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Abstract: With the continuous development of surface observation methods and technologies, we
can acquire multiple sources of data more effectively in the same geographic area. The quality
and availability of these data have also significantly improved. Consequently, how to better utilize
multi-source data to represent ground information has become an important research question
in the field of geoscience. In this paper, a novel model called multi-modal transformer cascaded
fusion net (MMTCEN) is proposed for fusion and classification of multi-modal remote sensing data,
Hyperspectral Imagery (HSI) and LiDAR data. Feature fusion and feature extraction are the two
stages of the model. First, in the feature extraction stage, a three-branch cascaded Convolutional
Neural Network (CNN) framework is employed to fully leverage the advantages of convolutional
operators in extracting shallow-level local features. Based on this, we generated multi-modal long-
range integrated deep features utilizing the transformer-based vectorized pixel group transformer
(VPGT) module during the feature fusion stage. In the VPGT block, we designed a vectorized
pixel group embedding that preserves the global features extracted from the three branches in a
non-overlapping multi-space manner. Moreover, we introduce the DropKey mechanism into the
multi-head self-attention (MHSA) to alleviate overfitting caused by insufficient training samples.
Finally, we employ a probabilistic decision fusion strategy to integrate multiple class estimations,
assigning a specific category to each pixel. This model was experimented on three HSI-LiDAR
datasets with balanced and unbalanced training samples. The proposed model outperforms the other
seven SOTA approaches in terms of OA performance, proving the superiority of MMTCEN for the
HSI-LiDAR classification task.

Keywords: deep learning; multi-head self-attention (MHSA); multi-modal transformer cascaded
fusion net (MMTCEN); HSI-LiDAR classification

1. Introduction

In recent years, with the continued advancement of remote sensing technology and the
enlargement of data-gathering sources, remote sensing imagery has recently emerged as
one of the key methods for learning about the characteristics of the Earth’s surface and has
achieved remarkable success in several fields, including the distribution of water resources,
vegetation cover, and land use [1-3]. Nowadays, it is normal practice to gather remote
sensing data for the same area from many sources. The availability of these data is high,
so it has become possible to utilize images acquired by different sensors for surface cover
object description [4-6].

Multi-modal data can provide varied information, for example, hyperspectral imagery
(HSI) can provide rich spectral information of features, while LiDAR data contains highly
accurate three-dimensional topographic information about the terrain and features. HSI
provides a more precise description of spectral characteristics, facilitating feature classi-
fication. However, HSI's spatial resolution is typically low, and its optical image can be
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easily affected by environmental factors such as the atmosphere, clouds, rain, and snow,
leading to unstable data quality. LIDAR is unaffected by light and climate [7,8], which can
compensate for HSI's limitations and provide new approaches for classifying land cover
in complicated scenarios. Moreover, LiDAR data also includes rich spatial information
in three dimensions, and it can produce more accurate classification results for surface
covers with similar spectral curves but differing heights. As a result, when it comes to
characterizing the ground surface, HSI and LiDAR data are complementary to one another.
The two of them also cooperate in the categorization of ground features, which can have an
effect of “one plus one is greater than two” in the classification outcomes.

Due to the high dimensionality of HSI and LiDAR data after fusion, which may contain
some irrelevant or redundant information, HSI must be downscaled before feeding the
fused data into the classifier. Researchers have suggested a few dimensionality reduction
techniques to address this issue, including principal component analysis (PCA) [9-11],
linear discriminant analysis (LDA) [12,13], and Isometric Feature Mapping (ISOMAP) [14].
A popular strategy in the early stages of classifying HSI-LiDAR fusion data is to extract
feature properties of features using machine learning, which can be pixel-based or object-
based. Pixel-based methods, such as the well-known support vector machine (SVM) [15,16],
random forest (RF) [17], and Artificial Neural Networks (ANN) [18], rely solely on the
spectral features of each pixel in the scene, assigning a class to each pixel without consid-
ering the correlation between neighboring pixels. Object-based classification approaches,
in contrast, merge neighboring pixels into an object as a unit for classification, such as
Decision Tree (DT) [15] and Naive Bayes Classifier (Bayes) [17].

As the amount of data and computational power continue to increase, many algorith-
mic improvements have been discovered. Deep learning can better utilize massive data and
computational resources, while reducing the need for human intervention and automati-
cally learning deeper features from data, thus achieving better performance than traditional
machine learning. In recent years, deep learning has been successfully applied to target
detection [19,20], semantic segmentation [21,22], and super-resolution reconstruction of
remote sensing images [23,24], as well as multi-modal data fusion and classification [25,26].
Convolutional Neural Network (CNN) plays a crucial role in enhancing classification accu-
racy and automatically learning features in HSI-LiDAR multi-modal data categorization.
CNNis are classified as unsupervised and supervised, and when algorithms are trained
without the use of labeled samples, they are referred to as unsupervised training, and
when they are taught using labeled examples, they are referred to as supervised training.
Patch-to-Patch Convolutional Neural Network (PToP CNN) is an unsupervised feature ex-
traction network proposed by Zhang et al. [27] that intends to combine multi-scale features
among various source data and categorize them. Rasti et al. [28] proposed a fusion model
with unsupervised sparse and low-rank decomposition to extract low-rank fusion features
from HSI-LiDAR data, allowing the classification map transition to be more natural and
smooth, resulting in a softer, homogeneous, and coherent fused classification map. For
supervised training techniques, Xia et al. [29] developed the semisupervised graph fusion
(SSGF) approach to model the 3D spatial information of the major components of HSI and
LiDAR, respectively, to obtain new features and categorize them.

Despite achieving some success, the single-branch-based CNN feature extraction
method still has several flaws due to its limited receptive area and information loss. Re-
searchers have suggested multi-branch-based feature extraction techniques to address
these issues. Hang et al. [30] introduced a simple two-branch coupled CNN that extracts
features from HSI and LiDAR separately and then combines these heterogeneous data
for classification using feature-level and decision-level fusion approaches. Zhao et al. [31]
introduced a new fused HSI-LiDAR classification network called hierarchical random walk
network (HRWN), which integrates dual-channel feature extraction and the hierarchical
random walk technique to increase classification accuracy. Unlike previous models, a
similar double-concentrate network (SDCN) proposed by Zhu et al. [32] first uses the
double-concentrate structure to extract the features in the HSI, and then integrates the
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LiDAR information on top of it. This is conducted to highlight the distinctions between
spatial and band features and boost the model’s sensitivity to particular data.

The data dimension and information increase when HSI-LiDAR is used as the input
data, yet there is a significant degree of overlap between this information. The attention
mechanism was incorporated into the model by the researchers to aid in the model’s capac-
ity to pay greater attention to essential feature information and enhance its generalization
ability [33-35]. Li et al. [36] utilized three components of a two-channel CNN, multi-scale
attention model and long and short-term memory CNN, to form a network A(3) CLNN for
fusion and classification of multi-modal data to improve the predictive ability of the model.
Mohla et al. [37] proposed a feature fusion and extraction framework called FusAtNet, a
model that uses a self-attention mechanism for HSI to highlight its spectral features and
a cross-attention mechanism for LiDAR to highlight the morphological features in HSI.
Wang et al. [38] used a network called multi-attentive hierarchical fusion net (MAHiDFNet),
which employs a new Modal Attention Module (MA) for feature interaction and integration
of spatial, spectral, and elevation information extracted from the three branches in order to
generate integrated modal features for HSI- LIDAR feature-level fusion classification.

Additionally, the transformer model has been successfully used to classify data from
multi-modal remote sensing data. The transformer’s self-attention mechanism can be
used to learn the global information of multi-modal data interaction. Building on this,
Ding et al. [39] proposed the global-local transformer network (GLT-Net) for capturing
the global-local correlation features of the input data, which is effective in improving the
results. Zhang et al. [40] proposed a local information interaction transformer (LIIT) model
to overcome the problem of insufficient or redundant complementary information between
HSI and LiDAR data by dynamically fusing multi-modal features through the transformer,
which also yielded good results.

Although feature extraction for HSI and LiDAR data has advanced due to the devel-
opment of deep learning, there are still several issues with the fusion and categorization of
multi-modal data. For instance, the model performs badly on a smaller number of classes
as a result of the imbalance of labeled training samples [41,42], and high-dimensional
data necessitates more computational resources, which also makes model training more
challenging [43,44]. In this paper, as a starting point to address the aforementioned issue, a
framework called multi-modal transformer cascaded fusion net (MMRCEFN) is suggested,
which can be applied to the categorization of multi-modal remote sensing data. This model
combines two stages, feature extraction and feature fusion, and the former of which offers
a three-branch cascaded CNN framework for extracting shallow characteristics from the
combined HSI-LiDAR data, such as spectral, spatial, and 3D spatial features. We generate
multi-modal long-range integrated information using the transformer-based VPGT module
during the deep feature fusion stage, and the MASH in this module properly accounts for
the correlation and heterogeneity between multi-modal data. Finally, we create a land cover
categorization map by pixel-by-pixel estimating the probability distribution of each group.

The following is a summary of this essay’s main points.

1. This paper proposes a model for classifying data from multiple modalities, including
HSI-LiDAR. In the feature extraction stage, a three-branch cascaded CNN module
is used to extract spatial-spectral-3D terrain data. During the feature fusion stage,
the VPGT method takes into account the correlation and heterogeneity among the
multi-modal data and generates fusion features to improve classification accuracy.

2. We introduce a straightforward yet efficient vectorized pixel group embedding in
the feature fusion stage, which maintains detailed information of the feature maps
in a non-overlapping multi-channel manner. Additionally, we employ the MASH
with DropKey approach to address the issue of overfitting. The combination of these
two techniques effectively captures long-range correlation information among the
multi-modal features.
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3. We conduct numerous balanced and unbalanced sample tests on three HSI-LiDAR
datasets, and the results demonstrate that our proposed method outperforms the
state-of-the-art (SOTA) method we compare it with.

The rest of the paper is organized as follows: Section 2 provides a detailed description
of our proposed MMTCEN model. Section 3 presents the three HSI-LiDAR datasets used in
this experiment, along with extensive experiments and analyses comparing them to seven
other state-of-the-art (SOTA) methods. Finally, Section 4 presents the general conclusions
drawn from the study.

2. Methodology
2.1. Over Architecture

The MMTCEN’s framework overview diagram is shown in Figure 1. The network
framework is designed to utilize a Convolutional Neural Network (CNN) feature extrac-
tion backbone and a transformer-based VPGT feature fusion backbone for fusion and
classification of HSI and LiDAR data. The proposed feature extraction backbone primarily
consists of three branches: the spectral branch (6 —spec) for HSI, the spatial branch (65 —spa)
for HSI, and the LiDAR branch (61;p4r). Among them, the 6y sy method employs 1D
convolution as the feature extraction unit to extract the spectral data from the HSI, while
the g spq and d1;p ar methods use 2D convolution to extract the spatial data from the HSI
and LiDAR, respectively.

.. . . I
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Figure 1. Overall architecture of the MMTCEFN.

To extract the spectral, spatial, and elevation data from the raw data, we first extract
the HSI-patch and LiDAR-patch that are centered on each pixel in the paired HSI-LiDAR
data in both the height and width dimensions. We then input the two patches into the HSI
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branch and LiDAR branch of the feature extraction backbone. Second, as the VPGT module
is capable of capturing the global information of multi-modal features and adaptively
learning the link between the features, we superimpose the feature maps produced by
the three branches and employ the VPGT module for multi-modal feature fusion. Finally,
to preserve the spatial integrity of the input data, we use a global average pooling layer
instead of a fully connected layer to generate a classification probability map based on the
number of categories.

The samples for this study were split into three groups: the training set, the validation
set, and the test set. The training set is used to update the network model’s parameters
throughout the training process. The validation set is utilized to describe the network
structure and alter the model parameters, and the test set is used to evaluate the model’s
performance and generalization ability.

2.2. Feature Extraction Backbone

Considering that HSI-LiDAR data have distinct features, in order to enhance the
diversity and richness of feature extraction, we adopt a three-branch CNN structure as
the backbone for HSI-LiDAR data. Each branch is responsible for extracting the spectral
information, spatial information, and elevation information from the data. g spa, 65 —spec,
and J;;4,, each consist of four layers. Layers 2, 3, and 4 are similar in design to Layer 1, with
the exception that the output feature map’s channel count is in the shape of an inverted
pyramid. The distinction is that the number of output channels from Layer 1 to Layer 4 is
256, 128, 64, and 32.

The architectural diagram of the layer of the dy_sp, branch of the HSI (shown in
Figure 2) is used to illustrate its structure and role in detail. The layer of the dy s,
branch consists of a parallel structure of a 3 x 3 2D convolutional layer and a1 x 12D
convolutional layer, using a convolutional kernel of size three to expand the receptive
field and improve the ability of localized feature extraction, and a 1 x 1 convolutional
kernel for distinguishing the difference between different bands. The design of the parallel
structure can improve the network’s ability to perceive features of different complexity.
To ensure that the gradient is more stable during the backpropagation process during
training, and to avoid the phenomenon of gradient disappearance or gradient explosion,
a BN (batch normalization) layer is added after each convolutional layer, and finally, the
parallel structure is designed to increase the nonlinear relationship between layers through
the ReLU (rectified linear unit) activation function, and we define the final output of this
branch to be the feature extraction branch. We define the final output feature map of this
branch as Ky _sp,. Unlike the 6y gy, branch, the 6y —_spec branch and the dp;par branch
use a serial cascade structure to construct the serialized network. The Jy_spec branch
uses a one-dimensional convolutional layer with a convolutional kernel size of one, a
one-dimensional BN layer, and a ReLU activation layer composition to extract the spectral
information in the HSI. The 61 ;p ag branch uses a 3 x 3 2D convolution, a 2D BN layer, and
an activation function to extract the terrain height features in the LiDAR data. Similarly, the
final output feature maps of these two branches are defined as Ky —spec and KpipAr- Based
on the ResNet [45] structure, we collect all the feature maps output from Layers 1-4, and
here we represent the feature maps output from the three branches as Equation (1):

Ko = Fo + 19Ky TooW) +1h), )

where be{H-spec, H-spa, LIDAR}, L&(1, 2, 3, 4}, Fy, denotes the features of the input three
branches, K represents the feature map output from the Lth Layer of the bth branch. W},
represents the size of the convolution kernel. In the dp s branch of HSI, Wll3 e Rk,
in the 0y _sp, branch of HSI, W%J € R¥3 & R and in the 6;;p4g branch, WL e R3%3,
‘o0’ represents the convolution operation, rL is the increased bias, and ‘0’ represents activa-
tion function ReLU.
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Figure 2. HSI spatial branch layer network architecture.

In order to extract the joint features of the HSI-LiDAR data more efficiently and to
improve the recognition accuracy of the target objects by the advantages complementing
each other, the output features of the three branches need to be superimposed. This
generates a new superimposed joint feature vector Kjoint, which can be defined as:

K]oint = KHfspec > I<Hfspa > KLiDAR/ (2)

where the term ‘<" refers to concatenation. Kjgine contains a wealth of topographic, spectral,
and spatial data. Next, the stacked joint features are fed into the VPGT block, capturing
the correlations and interdependencies between the branches and automatically assign-
ing different weights to different features while suppressing the response to noise and
irrelevant information.

2.3. Feature Fusion Backbone

The CNN structure has a potent feature extraction capability that allows it to share
the weight parameters and local perception of the image through the convolutional layer
while also learning the shallow and deep features in the image automatically. However,
CNN’s local perception capability restricts to some extent its capacity to extract features
from multi-modal fusion data. In contrast, transformer can learn the correlation between
different source features through the self-attention mechanism and effectively capture
the long-distance dependencies and interaction information between multi-modal data.
Therefore, the feature fusion in this work uses the transformer-based vectorized pixel group
transformer (VPGT) block.

The vectorized pixel group embedding and transformer encoder block are the two
components of the VPGT block suggested in this study. The input feature maps are trans-
formed into continuous visual embedding vectors using vectorized pixel group embedding,
which are then used as inputs to the transformer encoder block to extract and fuse features.
The multi-head self-attention mechanism (MHSA) with DropKey and the Multi-Layer
Perceptron (MLP) layer are the two components of the transformer encoder block.

2.3.1. Vectorized Pixel Group Embedding

The embedding layer in the original Vision Transformer (VIT) [46] is to reduce the
whole input image to zero, cut it into one non-overlapping patch, and feed one patch as a
token into the model for processing. When the input data is a feature map, patch embedding
is performed to split the whole feature map into a series of patch blocks, and the pixels
within each patch block are expanded into a vector, and these vectors are concatenated
to form a vector matrix. This method contains only a small portion of local information
within each patch, and its contextual and interaction information is in blocks, which is not
conducive for establishing inter-feature dependencies.

Instead of patch embedding, we suggest using a pixel embedding layer to address
this issue. Each pixel in the entire multi-modal fusion feature map will be expanded into a
vector through the vectorized pixel embedding process. This will allow each pixel to be
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mapped one-to-one with the vector, allowing each pixel to be viewed as an independent
entity rather than a component of the region as in the case of patch embedding. The
vectorized pixel embedding may retain the detail information and long range dependence
information of the feature map more completely, allowing the network to better capture
the correlation between multi-modal features.

The embedding layer was originally meant to convert discrete pixel points into a
continuous low-dimensional vector space. However, employing ordinary convolution as
the embedding layer for fused data results in an excessive number of parameters, which
lowers the model’s training effectiveness. As a result, group convolution was used as the
embedding layer in this study. The difference between grouped convolution and standard
convolution is shown in Figure 3. Assuming the input feature map is MeRE*CxHXW,
where B stands for the batchsize, C for the feature map’s channel count, and H and W stand
for the feature map’s width and height, respectively. First, we need to divide the feature
map M into n relatively independent groups, and the number of channels of both input
and output can be evenly divisible by the number of groups n, that is:

M= {M;, My, M;3,...,M;,...,Mp}, 3)

where n is the number of groups, and the number of channels in batch M; is C/n, that is,
M;eREX(C/n)xHxW Then, a different convolution operation is performed on each group
to obtain the output feature map of each group M

MM = M;coW; + 13, 4)

where W; is the size of the convolution kernel for each group, and r; is the increased bias
of the ith group convolution. Finally, the n group output feature maps are then stitched
together to generate the input feature map of the transformer encoder layer M°"":

M°4 = Concat (M§™, M§™, M§™, ..., M{P™, ..., M), ®)

Group’

/

Convolution | Convolation

V- Vi A AVANRY \
Sy |y |y Plal S ON !
a1 1 3 5 B |
| S | S | S | g‘ = IR |\\ (I |
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Figure 3. Comparison of standard convolution and grouped convolution. (a) Standard convolution.
(b) Group convolution.

Group convolution reduces the number of parameters, which considerably improves
computing performance when compared to ordinary convolution. When dealing with
multi-modal fusion features, group convolution can better maintain the independent
information across features, which is helpful for transferring all of the information into
the transformer encoder layer for feature fusion and screening. We next create vectorized
pixel group embedding layers using group convolution, and to increase the stability of
the mapping process, we add a BN layer and activation function ReLU behind each group
convolution layer.
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2.3.2. Transformer Encoder Block
Mulit-Head Self-Attention with DropKey

One of the most important parts of the transformer encoder block is MHSA [47], which
builds long-distance dependencies by determining the attentional weights between each
position in the input sequence vectors and the other positions in order to better capture
the contextual information in the sequence vectors. By using three independent linear
transformations to divide each element of the input sequence vector into the three vector
subspaces Q (query), K (key), and V (value), MHSA then learns the connections and features
among the various subspaces using multiple attention heads. Finally, the output vector
matrix of MHSA is obtained by stitching together the outputs of many attention heads and
mapping them to the final output space using linear transformations. Figure 4b,c depict
how the MHSA was implemented. Assuming for a moment that our input is a 3D matrix,
XBeRH*WXC where H and W stand for the 3D matrix’s length and breadth, respectively,
and C for the number of channels. In order to create a 2D matrix patch XZERSXC, we next
compress this 3D matrix into a 2D space, where S is created by multiplying H by W. The
patch X2 is mapped by a linear transformation to three independent vectors, Q, K, and V,
whose expressions are given below:

Q = X2WQ K = X2WK, v = x2wV, (6)

where WQ, WK and WV are C x C matrix parameters, QeRS*C KeRS*C, and VERS*C.
Q, K, and V are then mapped into n groups into n vector subspaces, that is, there are a total
of n attention heads with the following expression:

Q = {Q11Q2/Q3//~--rQir--~/Qn}/
K:{K11K2/K3//"'/Ki/°"/Kn}/ (7)
V={Vy,Vy,Vs,,...,Vi,...,Vn},

and at this time, Qy, I, and V,eRS* (C/n), Next, we need to calculate the similarity between

Q and K using softmax, the formula is shown in Equation (8):

QK
Vi

where Z; stands for the score that is weighed by the ith head’s attention. The result of
dot product of Q; and K is the length of the projection of one vector on the other vector,
which can be used to reflect the similarity between the two vectors. The gradient value of
softmax backpropagation reaches an extremely small value and is vulnerable to gradient
vanishing when the value of Q;K{ is high. To solve this problem, dividing +/dj in Equation
(8) controls the variance to obtain a value of one. The final step is to multiply the similarity
vector produced from softmax by V; to obtain the attention value for each head. The n
heads need to be combined in the final output and then multiplied by a projection matrix
W? to obtain the output Z matrix of the MHSA with the following formula:

Z; = Attention(Q;, K;, V;) = Softmax( )V, (8)

Z = Concat(Zy,Zy,...,2Z;,...,Zn)W°, 9)

MHSA is prone to overfitting in few-shot scenarios, and people often introduce the
commonly used Dropout method in CNNSs to solve this problem. However, the use of
such random dropout operations in MHSA may destroy the probability distribution of
the attention weights, thus leading the model to over-focus on locally specific information.
This paper introduces the recently proposed Dropkey approach as a result. The Dropkey
methodology, in contrast to the conventional Dropout method, employs the key as its
base unit and executes the Dropkey operation before computing the attention matrix
(as illustrated in Figure 4c), that is, before softmax. This strategy enhances the model’s
generalizability by capturing significant information from a global perspective. The drop
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ratio of Dropkey in the model also changes on different datasets, which is discussed
in Section 3.4.2.
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Figure 4. (a) Transformer encoder overview. (b) Structure of MHSA. (c) Self-attention layer
with DropKey.

Multi-Layer Perceptron

To increase the expressiveness of the model, nonlinear transformations are applied
to the MHSA results using the MLP layer. The MLP layer in transformer is typically
composed of two linear transformations and an activation function, where the first linear
transformation weights and sums the inputs, the second maps them to a new space, and
the activation function nonlinearly transforms the output. The output of the MLP layer can
be defined as:

MLP(X) = T](O, xWq + bl)WZ + b, (10)

where x is the input. Wy, by and W, b, are the weights and biases of the first and second
linear transformations, respectively. ‘n’ is the nonlinear activation function.

A layer normalization (LN) layer is added before the MHSA and MLP layers to
normalize the input, which accelerates model convergence and improves its robustness.
Meanwhile, the whole transformer encoder block is connected together by residual struc-
tures [45] (as shown in Figure 4a).

3. Experiments and Analysis

In order to validate the effectiveness of the proposed multi-modal fusion model
MMTCEN under balanced and unbalanced samples, we conducted extensive experiments
using three HSI-LiDAR datasets.

3.1. Experimental Datasets

Three HSI-LiDAR datasets in total are used in this study, including two common
public datasets Houston dataset and MUUFL dataset, and one HSI-LiDAR dataset created
by the authors, named Wuhan dataset. The HSI images, LIDAR-based DSM images, and
category information of the three datasets are shown in Figures 5-7, and the detailed
information of each of the three datasets is described below.

1.  Houston dataset: This dataset was acquired at the GRSS Data Fusion Contest 2013
and covers the University of Houston campus and the surrounding urban area. The
number of HSI image bands totaled 270, with wavelengths ranging from 364 to
1046 nm. The spatial size of the HSI and DSM is 1905 x 349 image elements, and the
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spatial resolution is 2.5 m. The dataset has a total of 15 feature classes and the detailed
information of each class is shown in Figure 5.

Label Color Class Name Samples
1 Health grass 1374
2 I Stressed grass 1454
3 I Synthetic grass 759
4 | 1 Trees 1264
5 Soil 1298
6 N Water 339
7 Residential 1476
8 Commercial 1354
9 Road 1554
10 Highway 1424
11 Railway 1566
12 Parking lot 1 1429
13 Parking lot 2 632
14 Tennis court 513
15 Running track 798
Totle 17,234
(c)

Figure 5. Original HSI, LiDAR-based DSM and number of samples in Houston dataset. (a) Original
HSI. (b) LiDAR-based DSM. (c) Category details.

2.

MUUFL dataset: The University of Southern Mississippi Gulf Park Campus is where
the MUUFL Gulfport dataset, which includes HSI and LiDAR data for the campus
area, was gathered. The raw HSI image has 72 bands and 325 x 337 pixels. There are
64 remaining bands after the noisy bands—the first four and the last four bands—are
eliminated. The lower right corner of the original HSI image contains invalid regions
that require cropping, and the cropped HSI and DSM dimensions are 325 x 220 x 64.
The scene’s pixels were manually classified into a total of 11 classifications. However,
mostly grass (label 2) refers to a surface that is clearly covered with grass, and mixed
ground surface (label 3) refers to a surface that may include a mixture of grass, soil,
dirt, etc.

Label Color Class Name Samples
1 [ Trees 23,246
2 I Mostly grass 4270
3 BN Mixed ground surface 6882
4 B Dirt and sand 1826
5 Road 6687
6 Water 466
7 Building shadow 2233
8 ] Building 6240
9 [ Sidewalk 1385
10 I Yellow curb 183
11 Cloth panels 269

Totle 53,687

(c)

Figure 6. Original HSI, LIDAR-based DSM and number of samples in MUUFL dataset. (a) Original
HSI. (b) LiDAR-based DSM. (c) Category details.

3.

Wuhan dataset: This dataset was acquired on 14 March 2023, in Wuhan, Hubei
Province, China. The raw HSI data underwent preprocessing, which included at-
mospheric, geometric, and radiometric correction. Before creating a comprehensive
digital surface model, the raw point cloud data was filtered and downsampled to
remove noise and unnecessary points. Finally, the HSI was positioned in accordance
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(b)

with the LiDAR-based DSM utilizing ground-based individual control points to en-
sure spatial coherence between the two sources of data. The HSI images have a total of
270 bands with a wavelength range between 402-1031 nm and a spectral resolution of
3 nm. The spatial size of HSI and DSM is 2500 x 1140 pixels with a spatial resolution
of 0.4 m. After comparing the features with Google Maps, a total of eight land cover
features were tagged.

Label Color Class Name Samples
1 [ ] Vegetation 377,569

2 [ ] Bare land 36,894

3 ] Dead wood 86,715

4 [ Plowland 128,006

5 Cropland 360,256

6 Parking lot 153,176

7 ] Road 73,455

8 I Building 433,706
Totle 1,649,777

(©)

Figure 7. Original HSI, LIDAR-based DSM and number of samples in Wuhan dataset. (a) Original
HSI. (b) LiDAR-based DSM. (c) Category details.

3.2. Experimental Setting

(1) Parameter settings: All experiments in this study were implemented using the
Pytorch deep learning framework in Python. The PC used for all trials had an Intel(R)
Xeon(R) Gold 5218R processor, an NVIDIA GeForce RTX 3080 graphics card, 128GB of
system RAM, and Windows 10. To minimize the impact of unexpected errors and ensure
the accuracy and stability of the results, we set the training epoch to 100 in the experiments
and averaged all experimental results over 10 runs.

(2) Sample setup: To validate the effectiveness of our proposed model in dealing
with balanced and unbalanced samples, we use unbalanced training samples from the
Houston and Wuhan datasets and balanced training samples from the MUUFL dataset. In
the Houston dataset and the Wuhan dataset, 5% and 1% of the total number of samples
are considered as the training set, while 75% and 10% of the total number of samples are
considered as the validation set, respectively. The MUUFL dataset uses 150 pixels per
category as the training set and 95% of the total sample size as the validation set.

(3) Input patch size setting: The patch size in the input model influences the model’s
capacity to acquire receptive field and extract features from the original HSI-LiDAR data.
A smaller patch can minimize the model’s training time, but it will lose some contextual
information. Larger patches can aid the model in detecting more spatial correlation infor-
mation, but they can also reduce its computational speed and consume more memory. To
establish the best patch input size, we conducted a series of experiments on three datasets,
gradually increasing the patch size from 3 x 3 to 15 x 15, while accounting for the impacts
of experimental accuracy and training time. Finally, in order to obtain the greatest com-
promise between experimental effect and training duration, we chose 11 x 11 as the patch
input size for the three datasets.

(4) Learning rate setting: The learning rate controls the step size of the parameter
update, and it controls the process of finding the minimum value of the loss function of
the model in the parameter space. We tested five values of 1 x 1073,1 x 1074, 5 x 1074,
1 x 107, and 5 x 10~?, and Figure 8 displays the performance of these three datasets
under different learning rates. We set the learning rate to 1 x 10~ for the Houston and
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Wuhan datasets and 1 x 102 for the MUUFL dataset based on the results represented in
the figure.

98 T T T T T

o o
S [=
T T
1 |

Overall accuracy (%)
S
1

90 -

88 I @ —Houston 7
—&— MUUFL

86 - WuHan _

1 1 1 1 1
1x10° 1x10™ 5x10™ 1x10° 5x10°
Learning Rate

Figure 8. Comparison of the OA of three datasets under different learning rates.

(5) Evaluation criteria: In this experiment, the classification effect is evaluated using
the overall accuracy (OA), average accuracy (AA), and Kappa coefficient. OA is the ratio
of correctly categorized samples to all samples, and it is used to assess the classifier’s
overall classification ability. AA is the average accuracy of each category, which is capable
of accurately reflecting how the classifier classified various categories. The confusion
matrix, which may be used to assess the model’s resilience and stability, is the basis for the
calculation of the Kappa coefficient.

3.3. Comparison Methods

We chose seven traditional classifiers for comparison in order to verify the classification
performance of the proposed multi-modal fusion framework, including 3D-CNN, DFFN,
SSFTT, SpectralFormer, HRWN, MAHiDFNet, and GLT-Net.

1. 3D-CNN [48]: 3D convolution is created from 2D convolution to extract spectral and
spatial features from the input data. In this study, a 3D-CNN with four convolutional
layers and two pooling layers was used.

2. DFEN [49]: DFEN uses residual learning to optimize multiple convolutional layers in
constant mappings, resulting in a deeper network while also facilitates network training.

3. SSFTT [50]: This model combines CNN and transformer to classify HSI data using
spectral-spatial feature tokenization. Spatial-spectral feature extraction module first
extracts shallow features, which are then turned into input features for transformer
using a Gaussian weighted feature tokenizer, followed by feature learning and classi-
fication using transformer encoder.

4.  SpectralFormer [51]: To learn the feature representation in HSI images, the Spec-
tralFormer uses the transformer encoder. In contrast to VIT, which only takes into
account spatial information, SpectralFormer takes into account both spectral and
spatial information.

5. HRWN [31]: Hierarchical random walk network is a joint classifier for HSI and
LiDAR data. HRWN employs a two-branch CNN to capture spectral and spatial
information and uses a hierarchical random walk layer to explore the local similarity
of pixel-level pairs.

6. MAHiDFNet [38]: The multi-attentive hierarchical fusion net realizes feature-level
HSI image and LiDAR data fusion and classification by extracting the spatial-spectral
information and elevation information separately through a three-branch network,
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and then fusing the features using a hierarchical fusion strategy through Modal
Attention Module (MA).

7. GLTI-Net [39]: The global-local transformer network achieves full mining and uti-
lization of global-local spectral spatial information and complementary information
of multi-modal data by fully utilizing the advantages of convolution operators in
characterizing locally relevant features and the potential of the transformer framework
in learning long-range dependencies, thus realizing the fusion and classification of
HSI and LiDAR data.

Based on the Houston dataset, Table 1 displays the quantitative evaluation findings
of MMTCEN and seven other classical classifiers, and Figure 9 displays the classification
maps produced by the eight methods. As noted in Table 1, MMTCFEN outperformed
all other classifiers in terms of accuracy, with average OA, AA, and Kappa coefficient
accuracies of 96.63%, 96.09%, and 93.36%, respectively. However, SSFIT also performs
well on this dataset, achieving the maximum precision in the categories of “Stressed grass
(label 2)”, “Synthetic grass (label 3)”, “Soil (label 5)”, and “Running track (label 15)”.
The classification findings of GLT-Net exhibit good consistency with the real labels and
have high confidence, as indicated by the fact that its Kappa coefficient is the highest
and is 0.76% higher than that of the suggested MMTCEN. It is worth mentioning that
3D-CNN performs quite poorly in the Houston dataset, earning an OA of only 65.13%,
and that the average accuracy of all categories fail to exceed 80% during the validation
process. This is because, when dealing with multi-modal fusion data with inadequate
samples, the little amount of data and the diversity of data sources prevent 3D-CNN
based on the conventional attention mechanism from producing the expected results.
Nevertheless, by utilizing the self-attention mechanism, SSFTT, GLT-Net, and MMTCFN
are able to adaptively correlate and model the variability between a variety of distinct data
sources, improving classification accuracy. By analyzing Figure 9, it is clear that 3D-CNN
has significant background noise issues. The multi-modal fusion data classifiers HRWN,
MAHiDFNet, GLT-Net, and MMTCEFN have a considerable advantage in extracting fused
features, allowing them to provide a more fine-grained feature cover classification map.

(a) Ground-truth map

RIS ~~-..7.,; o V‘ﬁ _—
7 & 3 A £ F i
R W g ] ey
5
-

(i) MMTCFN(96.63%)

) )
Figure 9. The land cover classification map generated through eight methods in the Houston dataset

(5% of training set).

The accuracy evaluation and classification result graphs for the MUUFL dataset are
displayed in Table 2 and Figure 10. We chose 150 pixels from each category to use as
training samples in order to conduct the experiments with balanced samples. Table 2 shows
that none of the methods achieve an OA of more than 90%, and our suggested method
achieves better OA (89.59%), AA (91.29%), and Kappa coefficient (86.49%) than the others,
demonstrating the proposed method’s strong competitiveness in the classification of HSI-
LiDAR multi-modal fusion data. Although GLT-Net, MAHiDFNet, and SSFTT achieved
high accuracies that were second only to MMTCEN, their AAs were lower by 1.92%, 2.08%,
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(f) HRWN(85.48%) (2) MAHIDFNet(87.34%) (h) GLT-Net(88.66%) (i) MMTCEN(89.59%)

and 5.91%, respectively, than those of the suggested approaches. The classification diagram
shows that for “Mostly grass” (label 2) and “Mixed ground surface” (label 3), there is a
confounding phenomenon in all the approaches. This is because label 3 also has a ground
surface that is partially covered in weeds.

e

Figure 10. The land cover classification map generated through eight methods in the MUUFL dataset
(consider 150 pixels as the training set).

The classification impact of the Wuhan dataset is displayed in Table 3 and Figure 11.
This is the HSI-LiDAR dataset that we developed, with eight types of features manually
highlighted and huge gaps between feature classes. We finally settled on using 0.1% of the
total sample count as the training set and 10% of the total sample count as the validation and
test sets after conducting numerous experiments. On this dataset, the approach proposed in
this research produced the highest OA and Kappa coefficients, while GLT-Net produced the
highest AA. However, the performance results of SpectralFormer were unsatisfactory, and
overfitting occurred, and the integration of MMTCEN with Dropkey technology alleviated
the problem of model non-convergence in the case of inadequate samples. Although 3D-
CNN performs badly on the first two datasets, it performs well on the Wuhan dataset due
to 3D-CNN’s benefits in handling features with regular shapes and significant spectral
variances. Figure 11 shows that, in terms of visual impact, the feature categorization
maps created using all approaches are essentially similar with the information in Table 3.
However, compared to models with a single input port, the HRWN, MAHiDFNet, and
MMTCEN models with multiple branch input ports yield smoother and more precise
results. This is because the multi-branch input decreases information loss, preserving
and enhancing the model’s capacity to learn from the data. This further demonstrates the
importance of using multiple branches to extract and fuse spatial, spectral, and elevation
information in the data, respectively.
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Table 1. Quantitative evaluation of the Houston dataset using eight methods (%).

Methods
Label Train Test

3D-CNN DFFN SSFTIT SpectralFormer HRWN MAHiDFNet GLT-Net MMTCEN

1 68 961 80.12 +2.14 92.51 + 3.78 93.44 +0.26 94.11 + 1.08 91.59 + 0.25 98.06 + 0.70 94.15 + 0.48 98.65 & 0.37
2 72 1017 7443 £ 257 85.72 £+ 4.00 98.74 £+ 0.17 98.70 + 0.70 96.22 + 0.05 97.09 + 0.28 96.54 £+ 0.21 98.33 +0.35
3 39 556 67.19 + 1.61 99.03 £ 1.68 99.89 + 0.09 96.47 £+ 2.25 96.76 + 0.30 97.27 + 0.85 99.12 £+ 1.88 98.13 + 0.54
4 63 884 74.64 £+ 3.98 86.61 &+ 2.60 94.68 + 0.21 89.86 1 4.88 88.37 £+ 0.38 97.17 + 0.86 98.05 &+ 1.09 98.19 4 0.46
5 64 908 7093 +2.44 96.81 + 0.84 99.80 £ 0.08 98.04 +0.73 98.61 +0.11 99.76 + 0.27 99.10 £ 0.75 99.74 +0.32
6 16 237 46.67 +2.87 64.47 +15.37 78.14 £1.54 75.70 £ 3.53 60.59 £ 0.34 83.21 £2.32 97.14 + 0.62 89.70 £ 3.27
7 73 1033 76.67 £ 1.55 83.33 £2.76 92.74 + 0.28 82.19 +2.17 88.11 £ 0.13 94.68 + 0.46 94.64 +1.25 94.83 4 2.20
8 67 947 56.24 + 1.88 69.17 £+ 6.55 79.66 £ 0.99 79.62 £+ 2.56 64.73 £ 1.66 91.64 £ 1.16 90.59 + 1.52 95.97 4 1.08
9 77 1087 64.10 £+ 1.58 7744 £2.79 93.36 + 0.27 74.06 £1.75 80.37 £ 0.35 89.46 £+ 1.50 94.28 £+ 0.33 95.38 + 1.49
10 71 996 53.59 + 4.47 57.75 + 10.68 88.63 + 0.39 81.99 +2.17 73.59 + 047 91.27 +1.19 91.92 +1.94 97.17 & 0.36
11 78 1096 57.66 + 1.56 64.09 £+ 5.34 94.29 +0.23 7442 +£1.13 80.53 £ 0.19 95.26 + 0.40 96.54 £+ 0.95 97.10 4= 1.18
12 71 1000 56.04 £+ 4.59 81.06 £ 5.25 78.52 £ 0.56 81.86 + 4.54 75.32 £ 0.39 86.88 + 1.12 92.68 +£1.77 95.38 + 2.93
13 31 442 72.35 +£1.30 76.02 + 9.51 95.16 + 0.44 30.09 &+ 3.33 80.36 & 0.33 89.50 &+ 2.54 98.40 £ 0.46 83.71 £ 4.84
14 25 359 4891 +2.01 89.36 £ 2.44 97.72 £ 0.48 91.03 +4.39 98.61 + 0.00 96.10 +2.24 98.69 + 1.18 99.05 & 0.67
15 39 558 55.66 + 1.11 96.16 £+ 3.37 100.00 + 0.00 99.07 £+ 0.44 93.01 £ 0.16 98.42 £+ 0.64 99.96 + 1.38 99.96 + 0.07
OA 65.13 + 0.20 82.69 + 2.68 92.24 +0.15 84.26 +1.24 84.52 +0.17 94.05 + 0.34 95.34 + 0.19 96.63 & 0.35

AA 63.28 + 0.25 81.30 £ 3.09 92.32 +0.14 83.15 +£ 141 84.45 £ 0.16 93.72 + 0.47 95.04 4+ 0.48 96.09 £ 0.43

K x 100 62.26 + 0.22 79.12 £2.90 91.62 £ 0.17 82.98 £+ 1.34 83.26 £ 0.19 93.57 +£0.37 94.12 + 0.68 93.36 + 0.38

Table 2. Quantitative evaluation of the MUUFL dataset using eight methods (%).
Methods
Label Train Test :

3D-CNN DFFN SSFTT SpectralFormer HRWN MAHiDFNet GLT-Net MMTCEFN

1 150 22,083 89.35 £+ 0.05 88.24 +£2.10 92.20 £+ 0.03 89.15 £+ 0.95 90.10 £+ 0.69 89.95 £+ 0.98 91.28 £+ 0.59 92.27 + 0.81
2 150 4056 81.04 + 0.09 73.79 + 1.00 78.50 £+ 0.12 71.09 £+ 2.16 79.70 £ 2.16 72.58 £ 5.77 79.63 + 3.63 83.08 4= 4.70
3 150 6537 61.84 +0.10 63.15 £ 3.69 61.91 + 0.08 61.32 +3.35 67.73 £+ 6.63 78.19 £+ 3.83 74.29 +1.84 79.36 = 1.21
4 150 1734 88.02 £+ 0.08 85.78 £ 2.50 92.92 + 0.21 80.99 £ 6.04 90.72 + 0.54 91.22 £ 3.51 9148 +£1.74 92.54 4+ 3.65
5 150 6352 80.83 &+ 0.06 79.21 £1.35 85.37 + 0.06 77.02 £ 1.51 81.73 + 1.64 86.97 + 1.45 88.90 £ 0.64 87.74 £ 1.42
6 150 442 99.41 £ 0.11 98.73 +0.23 99.77 + 0.00 99.91 £ 0.18 99.41 +0.18 99.28 £+ 0.09 98.39 + 0.34 99.50 + 0.17
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Table 2. Cont.
Methods
Label Train Test -

3D-CNN DFFN SSFTT SpectralFormer HRWN MAHiDFNet GLT-Net MMTCEN

7 150 2121 93.14 +0.18 88.28 + 0.78 91.75 + 0.25 87.92 + 0.69 90.10 + 2.01 94.91 4+ 1.21 91.43 +1.54 94.38 + 1.69

8 150 5928 94.62 + 0.05 94.55 + 0.55 95.46 + 0.05 95.02 4+ 0.22 94.77 + 0.40 94.71 +1.32 96.48 £ 1.09 94.82 + 0.78

9 150 1315 68.53 + 0.33 53.32 £ 2.80 55.03 + 0.13 54.10 +4.73 68.06 &+ 6.16 78.81 £ 3.04 71.74 + 1.39 83.24 4 2.58
10 150 173 89.83 + 0.28 87.75 +1.23 86.71 + 0.52 87.86 + 1.75 90.64 + 0.85 96.18 + 1.53 95.24 +1.71 98.38 4= 0.57
11 150 255 99.37 + 0.19 98.75 £ 0.38 99.61 =+ 0.00 98.20 4+ 0.91 98.59 + 0.19 98.51 + 1.30 99.49 + 1.52 98.90 + 1.48
OA 84.43 + 0.03 82.64 £ 1.11 85.89 + 0.02 82.22 + 0.96 85.48 + 1.39 87.34 + 0.53 88.66 + 0.12 89.59 4 0.38

AA 86.00 & 0.06 82.87 + 0.52 85.38 + 0.07 82.05 +1.14 86.50 4 1.44 89.21 + 0.44 89.37 + 0.59 91.29 4 0.90

K x 100 79.97 £+ 0.04 77.72 +1.33 81.69 + 0.03 77.08 £ 1.20 81.27 +1.75 83.65 + 0.65 84.29 +1.17 86.49 + 0.48

Table 3. Quantitative evaluation of the Wuhan dataset using eight methods (%).
Methods
Label Train Test :

3D-CNN DFFN SSFTT SpectralFormer HRWN MAHiDFNet GLT-Net MMTCEN

1 377 37,755 93.23 + 0.46 90.92 + 1.46 93.93 + 0.37 89.04 +0.83 91.58 + 0.43 95.21 + 0.50 95.41 £ 0.68 94.70 + 0.42

2 36 3688 35.82 +3.95 61.25 + 17.37 77.99 £+ 1.09 00.00 + 0.0 34.84 £ 7.67 77.62 £+ 3.46 76.94 + 1.10 79.37 + 1.82

3 86 8674 82.61 + 0.91 81.36 +2.27 87.08 + 0.46 55.25 + 20.14 82.65 + 0.46 88.10 + 0.78 87.49 +0.70 88.48 1 1.26

4 128 12,809 89.77 + 0.59 91.73 £+ 0.69 86.91 + 0.27 89.89 + 1.23 91.47 £+ 0.32 93.52 + 0.93 93.52 + 0.54 92.50 + 0.64

5 360 36,021 92.67 +0.12 90.47 + 0.85 91.88 + 0.37 88.59 + 0.53 90.97 + 0.21 94.58 + 0.58 93.69 + 0.16 93.42 +0.28

6 156 15,615 83.25 +1.48 84.60 + 2.32 92.22 4+ 0.10 64.37 +2.51 87.53 +0.29 89.56 + 1.17 88.18 + 0.82 90.61 + 0.72

7 73 7344 84.90 + 0.87 84.06 + 1.76 88.01 + 1.36 61.04 + 6.04 84.55 + 0.27 89.33 + 0.76 87.24 + 0.97 90.20 + 0.73

8 433 43,376 94.86 + 0.19 95.04 £+ 0.22 97.24 +0.17 96.25 + 0.46 95.78 + 0.15 95.67 + 0.37 96.66 + 0.21 97.30 =+ 0.09
OA 90.12 + 0.18 89.93 + 0.76 92.70 + 0.10 83.57 +1.22 90.11 + 0.23 92.78 + 0.18 92.22 4+ 0.02 93.36 = 0.14

AA 82.14 + 0.53 85.00 4+ 2.48 89.42 + 0.09 68.05 + 3.14 82.42 +1.01 90.10 + 0.68 91.19 £ 0.34 90.07 + 0.33

K x 100 87.74 £ 0.23 87.54 + 0.95 90.96 + 0.13 79.39 £+ 1.61 87.75 +0.28 91.33 +0.23 91.60 &+ 0.99 91.78 £ 0.17
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(h) GLT-Net(92.22%)

Figure 11. The land cover classification map generated through eight methods in the Wuhan dataset
(0.1% of training set).

In conclusion, MMTCEN performs well across the three datasets and generates feature
classification maps with the most visual resemblance to ground truth. Multiple experiments
have shown that the fusion and categorization of HSI-LiDAR data can be of great potential
with the help of MMTCEN.

3.4. Discussion
3.4.1. Ablation Experiments

We conducted various ablation experiments utilizing three datasets to confirm the
validity of the whole proposed model. Next, this is covered in two parts.

(1) With/without LiDAR-based DSM: The outcomes with and without LiDAR-based
DSM ablation trials are shown in Table 4 and Figure 12. According to the results in Table 4,
the OA is increased in each of the three datasets with HSI-LiDAR data input by 2.71%,
2.94%, and 5.93% when compared to HSI data alone. In particular, the improvement is most
significant in the Wuhan dataset. Figure 12 demonstrates the effect of having and not having
LiDAR-based DSM on the classification accuracy for each category. The classification effect
after adding LiDAR-based DSM is clearly superior to that of using simply HSI data for
classification for the majority of features, as can be shown in the figure. However, for
some highly insensitive features, such as “water (label 6)” in the Houston dataset and
“mostly grass (label 2)” in the MUUFL dataset, their spatial variation is small, adding
LiDAR-based DSM may introduce noise and unnecessary information, thus affecting the
classification effect.

Table 4. Ablation experiments on the presence or absence of LIDAR-based DSM on three datasets.
(%).

Houston MUUFL Wuhan
OA AA Kappa OA AA Kappa OA AA Kappa
Without LiDAR-based DSM  93.92 93.46 93.43 86.65 90.31 82.84 87.43 80.46 84.43
With HSI-LiDAR 96.63 96.09 93.36 89.59 91.29 86.49 93.36 90.07 91.78
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Figure 12. The impact of LIDAR-DSM on the classification results of MMTCEFEN. (a) Houston.
(b) MUUFL. (c) Wuhan.

T-distributed stochastic neighbor embedding (t-SNE), a nonlinear dimensionality re-
duction approach, is used to visualize high-dimensional data in a two-dimensional space
and determine the separability across categories through observation. The results of visual-
ization without LiDAR-based DSM visualization are shown in Figure 13a—c, whereas the
results of visualization with HSI-LiDAR are shown in Figure 13g—i. The three datasets show
that the addition of LIDAR-based DSM creates a more distinct boundary of separability
between features. This is because of the fact that HSI alone is not sensitive enough to the
3D morphological information of the features, whereas LiDAR-based DSM can provide
highly accurate morphological and elevation features, and the combination of HSI and
LiDAR-based DSM can obtain more comprehensive and detailed 3D spatial information
while retaining the rich spectral information.

(2) With/without VPGT: The most crucial part of the proposed MMTCEN classifier
is the VPGT module, which plays a vital role in the accuracy of the classification results
by feature fusion and thus extracting deep features. The quantitative evaluation of the
accuracy of with/without VPGT is shown in Table 5 and Figure 14, and the findings reveal
that the VPGT plays a substantial role in enhancing the majority of the features from the
three datasets’ classification accuracy. As shown in Figure 14b, a total of eight feature classes
had the highest OA in the results using VPGT in the MUUFL dataset. In addition, VPGT
pays more attention to those features with similar spectral characteristics but different
spatial information, in which case VPGT introduces the stereo features of LIDAR data into
HSI to help distinguish between, for example, “Residential (label 7)” and “Commercial
(label 8)” in the Houston dataset. Figure 13d—f display the visualization results without
VPGT, allowing one to observe the serious feature mixing present in the MUUFL dataset
and Wuhan dataset. In the Wuhan dataset, none of the features are separable from each
other, and the correlation between each of the two features “vegetation (label 1)” and

“parking lot (label 6)” is weak. The Kappa coefficient of the Houston dataset without VPGT
is higher than that with VPGT, which indicates that the Houston dataset also has a strong
classification ability without VPGT, and thus the boundary between different features in
Figure 13d is clearer. Overall, the model including VPGT enhances feature fusion capability
and successfully optimizes the results of feature categorization.
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Figure 13. T-SNE visualization of dimensionality reduction for high-dimensional data3.

Table 5. Ablation experiments on the presence or absence of VPGT on the three datasets (%).
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Figure 14. The impact of VPGT on the classification results of MMTCEN. (a) Houston. (b) MUUFL.

(c) Wuhan.
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3.4.2. Analyzing the Effect of DropKey Ratio

DropKey is a novel regularizer that can be used in MHSA to effectively mitigate the
overfitting problem in the case of insufficient samples. The impact of various DropKey
ratios on the classification accuracy of the three datasets, with DropKey ratios ranging from
0.1 to 0.9, is investigated in this experiment. The outcomes of the three datasets in OA
are displayed in Table 6. The table clearly shows that as the DropKey ratio rises, the total
classification accuracy of the three datasets tends to rise and subsequently fall. The best
training outcomes were obtained with the MUUFL and Wuhan datasets at DropKeys of 0.7
and 0.6, respectively, whereas Houston had the highest OA at a DropKey of 0.3. Therefore,
for the Houston, MUFFL, and Wuhan datasets, their DropKey ratios were set to 0.3, 0.7,
and 0.6, respectively.

Table 6. The analysis was conducted on the use of different DropKey ratios across the three datasets (%).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Houston 96.28 96.51 96.63 96.40 96.10 95.85 96.39 96.20 95.74
MUUFL 88.46 87.87 88.58 88.37 88.22 89.12 89.59 89.11 88.98
Wuhan 92.96 93.17 93.22 92.36 93.12 93.36 93.42 93.61 93.34

3.4.3. Robustness Evaluation

We conducted experiments on three datasets using progressively less training samples
to compare with seven other distinct methods in order to verify the robustness of the
proposed MMTCEN. For the three datasets, we used 75%, 50%, and 25% fewer training
samples than originally planned. In particular, we used 0.075%, 0.05%, and 0.025% of
the labeled samples as training sets for Wuhan and 3.75%, 2.5%, and 1.25% of the data as
training samples for Houston. As balanced training samples, we chose 112, 75, and 38 pixels
from each category in the MUUFL dataset. The overall accuracy results of this experiment
are displayed in Figure 15. We observe that, when compared to the other seven examined
approaches, the proposed MMTCEFN performs better under various training sample ratios.
We find that the proposed MMTCEN approach can significantly outperform the other
methods at all four sample ratios, despite the Houston dataset having the fewest pixels in
the labeled samples. Additionally, the accuracy of MMTCEN has the least declining trend
as the training sample ratio gradually declines. This is particularly evident in the Wuhan
dataset, further demonstrating the proposed MMTCEN’s strong robustness.
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Figure 15. Performance of OA with different proportions of training samples on three datasets.
(a) Houston. (b) MUUFL. (¢) Wuhan.

4. Conclusions

In this study, the MMTCEN model is proposed for the fusion and classification of multi-
modal remote sensing data. Two stages of feature extraction and feature fusion are present
in the model. To begin, the feature extraction module uses a three-branch cascade CNN
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framework to extract shallow characteristics from HSI-LiDAR data, such as spatial features,
spectral features, and 3D topography features. The recognition and classification accuracy
can be improved by using the three-branch cascade CNN by obtaining more detailed and
rich feature information. On this basis, we employ the VPGT block in the feature fusion
stage to generate multi-modal long-range integrated features. We created a vectorized
pixel group embedding for the VPGT block to preserve the global detail information of the
feature map in the form of non-overlapping multiple groups. Additionally, we employ the
transformer model, which combines MHSA and MLP, to fully exploit the correlation and
heterogeneity among multi-modal features to interact with and integrate various features
in order to provide more expressive and discriminative feature representations. Among
them, we include the DropKey technique in MHSA to alleviate the overfitting issue. We
contrast the proposed MMTCEN approach with seven additional SOTA algorithms on three
HSI-LiDAR datasets. The experimental results demonstrate that the proposed approach
performs better than existing methods and has tremendous potential for HSI-LiDAR data
fusion and classification tasks.
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