Real-Time Retrieval of Daily Soil Moisture Using IMERG and GK2A Satellite Images with NWP and Topographic Data: A Machine Learning Approach for South Korea
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Materials
2.3. Input Variables Used to Perform Soil Moisture Modeling
2.4. Model Development and Performance Evaluation
3. Results and Discussion
3.1. Model Performance Evaluation
3.2. Comparison with Other Soil Moisture Data
3.3. Qualitative Evaluation with Extreme Weather Events
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AMI | Advanced Meteorological Imager |
AutoML | Automated machine learning |
CC | Correlation coefficient |
DCT-PLS | Penalized least square regression based on discrete cosine transform |
DEM | Digital Elevation Model |
DNN | Deep neural networks |
DRF | Distributed random forest |
DSR | Downward shortwave radiation |
DSSF | Total downward surface shortwave flux |
ECDF | Empirical cumulative density function |
ECMWF | European Centre for Medium-Range Weather Forecasts |
ERA5 | ECMWF Reanalysis 5 |
GBM | Gradient boosting machine |
GK2A | GEO-KOMPSAT-2A |
GLDAS | Global Land Data Assimilation System |
GLM | Generalized linear model |
GPM | Global Precipitation Measurement |
GRNN | Generalized regression neural network |
IMERG | The Integrated Multi-Satellite Retrievals for GPM |
JAXA | Japan Aerospace Exploration Agency |
KMA | Korea Meteorological Administration |
LDAPS | Local Data Assimilation and Prediction System |
LE | Latent heat flux |
LST | Land surface temperature |
LOYO | Leave-one-year-out cross-validation |
MAE | Mean absolute error |
MBE | Mean Bias Error |
ML | Machine learning |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NASA | National Aeronautics and Space Administration |
NDVI | Normalized difference vegetation index |
NGA | U.S. National Geospatial-Intelligence Agency |
NTR | Near-infrared transformed reflectance |
NWP | Numerical weather prediction |
QC | Quality control |
RMSE | Root mean square error |
SMAP | Soil Moisture Active Passive |
Appendix A
References
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- Iyakaremye, V.; Zeng, G.; Yang, X.; Zhang, G.; Ullah, I.; Gahigi, A.; Vuguziga, F.; Asfaw, T.G.; Ayugi, B. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Sci. Total Environ. 2021, 790, 148162. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Saleem, F.; Iyakaremye, V.; Yin, J.; Ma, X.; Syed, S.; Hina, S.; Asfaw, T.G.; Omer, A. Projected Changes in Socioeconomic Exposure to Heatwaves in South Asia Under Changing Climate. Earth’s Future 2022, 10, e2021EF002240. [Google Scholar] [CrossRef]
- Paik, S.; Min, S.K.; Zhang, X.; Donat, M.G.; King, A.D.; Sun, Q. Determining the Anthropogenic Greenhouse Gas Contribution to the Observed Intensification of Extreme Precipitation. Geophys. Res. Lett. 2020, 47, e2019GL086875. [Google Scholar] [CrossRef]
- Eccles, R.; Zhang, H.; Hamilton, D. A review of the effects of climate change on riverine flooding in subtropical and tropical regions. J. Water Clim. Chang. 2019, 10, 687–707. [Google Scholar] [CrossRef]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A Review of the Relationships between Drought and Forest Fire in the United States. Glob. Chang. Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Kim, N.; Lee, Y. Development of Integrated Crop Drought Index by Combining Rainfall, Land Surface Temperature, Evapotranspiration, Soil Moisture, and Vegetation Index for Agricultural Drought Monitoring. Remote Sens. 2021, 13, 1778. [Google Scholar] [CrossRef]
- da Silva, R.C.; de Marchi Neto, I.; Seifert, S.S. Electricity Supply Security and the Future Role of Renewable Energy Sources in Brazil. Renew. Sustain. Energy Rev. 2016, 59, 328–341. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Griffiths, H.; Dorigo, W.; Xaver, A.; Gruber, A. Surface soil moisture estimation: Significance, controls and conventional measurement techniques. In Remote Sensing of Energy Fluxes and Soil Moisture Content; Petropoulos, G.P., Ed.; Taylor and Francis: Oxford, UK, 2013; Chapter 2; pp. 29–48. [Google Scholar]
- Li, X.; Liu, L.; Duan, Z.; Wang, N. Spatio-Temporal Variability in Remotely Sensed Surface Soil Moisture and Its Relationship with Precipitation and Evapotranspiration during the Growing Season in the Loess Plateau, China. Environ. Earth Sci. 2014, 71, 1809–1820. [Google Scholar] [CrossRef]
- McColl, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The Global Distribution and Dynamics of Surface Soil Moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Jim, B. Soil Water Status: Content and Potential; App. Note: 2S-I; Campbell Scientific, Inc.: Logan, UT, USA, 2001. [Google Scholar]
- Jaria, F. Soil Moisture Measurement. Available online: https://www.mcgill.ca/globalfoodsecurity/files/globalfoodsecurity/2012_soilmoisture.pdf (accessed on 12 August 2023).
- Noborio, K. Measurement of Soil Water Content and Electrical Conductivity by Time Domain Reflectometry: A Review. Comput. Electron. Agric. 2001, 31, 213–237. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Imran Khan, M.; Nawaz, S.; Shamshiri, R.R.; Aziz, M.; et al. Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability 2022, 14, 11538. [Google Scholar] [CrossRef]
- Stevens Water Monitoring Systems Inc. HydraProbe Soil Sensor, User’s Manual; Stevens Water Monitoring Systems Inc.: Portland, OR, USA, 2018; Available online: https://www.stevenswater.com/resources/documentation/hydraprobe/HydraProbe_Manual_Jan_2018.pdf (accessed on 12 August 2023).
- Rowlandson, T.L.; Berg, A.A.; Bullock, P.R.; Hanis-Gervais, K.; Ojo, E.R.; Cosh, M.H.; Powers, J.; McNairn, H. Temporal Transferability of Soil Moisture Calibration Equations. J. Hydrol. 2018, 556, 349–358. [Google Scholar] [CrossRef]
- Entekhabi, D.; Yueh, S.; O’Neill, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Brown, M.; Chan, S.; Colliander, A.; Crow, W.T.; et al. SMAP Handbook Soil Moisture Active Passive: Mapping Soil Moisture and Freeze/Thaw from Space; JPL Publication: Pasadena, CA, USA, 2014. [Google Scholar]
- Neelam, M.; Mohanty, B.P. Global Sensitivity Analysis of the Radiative Transfer Model. Water Resour. Res. 2015, 51, 2428–2443. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1940 to present. In Copernicus Climate Change Service (C3S) Climate Data Store (CDS); ECMWF Reading: London, UK, 2018; Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 1 May 2022).
- Lee, C.S.; Sohn, E.; Park, J.D.; Jang, J.D. Estimation of Soil Moisture Using Deep Learning Based on Satellite Data: A Case Study of South Korea. GISci. Remote Sens. 2019, 56, 43–67. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, S.; Bai, X.; Wu, L.; Cao, Y.; Li, H.; Wang, M.; Li, C.; Yang, Y.; Hu, Z.; et al. Comparison of soil moisture products from microwave remote sensing, land model, and reanalysis using global ground observations. Hydrol. Process. 2020, 34, 836–851. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.-J.; Kim, J.; Lee, Y. Deep Learning-based Retrieval of Daily 500-m Soil Moisture for South Korea. J. Korean Cartogr. Assoc. 2017, 17, 109–121. [Google Scholar] [CrossRef]
- Cheng, M.; Zhong, L.; Ma, Y.; Zou, M.; Ge, N.; Wang, X.; Hu, Y. A Study on the Assessment of Multi-Source Satellite Soil Moisture Products and Reanalysis Data for the Tibetan Plateau. Remote Sens. 2019, 11, 1196. [Google Scholar] [CrossRef]
- Fan, L.; Xing, Z.; De Lannoy, G.; Frappart, F.; Peng, J.; Zeng, J.; Li, X.; Yang, K.; Zhao, T.; Shi, J.; et al. Evaluation of Satellite and Reanalysis Estimates of Surface and Root-Zone Soil Moisture in Croplands of Jiangsu Province, China. Remote Sens. Environ. 2022, 282, 113283. [Google Scholar] [CrossRef]
- Kim, N.; Kim, K.; Lee, S.; Cho, J.; Lee, Y. Retrieval of Daily Reference Evapotranspiration for Croplands in South Korea Using Machine Learning with Satellite Images and Numerical Weather Prediction Data. Remote Sens. 2020, 12, 3642. [Google Scholar] [CrossRef]
- Zhou, L.; Pan, S.; Wang, J.; Vasilakos, A.V. Machine Learning on Big Data: Opportunities and Challenges. Neurocomputing 2017, 237, 350–361. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, J.; Yue, H. Combined Sentinel-1A with Sentinel-2A to Estimate Soil Moisture in Farmland. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 1292–1310. [Google Scholar] [CrossRef]
- LeDell, E.; Poirier, S. H2O automl: Scalable automatic machine learning. In Proceedings of the AutoML Workshop at ICML, Online, 17–18 July 2020; Volume 2020. [Google Scholar]
- Babaeian, E.; Paheding, S.; Siddique, N.; Devabhaktuni, V.K.; Tuller, M. Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning. Remote Sens. Environ. 2021, 260, 112434. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA) Climate Characteristics of Korea. Available online: https://www.weather.go.kr/w/obs-climate/climate/statistics/korea-char.do (accessed on 10 August 2023).
- National Institute of Meteorological Sciences Climate Change Report of the Korean Peninsula over the Last 100 Years (11-1360620-000132-01). Available online: http://www.nims.go.kr/flexer/view.jsp?FileDir=/DF978&SystemFileName=20180816153001_0.pdf&ftype=pdf&FileName=%ED%95%9C%EB%B0%98%EB%8F%84%20100%EB%85%84%EC%9D%98%20%EA%B8%B0%ED%9B%84%EB%B3%80%ED%99%94_%EB%B3%B4%EA%B3%A0%EC%84%9C.pdf&org=KOR_OP_DF_MV_2&idx=4168&c_idx=755&seq=0 (accessed on 10 August 2023).
- Jung, Y.Y.; Shin, W.J.; Seo, K.H.; Koh, D.C.; Ko, K.S.; Lee, K.S. Spatial Distributions of Oxygen and Hydrogen Isotopes in Multi-level Groundwater across South Korea: A Case Study of Mountainous Regions. Sci. Total Environ. 2022, 812, 151428. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Agricultural Sciences of Korean Rural Development Administration Korean Soil Information System—Topsoil Texture. Available online: http://soil.rda.go.kr/geoweb/soilmain.do# (accessed on 10 August 2023).
- Zhao, L.; Yang, K.; Qin, J.; Chen, Y.; Tang, W.; Lu, H.; Yang, Z.-L. The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sens. Environ. 2014, 152, 345–355. [Google Scholar] [CrossRef]
- National Institute of Agricultural Sciences of Korean Rural Development Administration Agricultural Weather Information Service. Available online: http://weather.rda.go.kr/w/analysis/inquiry.do (accessed on 2 March 2023).
- NASA GLOBAL PRECIPITATION MEASUREMENT—IMERG: Integrated Multi-satellitE Retrievals for GPM. Available online: https://gpm.nasa.gov/data/imerg (accessed on 12 April 2023).
- National Meteorological Satellite Center of Korea Meteorological Administration (NMSC of KMA) Geo-KOMPSAT-2A Overview. Available online: https://nmsc.kma.go.kr/enhome/html/base/cmm/selectPage.do?page=satellite.gk2a.fact (accessed on 1 January 2023).
- Han, K.-S.; Seong, N.-H. GK-2A AMI Algorithm Theoretical Basis Document (Vegetation Index/Fractiona Vegetation Cover) (Version 1.0); National Meteorological Satellite Center: Jincheon-gun, Republic of Korea, 2019; pp. 1–52. Available online: https://nmsc.kma.go.kr/homepage/html/base/cmm/selectPage.do?page=static.edu.atbdGk2a (accessed on 13 August 2023).
- Jang, J.; Lee, K.-T. GK-2A AMI Algorithm Theoretical Basis Document: RSR, DSR, and ASR (Version 1.1); National Meteorological Satellite Center: Jincheon-gun, Republic of Korea, 2019; pp. 1–42. Available online: https://nmsc.kma.go.kr/homepage/html/base/cmm/selectPage.do?page=static.edu.atbdGk2a (accessed on 12 August 2023).
- Lee, S.-J.; Youn, Y.; Sohn, E.; Kim, M.; Lee, Y. A Real-time Correction of the Underestimation Noise for GK2A Daily NDVI. Korean J. Remote Sens. 2022, 38, 1301–1314. [Google Scholar]
- NASA’s The Land Processes Distributed Active Archive Center (LP DAAC) VNP13A2 v001. Available online: https://lpdaac.usgs.gov/products/vnp13a2v001/ (accessed on 12 August 2023).
- Numerical Modeling Center of the Korea Meteorological Administration. Numerical Forecasting Takes Responsibility for the Weather and Climate Industries!–Utilization Guide of Numerical Weather Prediction Model Data for Activation of the Weather Industry; Publication Report Number: 11–1360395-000252-01; Numerical Modeling Center of the Korea Meteorological Administration: Seoul, Republic of Korea, 2013.
- Cho, D.; Yoo, C.; Im, J.; Cha, D.-H. Comparative Assessment of Various Machine Learning-Based Bias Correction Methods for Numerical Weather Prediction Model Forecasts of Extreme Air Temperatures in Urban Areas. Earth Space Sci. 2020, 7, e2019EA000740. [Google Scholar] [CrossRef]
- Kim, D.-J.; Kang, G.; Kim, D.-Y.; Kim, J.-J. Characteristics of LDAPS-Predicted Surface Wind Speed and Temperature at Automated Weather Stations with Different Surrounding Land Cover and Topography in Korea. Atmosphere 2020, 11, 1224. [Google Scholar] [CrossRef]
- USGS EROS Archive—Digital Elevation—Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1?qt-science_center_objects=0#qt-science_center_objects (accessed on 12 August 2023).
- Svoboda, M.; Hayes, M.; Wood, D. Standardized Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Gwak, Y.S.; Kim, Y.T.; Won, C.H.; Kim, S.H. The Relationships between Drought Indices (SPI, API) and In-situ Soil Moisture in Forested Hillslopes. WIT Trans. Ecol. Environ. 2017, 220, 217–224. [Google Scholar]
- Chen, T.; de Jeu, R.A.M.; Liu, Y.Y.; van der Werf, G.R.; Dolman, A.J. Using Satellite Based Soil Moisture to Quantify the Water Driven Variability in NDVI: A Case Study over Mainland Australia. Remote Sens. Environ. 2014, 140, 330–338. [Google Scholar] [CrossRef]
- Gu, Y.; Hunt, E.; Wardlow, B.; Basara, J.B.; Brown, J.F.; Verdin, J.P. Evaluation of MODIS NDVI and NDWI for Vegetation Drought Monitoring Using Oklahoma Mesonet Soil Moisture Data. Geophys. Res. Lett. 2008, 35, L22401. [Google Scholar] [CrossRef]
- Zuluaga, C.F.; Avila-Diaz, A.; Justino, F.B.; Wilson, A.B. Climatology and Trends of Downward Shortwave Radiation over Brazil. Atmos. Res. 2021, 250, 105347. [Google Scholar] [CrossRef]
- Jiang, Y.; Weng, Q. Estimation of Hourly and Daily Evapotranspiration and Soil Moisture Using Downscaled LST over Various Urban Surfaces. GISci. Remote Sens. 2017, 54, 95–117. [Google Scholar] [CrossRef]
- Rahimikhoob, A. Estimation of Evapotranspiration Based on Only Air Temperature Data Using Artificial Neural Networks for a Subtropical Climate in Iran. Theor. Appl. Climatol. 2009, 101, 83–91. [Google Scholar] [CrossRef]
- Feldhake, C.M.; Boyer, D.G. Effect of Soil Temperature on Evapotranspiration by C3 and C4 Grasses. Agric. For. Meteorol. 1986, 37, 309–318. [Google Scholar] [CrossRef]
- Eagleman, J.R. Pan Evaporation, Potential and Actual Evapotranspiration. J. Appl. Meteorol. Climatol. 1967, 6, 482–488. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Roca, J.; Noguès, M.; Mehling, H.; Hiebler, S. Immersion Corrosion Tests on Metal-Salt Hydrate Pairs Used for Latent Heat Storage in the 48 to 58 °C Temperature Range. Mater. Corros. 2002, 53, 902–907. [Google Scholar] [CrossRef]
- Schneider, T.; O’Gorman, P.A.; Levine, X.J. Water Vapor and the Dynamics of Climate Changes. Rev. Geophys. 2010, 48, RG3001. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Evapotranspiration Measurement Methods. Southwest Hydrol. 2008, 7, 22–23. [Google Scholar]
- Western, A.W.; Grayson, R.B.; Blöschl, G.; Willgoose, G.R.; McMahon, T.A. Observed Spatial Organization of Soil Moisture and Its Relation to Terrain Indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef]
- Qiu, Y.; Fu, B.J.; Wang, J.; Chen, L.D. Soil Moisture Variation in Relation to Topography and Land Use in a Hillslope Catchment of the Loess Plateau, China. J. Hydrol. 2001, 240, 243–263. [Google Scholar] [CrossRef]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. Index That Quantifies Topographic Heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Chen, Y.C.; Chang, K.T.; Wang, S.F.; Huang, J.C.; Yu, C.K.; Tu, J.Y.; Wang, C.W.; Liu, C.C. Controls of Preferential Orientation of Earthquake-and Rainfall-Triggered Landslides in Taiwan’s Orogenic Mountain Belt. Earth Surf. Process. Landf. 2019, 44, 1661–1674. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Prasad, A.; Iverson, L.; Liaw, A. Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Xue, L.; Liu, Y.; Xiong, Y.; Liu, Y.; Cui, X.; Lei, G. A Data-Driven Shale Gas Production Forecasting Method Based on the Multi-Objective Random Forest Regression. J. Pet. Sci. Eng. 2021, 196, 107801. [Google Scholar] [CrossRef]
- Sharma, G. Pros and cons of different sampling techniques. Int. J. Appl. Res. 2017, 3, 749–752. [Google Scholar]
- Korean Meteorological Administration (KMA) 2020 Extreme Climate Report. Available online: http://www.climate.go.kr/home/n_search/search_view.php?dist=&bbs_name=&no_bbs=6494&act=&go=&skind=all&sword=&bname=&s_keyword=%EC%9D%B4%EC%83%81%EA%B8%B0%ED%9B%84%EB%B3%B4%EA%B3%A0%EC%84%9C (accessed on 2 May 2022). (In Korean).
- Min, S.K.; Jo, S.Y.; Seong, M.G.; Kim, Y.H.; Son, S.W.; Byun, Y.H.; Lott, F.C.; Stott, P.A. Human Contribution to the 2020 Summer Successive Hot-Wet Extremes in South Korea. Bull. Am. Meteorol. Soc. 2022, 103, S90–S97. [Google Scholar] [CrossRef]
- Korean Meteorological Administration (KMA) 2021 Extreme Climate Report. Available online: http://www.climate.go.kr/home/n_search/search_view.php?dist=&bbs_name=&no_bbs=6609&act=&go=&skind=all&sword=&bname=&s_keyword=%EC%9D%B4%EC%83%81%EA%B8%B0%ED%9B%84%EB%B3%B4%EA%B3%A0%EC%84%9C (accessed on 2 May 2022). (In Korean).
- Korean Meteorological Administration (KMA) Distribution of Precipitation Deviation in July 2020. Available online: https://data.kma.go.kr/stcs/grnd/grndRnDmap.do?pgmNo=207 (accessed on 10 May 2023).
Soil Moisture Data | SMAP 1 | GLDAS 2 | ERA5 3 |
---|---|---|---|
Source | NASA | NASA | ECMWF |
Coverage | Global | Global | Global |
Update frequency | ≤50 h | Monthly | Daily |
Resolution (temporal/spatial) | Daily/9–36 km | Daily/0.25° (≈27.75 km) | Hourly/0.25° (≈27.75 km) |
Data Type | Input Variables | Spatial Resolution | Temporal Resolution | Update Frequency | Source |
---|---|---|---|---|---|
In situ data | Soil moisture (SM) (Depth: 0~10 cm) | Point | 10 min | 10 min | RDA |
Satellite data | Rainfall | 0.1° | Daily | 12 h | IMERG |
Normalized difference vegetation index (NDVI) | 2 km | Daily | Daily | GK2A | |
1 km | 8 days | - | VIIRS | ||
Downward shortwave radiation (DSR) | 2 km | 10 min | 10 min | GK2A | |
Numerical weather prediction Data | Total downward surface shortwave flux (DSSF) | 1.5 km | 3 h | 8 times per day | LDAPS |
Air temperature (Tair) | |||||
Land surface temperature (LST) | |||||
Soil temperature (Tsoil) (Depth: 0~10 cm) | |||||
Relative humidity (RH) | |||||
Latent heat flux (LE) | |||||
Topographic data | Slope, elevation, topographic ruggedness index (TRI), and aspect | 30 m | - | - | SRTM DEM |
Performance Indices | Equation |
---|---|
Mean bias error (MBE) | |
Mean absolute error (MAE) | |
Root mean square error (RMSE) | |
Correlation coefficient (CC) | , , |
Year | N | MAE | MBE | RMSE | CC |
---|---|---|---|---|---|
2014 | 6209 | 3.782 | −0.386 | 4.814 | 0.740 |
2015 | 6219 | 3.776 | −0.378 | 4.908 | 0.776 |
2016 | 5764 | 5.130 | 0.982 | 6.739 | 0.667 |
2017 | 5004 | 4.159 | 0.817 | 5.351 | 0.685 |
2018 | 4849 | 3.592 | −0.191 | 4.864 | 0.792 |
2019 | 4666 | 3.692 | 0.576 | 4.755 | 0.747 |
2020 | 4091 | 3.936 | 0.543 | 5.017 | 0.795 |
2021 | 4696 | 4.712 | −0.879 | 6.158 | 0.653 |
Avg. | 41,498 | 4.097 | 0.136 | 5.326 | 0.732 |
Year | N | MAE | MBE | RMSE | CC |
---|---|---|---|---|---|
2014 | 6209 | 3.670 | −0.816 | 4.737 | 0.765 |
2015 | 6219 | 3.847 | −0.957 | 5.030 | 0.775 |
2016 | 5764 | 5.158 | 0.872 | 6.780 | 0.664 |
2017 | 5004 | 4.235 | 0.688 | 5.446 | 0.679 |
2018 | 4849 | 3.686 | −0.362 | 5.005 | 0.791 |
2019 | 4666 | 3.737 | 0.323 | 4.825 | 0.744 |
2020 | 4091 | 3.997 | 0.340 | 5.086 | 0.783 |
2021 | 4696 | 4.723 | −0.969 | 6.162 | 0.660 |
Avg. | 41,498 | 4.132 | −0.110 | 5.384 | 0.733 |
Round | N | MAE | MBE | RMSE | CC |
---|---|---|---|---|---|
1 | 8191 | 2.708 | −0.032 | 3.781 | 0.877 |
2 | 8191 | 2.719 | 0.030 | 3.749 | 0.882 |
3 | 8191 | 2.730 | −0.045 | 3.793 | 0.877 |
4 | 8191 | 2.706 | −0.036 | 3.716 | 0.882 |
5 | 8191 | 2.701 | −0.027 | 3.749 | 0.876 |
Avg. | 8191 | 2.713 | −0.022 | 3.758 | 0.879 |
Round | N | MAE | MBE | RMSE | CC |
---|---|---|---|---|---|
1 | 8191 | 2.185 | 0.010 | 3.174 | 0.914 |
2 | 8191 | 2.268 | 0.052 | 3.236 | 0.912 |
3 | 8191 | 2.218 | −0.022 | 3.212 | 0.912 |
4 | 8191 | 2.194 | −0.048 | 3.145 | 0.916 |
5 | 8191 | 2.195 | −0.006 | 3.165 | 0.912 |
Avg. | 8191 | 2.212 | −0.003 | 3.186 | 0.913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-J.; Sohn, E.; Kim, M.; Park, K.-H.; Park, K.; Lee, Y. Real-Time Retrieval of Daily Soil Moisture Using IMERG and GK2A Satellite Images with NWP and Topographic Data: A Machine Learning Approach for South Korea. Remote Sens. 2023, 15, 4168. https://doi.org/10.3390/rs15174168
Lee S-J, Sohn E, Kim M, Park K-H, Park K, Lee Y. Real-Time Retrieval of Daily Soil Moisture Using IMERG and GK2A Satellite Images with NWP and Topographic Data: A Machine Learning Approach for South Korea. Remote Sensing. 2023; 15(17):4168. https://doi.org/10.3390/rs15174168
Chicago/Turabian StyleLee, Soo-Jin, Eunha Sohn, Mija Kim, Ki-Hong Park, Kyungwon Park, and Yangwon Lee. 2023. "Real-Time Retrieval of Daily Soil Moisture Using IMERG and GK2A Satellite Images with NWP and Topographic Data: A Machine Learning Approach for South Korea" Remote Sensing 15, no. 17: 4168. https://doi.org/10.3390/rs15174168
APA StyleLee, S. -J., Sohn, E., Kim, M., Park, K. -H., Park, K., & Lee, Y. (2023). Real-Time Retrieval of Daily Soil Moisture Using IMERG and GK2A Satellite Images with NWP and Topographic Data: A Machine Learning Approach for South Korea. Remote Sensing, 15(17), 4168. https://doi.org/10.3390/rs15174168