature extraction network by a single-stream network without a dedicated varia-
tion difference analysis module, and the feature extraction network has to undertake the
tasks of image feature extraction and difference analysis at the same time, which makes the
feature extraction network overburdened and unable to achieve the best feature extraction
effect. The emergence of the Siamese network structure can effectively distinguish feature
extraction from feature analysis to achieve a better feature extraction effect, that is, the
bitemporal RS images are separately extracted by two feature extraction networks with the
same structure and the same parameter weights, such as is described by Fang et al. [26] and
Liu et al. [27] The extracted features are constrained by using the Siamese structure, so that
the bitemporal RS images feature information can be mapped to different feature levels,
and thus the subsequent difference analysis module can have higher efficiency and thus
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improve the accuracy of the final change detection results. The feature extraction structure
of the Siamese network is suitable for the change detection task for feature extraction.

(2) Multi-scale feature utilization

Because the causes of feature changes are diverse, it is characteristic that the size of
the changing area in the image is inconsistent, sometimes with huge differences in scale
size, and this phenomenon is inevitable even in the same type of change. Therefore, the
integrated analysis of the information at different scales is important in change detection
tasks. With the stacking of convolutional layers, the perceptual field of the convolutional
layers keeps increasing, while the features of different layers have different perceptual field
sizes; thus, different feature layers of the feature extraction network can be regarded as
the features of the image at different scales [28,29]. The extraction of features by using
convolution operators with different convolution kernel sizes at the same level at the same
time also allows us to obtain feature information at different scales, such as is described by
Song et al. [30] and Lv et al. [31,32], who designed the multiscale feature extraction module
to obtain different multiscale features. Information at different scales is crucial for the
analysis of change detection; however, how to fully and effectively utilize the information
of features at different scales and fully explore the information belonging to change regions
in features at different scales has not received sufficient attention. Therefore, for this paper,
a hierarchical feature association module was designed to address this shortcoming.

(3) Global information utilization

Global information plays an important role in the determination of semantic infor-
mation in remote sensing images. For example, if the semantic meaning of ‘concrete’ is
determined by the analysis of local information, it will be difficult to analyze the true seman-
tic meaning of ‘roof’ or ‘highway’ without the analysis of global information. However, the
type of mutual variation between ‘roof’ and ‘highway’ exists; thus, it is evident that without
the help of global information, deep learning algorithms will produce certain misjudgments
and omissions. To complement the global information desired about the features, existing
algorithms introduce global information in the channel or spatial dimension by combining
attention mechanisms, such as is described by Zhang et al. [33]. Most methods obtain
global information by extending the convolutional field or using the attention mechanism;
therefore, this study designed a Transformer-based module to obtain global information,
which differs from the method of introducing global information through the CNN method
and makes the result of change detection more accurate.

1.2.2. Transformer

Transformer has been widely used in the field of natural language processing because
of its ability to model global dependencies, which corresponds to the demand for modeling
ability in the field of natural language processing. Due to the benefits from its modeling
capability, which is no less than that of the convolutional neural networks, the computer
vision field has focused on using Transformer model networks for better performance,
in areas such as image classification, semantic segmentation, target detection, etc. Trans-
former has achieved excellent results. In the change detection task, the bitemporal image
transformer (BIT) model [34], which models the spatial–temporal context based on features
extracted by a CNN, is followed by global information learning through two Transformer
encoders, and then a change detection map is obtained by a Transformer decoder with a
prediction network. The ChangeFormer model [35], which exploits the excellent global
feature extraction capability of Transformer as a feature extraction backbone network, can
be followed by a simple prediction head to obtain change detection results. The Intra-Scale
Cross-Interaction and Inter-Scale Feature Fusion Network (IFIC) model [36], by combining
the CNN and Transformer for extracting features, achieved excellent performance through
the interaction of detailed and global information at different scales. By using Transformer,
these algorithms achieved good results, but the nature of the global information introduced
by Transformer was not considered in these algorithms, so our understanding of how to
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effectively use Transformer to introduce the global information needed for change detection
tasks still needs to be improved.

1.3. Challenges

(1) Challenge 1: How to make full use of the information among different scale features.

Information at different scales is crucial for change detection; however, how to fully
explore their complementary information among different scale features has not received
sufficient attention. For example, most existing DL-based methods perform change detec-
tion analysis directly on the features at different scales and then obtain the results by simply
aggregating the features at different scales via summation or concatenation. This simple
summation or concatenation is insufficient for describing the complementary information
between different levels since the features in different levels represent different specific
information. To enhance the information representation so that the information contained
in different hierarchical features can be fully utilized, modeling the association relationships
among different hierarchical features is necessary.

(2) Challenge 2: How to alleviate the feature misalignment.

In the change detection task, most existing DL-based methods employ a UNet-like
backbone to extract features of different scales via a gradual downscaling operation, and
then reconstruct the detection results through a gradual upscaling operation. These grad-
ual downscaling and upscaling operations have the problem of feature misalignment,
which further affects the accuracy of change detection at the decision level. Therefore, an
alleviation of feature misalignment method is necessary.

1.4. Contribution

To address the above challenges, a hierarchical feature association and global correc-
tion network (HFA-GCN) is proposed. Specifically, to overcome challenge 1, a hierarchical
feature association (HFA) model is proposed to model the relationship between different
layer features so that different layer features can be used more effectively. To address chal-
lenge 2, a global correction (GC) is designed to extract global information about bitemporal
RS images based on the Transformer structure and to correct change detection features by
the interaction of global information to mitigate feature misalignment. The contributions of
this paper can be summarized as follows.

(1) A hierarchical feature association and global correction network, namely, HFA-GCN,
is proposed for change detection. The HFA is designed to model the association
relationships between hierarchical features, so that the different hierarchical features
can be fully utilized. The GC is designed to extract global information more efficiently,
and alleviate the feature misalignment.

(2) HFA-GCN, by modeling the correlations of hierarchical features at different levels, can
enhance the information at different levels, making it easier for change detection tasks
to obtain change information at different levels; the innovative global information
extraction and utilization method makes the global information effective for change
detection tasks. Therefore, HFA-GCN obtains excellent performance.

The rest of the paper is organized as follows. The details of the proposed model
are presented in Section 2. Section 3 shows the experiments. The last section concludes
the paper.

2. Methodology

In this paper, we proposed a hierarchical feature association and global correction
network (HFA-GCN) for change detection. Unlike systems that combine different levels
of features by simple aggregating or concatenation, the HFA-GCN models the correla-
tion between different levels to better obtain information about the changes contained in
different levels. Bypassing the method of introducing global information by CNNs, the
HFA-GCN better extracts the global information about the image based on Transformer
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and uses the global information to correct the effect of feature misalignment in a UNet-like
network, to achieve better change detection results. The HFA-GCN is shown in Figure 1.
For a pair of bitemporal RS images to be detected, the RS images are first passed through a
feature extraction network consisting of residual structures to obtain the multi-level feature
maps. To better utilize the extracted features at different levels, we propose a hierarchical
feature association (HFA) module to model the relationship between feature information at
different levels to better utilize the feature maps at different levels. Using the multi-level
feature maps after modeling the relationship with neighboring order features, the change
detection results to be corrected are generated by a simple decoder. Usually, the change
detection framework has completed the whole process, but in this paper, we describe
the global correction module used to extract global information about the features using
global mapping, correct the change detection features through the interaction of the global
information, and then get the final change detection results through the change detection
decision maker.

1 
 

 

Figure 1. The framework of the hierarchical feature association and global correction network.

2.1. Baseline Backbone Network

The baseline backbone of HFA-GCN is a UNet-like network consisting of encoders
and decoders.

For the encoder, to efficiently extract feature information from the different layers of
the image, a feature extraction module was designed based on the idea of residual connec-
tivity. The module, as a whole, consists of two convolutional modules with one residual
connection; the first convolutional module is the feature extraction module, which is used to
extract higher-level feature information from the image. The second convolutional module
extracts further information from the current level of feature information to obtain more
effective feature information. A residual connection is added after the first convolutional
module is complete to ensure the validity of subsequent further information extraction and
prevent feature degradation. Finally, a weight-sharing feature extraction module is used for
bitemporal RS images to constrain the extracted bitemporal features to be projected into a
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consistent feature space, which is more conducive to the analysis of change detection tasks.
For the feature extraction module, as shown in Figure 2, the expressions are as follows.

Convbase(Ft
i ) = ReLU(BN(Conv(ReLU(BN(Conv(Ft

i )))))) (1)

FE(Ft
i ) = Convbase(Convbase(Ft

i )) + Convbase(Ft
i ) (2)

Ft
i+1 = FE(Ft

i ) (3)

where Conv, BN, ReLU represent the two-dimensional convolution operation with a con-
volution kernel size of 3 × 3, batch normalization, and ReLU activation, respectively.
Equation (1), Convbase, represents a basic convolution block consisting of two basic con-
volution operations. The first basic convolution is designed to reduce the feature scale to
increase the number of feature channels, and the second basic convolution is designed
to extract more feature information from the features at this level. Ft

i is the feature of the
input feature extraction module, where t = 1, 2 represents two input RS images at different
moments, with i = 1, 2, 3, 4 representing different levels of feature information, when i = 1
is the original input image. With the increasing number of layers, the number of extracted
feature channels also increases, respectively, as C = 3, 32, 64, 128, 256. The scale of the
opposite feature decreases, respectively, as H = W = 256, 128, 64, 32, 16.
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Figure 2. Detail of the feature extraction module.

For the decoder, as shown in Figure 3, to efficiently use the front module to generate
different scale features, the proposed decoder is progressive for feature decoding. The
decoder reconstructs the change detection features by progressively decoding them by
simultaneously inputting the feature information of the current level and the previous level.
In the decoder, after first upsampling the current level features to the previous level feature
size, the change detection features of the previous level are reconstructed by the two levels
of features together. The expression of this module is as follows.

Decoder(F′i , F′i−1) = ReLU(BN(Conv(Cat(UP(F′i−1), F′)))) (4)

F′i−1 = Decoder(F′i , F′i−1) (5)

For the input features of two different levels, using Equation (4), we find that the
UP(·) operation performs twice the interpolation upsampling for the feature with a small
scale, and then the two scales are superimposed on the channel by the Cat(·) operation to
concatenate the change detection features of the scale size of the previous level by using
the two-level features.
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2.2. Hierarchical Feature Association Module

In remote sensing images, the semantic information about the same feature observed
at different scales may be different, but this semantic information is not unrelated. By
associating different pieces of semantic information about features at different scales, we
can derive the true semantics of the features more accurately. In this study, we designed the
hierarchical feature association module to correlate the semantic information about features
at different levels by modeling the correlation relationships with neighboring features, to
increase the effective representation of feature information at the current level.

As shown in Figure 4, the input of the hierarchical feature association module is the
features at the current level and the neighboring levels, and the association weights of
information between features are extracted at the spatial level using the structure of spatial
attention in the module. For the lower-level features, they are firstly downsampled to make
their sizes consistent, and then associated with the current-level features after extracting
their association weights by spatial attention; for the higher-level features, they are firstly
upsampled by bilinear interpolation to make their sizes consistent, and then associated
with the current-level features after extracting their association weights by spatial attention.
The current-level features are taken as the main feature information, and the association
weight matrices are extracted to the current feature level at four different scales; finally,
all the association weight matrices are augmented for the current features to realize the
modeling of the neighbor-order feature association relationship, and the final output of the
module is obtained. The expressions of the module are as follows.

fk×k(Fi) = ReLU(BN(Convk×k(Fi))) (6)

SA(Fi) = Sigmoid(Conv(Cat(Maxpool(Fi), Avepool(Fi)))) (7)

SAcur(Fi) = SA(f1×1(Fi)) + SA(f3×3(Fi)) + SA(f5×5(Fi)) + SA(f7×7(Fi)) (8)

SAlat(Fi+1) = SA(UP(Fi+1)) (9)

SApre(Fi−1) = SA(Down(Fi−1)) (10)

F′i = (SApre(Fi−1) + SAcur(Fi) + SAlat(Fi+1))·Fi (11)

where Convk×k, BN, ReLU represent the two-dimensional convolution operation with a
convolution kernel size of k× k, batch normalization, and ReLU activation, respectively.
In Equation (7), Maxpool(·), Avepool(·) represent the maximum pooling operation on the
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channel and the average pooling operation on the channel, respectively. The number of
feature channels output after maximum pooling and average pooling is two, while the
remaining dimensions remain unchanged. The Cat(·) represents a stacking of different
features in the dimension of the channel. In Equation (9), Up(·) represents an interpolation
upsampling of the feature map to make the scale twice the original scale. In Equation (10),
the Down(·) represents a downsampling of the feature map at twice the scale using the
2× 2 maximum pooling. In Equations (6)–(11), Fi is the result of superimposing the F1

i F2
i

features of the i level on the channel, and the matrix addition and matrix dot multiplication
in the formula represent the addition and multiplication symbols in Figure 4, respectively,
and F′i is the feature of Fi corresponding to the level i after semantic association by the
hierarchical feature association module.
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2.3. Global Correction Module

The change detection task is determined by the semantic state of the features, and
essentially compares whether the global semantic information of bitemporal RS images
has changed, so emphasizing the global information about the features is powerful for
solving the remote sensing image change detection task. There are frequent up-and-down
sampling operations of features in the process of change detection, which can also lead to
errors due to misalignment between features.

As shown in Figure 5, the global correction module is proposed to solve the above
problems. Using the global information about image features with rich change information,
the change detection features are corrected to mitigate the errors caused by the misalign-
ment of features, and the absence of global information. The inputs of the module are the
features corresponding to the bitemporal RS images and the change detection features’
downsampling. The value V is mapped from the initial change detection feature down-
sampling, while Q and K are mapped from the image features. The interaction of Q and K
realizes the interaction of the global information of two temporal features, and the change
detection features are corrected by the interaction results, and, finally, the corrected change
detection features are obtained, which improves the accuracy of the overall network. The
expressions of the module are as follows.
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K = Linear(F1
i ), Q = Linear(F2

i ), V = Linear(DI′i) (12)

Gloal Attn map(Q, K) = Softmax
(

QT ·K
)

(13)

Gloal Attn(Q, K, V) = Gloal Attn map(Q, K)·V/
√

d (14)

DIi = Gloal Attn(Q, K, V) (15)

where F1
i and F2

i represent the features corresponding to the bitemporal RS images at
the level i extracted by the feature extraction module, respectively. The initial features
are reused to obtain more accurate information. In Equation (12), Linear(·) is a linear
mapping of the input features to an intermediate state with global information; through the
interaction of Q and K, the global information about the bitemporal feature map can fully
interact to obtain more accurate global information about the feature, and the attention
map containing the global information is corrected for the change detection feature DIi
features through the operation of Gloal Attn(Q, K, V) to generate a more accurate change
detection feature map.
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2.4. Change Detection Module

For the change detection module, as shown in Figure 6, to alleviate the fusion diffi-
culties caused by the existence of different scales of features at different levels, a simple
information fusion is performed for the features at different levels after compressing the
channels, and then the change detection results are reconstructed by high-level and low-
level features. The expressions of this module are as follows.

DI′i = CBAM(UP (DIi),+Conv(Liner(DI′i−1))) (16)

FFM(DIi, DIi+1) = CBMA(Cat(DI′ i, DI′i+1)) (17)

Change Decoder(DI1, DI2, DI3, DI4) = FFM(FFM(DI1, DI2), FFM(DI3, DI4)) (18)
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DI = Change Decoder(DI1, DI2, DI3, DI4) (19)

where DI′i represents the change detection features present after the global correction
module, i = 1, 2, 3, 4 represent the features of different levels, and DI′i represents the
temporary change detection feature, which is generated by combining advanced semantic
information for the input features. We first compress its number of channels by linear
mapping, then pre-fuse it with the features of different levels by using a CBAM, and then
reconstruct the change detection result DI by using the CBAM to fuse the features twice.
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3. Experiment and Analysis

Three benchmark remote sensing (RS) datasets were utilized as opening references
to assess the performance of HFA-GCN. First, the experimental datasets were described.
Secondly, the details of the experiments were given. After that, we compared and analyzed
the classification results of HFA-GCN with different comparison methods. Finally, we
conducted ablation experiments to demonstrate the efficacy of various modules.

3.1. Experimental Datasets

(1) CDD dataset

The CDD dataset is an early publicly available remote sensing image change detection
dataset consisting of 7 pairs of 4725 × 2700 and 4 pairs of 1900 × 1000 images, which are
divided into 10,000 (training)/3000 (validation)/3000 (testing) dataset image pairs after
being cut into 256 × 256-size image pairs in a non-overlapping manner. In the experiment,
we only used the real remote sensing image pairs, which change with the seasons.

(2) LEVIR-CD dataset

LEVIR-CD is a large publicly available building change detection dataset with a time
interval of 5–12 years between image pairs, which has change types ranging from large
areas such as apartments and villas to small areas such as small garages. The dataset
includes a total of 637 pairs of 1024 × 1024 optical remote sensing images (0.5 m). For the
original divided training, testing, and validation test sets, we cut the images into 256 × 256
non-overlapping image pairs, as 7120 (training)/1024 (validation)/2048 (testing) images.

(3) GZ-CD dataset

GZ-CD is a publicly available remote sensing image change detection dataset for
detecting urbanization in the Guangzhou suburbs, and the images contain 19 pairs of
images taken in the suburbs of Guangzhou, with image pair sizes ranging from 1006 × 1168
to 4936 × 5224. Due to the lack of publicly available definite training/testing dataset
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divisions, we split the original images into 256 × 256 image pairs without overlap, and
randomly divided them into 2194 (training)/936 (test).

3.2. Experimental Setup

To confirm the effectiveness of our designed method, we chose several SOTA models
for comparison, including three full convolutional models: full convolutional early feature
fusion (FC-EF) [2], full convolutional twin difference network (FC-Siam-Di) [2], and full
convolutional twin cascade network (FC-Siam-Conv) [2]. For these three methods, the
encoder–decoder paradigm was modified into a Siamese architecture, and by using skip
connections and different decoders, three results were obtained. The three attention-based
methods are the deeply supervised image fusion network (SNUNet) [26], which uses
densely connected, deeply supervised, and attention-blocking networks to achieve change
detection; the deeply supervised image fusion network IFNet [33], which uses attention
modules fused with multi-level deep features with image difference features; and the dual-
task constrained deep Siamese convolutional network (DTCDSCN) [27], which introduces
a dual attention module (DAM) to exploit the interdependencies between channels and
spatial positions, improving feature representation. A CNN has been combined with
the Transformer network (BIT) [34], which uses a transformer encoder to model contexts
in space–time.

Our proposed model was implemented in the PyTorch framework, and the model was
trained and tested on an NVIDIA 3090 GPU (24 G). To iterate the network parameters, we
used the AdamW algorithm as an optimizer, with batch size 16, and used the combination
of weighted cross-entropy loss and dice loss as the loss function. Cross-entropy loss
can measure the gap between the model’s predicted results and the actual results in
classification problems, and dice loss is good for solving the problem posed by unbalanced
numbers in categorized samples. The expressions of cross-entropy loss and dice loss are
expressed in Equations (20) and (21), respectively. The number of training iterations is 400,
trained 100 times each at learning rates (0.001, 0.0005, 0.00025, 0.0001).

Cross entropyloss = −
C

∑
i=1

xi log yi (20)

Dice loss == 1− 2 · TP
2 · TP + FP + FN

(21)

where xi denotes the ith element of the true label and yi denotes the probability that the
model predicts that x belongs to the ith category, and TP, TN, FP, and FN stand for judging
change correctly, judging no change correctly, judging a change region incorrectly, and
judging no change region incorrectly.

3.3. Evaluation Indicators

To evaluate the results obtained by different methods, we used five common evaluation
metrics to measure the degree of similarity between the result graphs and the labels,
including precision, recall, F1 score, joint intersection, and overall accuracy. Each metric is
defined as follows.

Precision = TP/(TP + FP) (22)

Recall = TP/(TP + FN) (23)

F1 = 2/
(

Recall−1 + Precision−1
)

(24)

IOU = TP/(TP + FP + FN) (25)
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where TP, TN, FP, and FN stand for judging change correctly, judging no change correctly,
judging a change region incorrectly, and judging no change region incorrectly, respectively.
F1 is a comprehensive index, which consists of both precision and recall.

3.4. Experimental Results

To evaluate the effectiveness of the proposed network model, the results of a large
number of experiments were quantitatively summarized in three diachronic remote sensing
images, and the performance of different networks in the three datasets CDD, LEVIR-CD,
and GZ-CD is reflected in Tables 1–3. To visualize the performance of different network
models on different datasets, we visualized the results of all methods by representing TN
as white, TP as black, FN as red, and FP as green, so that we can more intuitively observe
the performance advantages and disadvantages of different methods. This allows us to
more intuitively reflect the effectiveness of our semantic association, feature reuse, and
global information introduction operations.

Table 1. Performance of various algorithms and HFA-GCN on CDD dataset.

CDD Pre (%) Recall (%) F1 (%) IOU (%)

FC-EF(2019) 74.12 55.86 63.70 46.74
FC-Siam-Di(2019) 82.23 54.33 65.43 48.62

FC-Siam-Conv(2019) 77.68 58.63 66.82 50.18
IFN(2020) 96.05 97.01 96.53 93.29

SNUNet-CD/32(2022) 96.14 95.90 96.02 92.34
DTCDSCN(2020) 94.98 92.66 93.80 88.33

BIT(2021) 94.72 96.44 96.58 93.38
HFA-GCN 97.40 97.20 97.30 94.75

Table 2. Performance of various algorithms and HFA-GCN on LEVIR-CD dataset.

LEVIR-CD Pre (%) Recall (%) F1 (%) IOU (%)

FC-EF(2019) 78.95 74.82 76.83 62.38
FC-Siam-Di(2019) 87.07 67.10 75.79 61.02

FC-Siam-Conv(2019) 87.14 66.64 75.52 60.67
IFN(2020) 88.45 90.62 89.52 81.03

SNUNet-CD/32(2022) 90.12 89.17 89.64 81.23
DTCDSCN(2020) 90.26 87.66 88.94 80.09

BIT(2021) 92.20 87.88 89.99 81.80
HFA-GCN 91.49 89.99 90.73 83.04

Table 3. Performance of various algorithms and HFA-GCN on GZ-CD dataset.

GZ-CD Pre (%) Recall (%) F1 (%) IOU (%)

FC-EF(2019) 87.52 55.01 67.56 51.01
FC-Siam-Di(2019) 76.99 62.88 69.22 52.93

FC-Siam-Conv(2019) 73.94 66.64 70.10 53.97
IFN(2020) 80.70 84.66 82.64 70.41

SNUNet-CD/32(2022) 86.18 78.73 82.29 69.91
DTCDSCN(2020) 88.83 79.40 83.85 72.19

BIT(2021) 92.98 81.29 86.74 76.59
HFA-GCN 91.84 83.40 86.86 76.78

3.4.1. CDD Dataset

In Table 1. The quantitative results reflect that the proposed network in this paper
outperforms the other network models in terms of metrics, with Pre/Recall/F1/IOU scores
0.26%/0.76%/0.72%/1.37% higher than the other network, respectively.

For the CDD dataset, we visualize the representative areas in it. Among them,
Figure 7a,b show large change regions; remote sensing images are highly affected by
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seasons, the edges of buildings in a map are affected by light shadows, and in the b map,
the connection between shadows and grasses causes difficulties in detection. Figure 7c,d
show small change regions; images in the c map are highly affected by the seasons, and in
the d map, the change caused by roadside street lights is very small. Figure 7e,f show a
dense change region, affected by the need to detect the details of the texture edge; the e
map shows different shapes of small changes in the composition, with vegetation shadows
increasing the difficulty of detecting small roads; the f map of residential areas, in addi-
tion to the changes in the buildings, also shows a small change that needs to be detected.
Comparing the experimental results, as shown in in Figure 7a,b, SNUNet, IFN, DTCDSCN,
BIT, and the proposed method are not affected by the seasonal changes and achieve better
results. In Figure 7c,d, SNUNet, IFN, DTCDSCN, BIT, and the proposed method can detect
the general area of change, but the proposed method can detect more small changes. In
Figure 7e,f, with numerous small changes, the proposed methods can achieve more accu-
rate predictions with fewer misses and misjudgments. The more accurate prediction plots
reflect the powerful change detection ability of the proposed network, which is consistent
with the proposed method achieving the best results for the objective index of CDD.
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3.4.2. LEVIR-CD Dataset

In Table 2, the quantitative results reflect that the network proposed in this paper out-
performs the other network models in terms of metrics, with F1/IOU scores 0.74%/1.24%
higher than the other network, respectively.

For the LEVIR-CD dataset, we have also visualized their representative areas. For
example, Figure 8a is a small change area; Figure 8b,c are large change areas, which are
affected by the roof color being close to the soil color in the b map, and the edges of the
buildings are affected by shadows in the c map. Figure 8d–f show intensive change areas
with a large number of individual building additions, which need to be divided into a
large number of change individuals. In Figure 8a, only the mentioned method, among
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all methods, identified the building increase from the vegetation. In Figure 8b, roofs and
soils are difficult to distinguish, with SNUNet, BIT, etc. causing a large number of missed
detections, and IFN is biased toward increased false detections, but the proposed method
achieves a balance between missed and false detections to get a better result. In Figure 8c,
all methods can detect the main part of the changing building, and the proposed network
can detect the edges of the building better, thus reducing the false detection between the
building boundaries, and also reducing the leakage of the building. In Figure 8d,e there
are a large number of individual building changes, wherein some buildings are difficult
to detect because of the presence of shadows, and SNUNet, IFN, DTCDSCN, BIT, and
other methods all show individual building change detections missed; whereas, using
the proposed method, all individual building changes can be detected. In Figure 8f, the
proposed method is also more accurate for building change edge detection, while avoiding
the comparison method in the case of missing detections of individual building changes.
Thus, it can be seen that the proposed method has the best visual performance regarding
the prediction map, which is consistent with its best performance of the objective evaluation
index in LEVIR-CD.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 8. Comparison of the result plots of different methods on the LEVIR-CD dataset; (a–f) are six 
plots with representative patterns. For better observation, TP is white, TN is black, FP is red, and FN 
is green. 

3.4.3. GZ-CD Dataset 
The quantitative results reflect that the proposed network in this paper outperforms 

the other network models in terms of metrics, with F1/IOU being 0.12%/0.19% higher than 
the other network, respectively. 

For the GZ-CD dataset, we have visualized its representative areas. For example, Fig-
ure 9a,b show the changes in warehouses, which are large change areas. Figure 9c,d show 
small change areas; the new buildings in c are located at the edges of other buildings 
whose accurate detection is considered difficult, and the building changes in d are affected 
by their shadows. Figure 9e,f show the changes in strip dense buildings, for which there 
is a need to discriminate the detail texture of the change areas. In Figure 9a, it can be seen 
that for SNUNet, IFN, BIT, etc., for non-building changes, there are misjudgments, but the 
proposed method avoids misjudgments, and the overall visual effect achieves better re-
sults. In Figure 9b, the edges of the building are affected by shadows; for example, IFN 
and BIT methods exhibit edge misjudgment, while the FC-Siam-Conv method exhibits 
missed judgments, but the proposed method has a more accurate visual effect for edge 
discrimination. In Figure 9c, small building changes are missed in SNUNet, BIT, and other 
methods, while IFN has misjudgments for unchanged buildings, but the proposed 
method avoids these misjudgments to accurately discriminate the changing area. In Fig-
ure 9d, the change areas are difficult to judge due to shadows, and the proposed method 
avoids the omissions of the comparison methods to achieve more accurate change detec-
tion results generation. In Figure 9e,f, the complete discrimination of strip buildings is 
challenging; the omission of buildings and the misjudgment of inter-building areas exist 
in the comparison method, but the proposed method can discriminate the whole of the 
changing buildings while avoiding misjudgments and also avoiding large-scale omis-
sions. The visualization results on the GZ-CD dataset are better than other methods, and 
the results are consistent with the objective evaluation indexes; thus, the proposed method 
achieves the best results.  

Figure 8. Comparison of the result plots of different methods on the LEVIR-CD dataset; (a–f) are six
plots with representative patterns. For better observation, TP is white, TN is black, FP is red, and FN
is green.

3.4.3. GZ-CD Dataset

The quantitative results reflect that the proposed network in this paper outperforms
the other network models in terms of metrics, with F1/IOU being 0.12%/0.19% higher than
the other network, respectively.

For the GZ-CD dataset, we have visualized its representative areas. For example,
Figure 9a,b show the changes in warehouses, which are large change areas. Figure 9c,d
show small change areas; the new buildings in c are located at the edges of other buildings
whose accurate detection is considered difficult, and the building changes in d are affected
by their shadows. Figure 9e,f show the changes in strip dense buildings, for which there is
a need to discriminate the detail texture of the change areas. In Figure 9a, it can be seen
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that for SNUNet, IFN, BIT, etc., for non-building changes, there are misjudgments, but
the proposed method avoids misjudgments, and the overall visual effect achieves better
results. In Figure 9b, the edges of the building are affected by shadows; for example, IFN
and BIT methods exhibit edge misjudgment, while the FC-Siam-Conv method exhibits
missed judgments, but the proposed method has a more accurate visual effect for edge
discrimination. In Figure 9c, small building changes are missed in SNUNet, BIT, and other
methods, while IFN has misjudgments for unchanged buildings, but the proposed method
avoids these misjudgments to accurately discriminate the changing area. In Figure 9d, the
change areas are difficult to judge due to shadows, and the proposed method avoids the
omissions of the comparison methods to achieve more accurate change detection results
generation. In Figure 9e,f, the complete discrimination of strip buildings is challenging; the
omission of buildings and the misjudgment of inter-building areas exist in the comparison
method, but the proposed method can discriminate the whole of the changing buildings
while avoiding misjudgments and also avoiding large-scale omissions. The visualization
results on the GZ-CD dataset are better than other methods, and the results are consistent
with the objective evaluation indexes; thus, the proposed method achieves the best results.
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3.5. Ablation Experiments

After obtaining the overall network results, to further verify the effectiveness of
the designed modules in the network model, we conducted ablation experiments for
validation, and the results of the ablation experiments are shown in Table 4, confirming
that the hierarchical feature association module and the global correction module have a
positive effect on the change detection task. Adding either of these modules to the baseline
network results in better overall network performance on all three datasets. Finally, the
complete network, using these two modules, performs best on all three datasets.
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Table 4. Experimental results of different ablations on different datasets.

Dataset Methods Pre (%) Recall (%) F1 (%) IOU (%)

CDD

Base 98.23 93.62 95.87 92.07
Res-HFA-GCN 95.10 96.40 95.74 91.84

w/o HFA 96.41 95.63 96.02 92.34
w/o GC 98.48 94.12 96.25 92.77

w/o GC-RIF 97.66 96.60 97.13 94.42
HFA-GCN 97.40 97.20 97.30 94.75

LEVIR-CD

Base 91.52 87.67 89.55 81.08
Res-HFA-GCN 92.01 86.79 89.33 80.71

w/o HFA 92.33 88.91 90.59 82.79
w/o GC 91.81 87.80 89.76 81.42

w/o GC-RIF 93.09 88.03 90.49 82.63
HFA-GCN 91.49 89.99 90.73 83.04

GZ-CD

Base 92.05 78.01 84.45 73.09
Res-HFA-GCN 92.69 77.53 84.44 73.07

w/o HFA 88.35 82.37 85.26 74.30
w/o GC 92.93 78.69 85.22 74.25

w/o GC-RIF 93.20 80.86 86.59 76.35
HFA-GCN 91.84 82.40 86.86 76.78

(1) Baseline network (Base): The baseline network consists of an encoder and a de-
coder. The performance of the baseline network is used to provide a baseline reference
for the improvement brought by the innovation module, which can effectively reflect the
improvement brought by the proposed module for the change detection task.

(2) Feature extraction module: In HFA-GCN, we designed a feature extraction mod-
ule to better obtain change information in remote sensing images. To demonstrate the
effectiveness of using the feature extraction module, we replaced it with the commonly
used feature extraction network resnet-18 (named Res-HFA-GCN). On all three datasets,
the performance of Res-HFA-GCN was inferior to that of HFA-GCN, thus proving the
effectiveness of the feature extraction module.

(3) Hierarchical feature association module: We analyzed whether the hierarchical
feature association module can provide better performance for the overall change detec-
tion network. We simply used the feature concat, instead of the proposed hierarchical
feature association module, and we can see a significant decrease in the performance of
the network, which shows that modeling neighbor-order feature information is beneficial
to enhance the representation of effective information and reduces the representation of
redundant features.

(4) Global correction module: We analyzed whether the global correction module can
provide better performance for the overall change detection network. First, we directly
removed the GC module, which means removing the global information introduction
and feature reuse, and compared it to the proposed overall network model, which lacks
the global information correction, and showed a significant performance degradation.
Secondly, in order to verify that the global information extracted by the module came from
the bitemporal image features, rather than the change features themselves, we removed the
use of bitemporal image features from the GC input and replaced them with the change
features themselves. We named it ‘without reuse image features’ (w/o GC-RIF), and
the results show that the use of extracted features brings a performance improvement.
This shows that the global semantic information embedded in the image features is very
important for the change detection task.

4. Conclusions

We investigated the effective utilization of features at different levels and the impor-
tance of global information for change detection tasks. We propose HFA-GCN, in which
the hierarchical feature association module models the association relationships between
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features at different levels to more fully utilize the extracted features, whereas the global
correction module achieves more effective extraction and utilization of global features by
reusing the features and mining the global information of the image to correct the change
detection features. Adequate experiments were conducted on three publicly available
datasets, LEVIR-CD, GZ-CD, and CDD. The experimental results show that the extracted
networks are highly competitive. Due to the use of the hierarchical feature association
module and the global correction module, increased convolution, and the use of global
linear mapping, the disadvantages of this model are high computational effort, many
parameters, and high resource consumption, as show in Table 5, and future work will
investigate this model in a lightweight manner.

Table 5. Experimental results of different ablation and HFA-GCN on efficiency comparison.

Methods Base Res-HFA-GCN w/o HFA w/o GC w/o GC-RIF HFA-GCN

FLOPs(G) 153.71 253.47 160.29 306.01 317.32 317.48
Params(M) 3.02 24.73 2.91 15.57 15.60 15.60
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