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Abstract: Soil moisture (SM) is an indicator of the moisture status of the land surface, which is useful
for monitoring extreme weather events. Representative global SM datasets include the National
Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP), the Global
Land Data Assimilation System (GLDAS), and the European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis 5 (ERA5), but due to their low spatial resolutions, none of these
datasets well describe SM changes in local areas, and they tend to have a low accuracy. Machine
learning (ML)-based SM predictions have demonstrated high accuracy, but obtaining semi-real-time
SM information remains challenging, and the dependence of the validation accuracy on the data
sampling method used, such as random or yearly sampling, has led to uncertainties. In this study,
we aimed to develop an ML-based model for real-time SM estimation that can capture local-scale
variabilities in SM and have reliable accuracy, regardless of the sampling method. This study was
conducted in South Korea, and satellite image data, numerical weather prediction (NWP) data, and
topographic data provided within one day were used as the input data. For SM modeling, 13 input
variables affecting the surface SM status were selected: 10- and 20-day cumulative standardized
precipitation indexes (SPI10 and SPI20), a normalized difference vegetation index (NDVI), downward
shortwave radiation (DSR), air temperature (Tair), land surface temperature (LST), soil temperature
(Tsoil), relative humidity (RH), latent heat flux (LE), slope, elevation, topographic ruggedness index
(TRI), and aspect. Then, SM models based on random forest (RF) and automated machine learning
(AutoML) were constructed, trained, and validated using random sampling and leave-one-year-out
(LOYO) cross-validation. The RF- and AutoML-based SM models had significantly high accuracy
rates based on comparisons with in situ SM (mean absolute error (MAE) = 2.212–4.132%; mean bias
error (MBE) = −0.110–0.136%; root mean square error (RMSE) = 3.186–5.384%; correlation coefficient
(CC) = 0.732–0.913), while the AutoML-based SM model tended to have a higher accuracy than the
RF-based SM model, regardless of the data sampling method used. In addition, when compared to in
situ SM data, the SM models demonstrated the highest accuracy, outperforming both GLDAS and
ERA5 SM data and well representing changes in the dryness/wetness of the land surface according
to meteorological events (heatwave, drought, and rainfall). The SM models proposed in this study
can, thus, offer semi-real-time SM data, aiding in the monitoring of moisture changes in the land
surface, as well as short-term meteorological disasters, like flash droughts or floods.

Keywords: soil moisture; random forest; automated machine learning; leave-one-year-out cross-
validation; real time
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1. Introduction

Climate change is increasing the risk and severity of drought in California, the Pacific
Northwest, the Western United States, and the Mediterranean region, among other areas [1].
Furthermore, the frequency of extreme heatwaves, which can accelerate droughts, has
increased compared to the past, and this trend is expected to continue [2,3]. In particular,
regions such as southern Pakistan, south–northern India, the Sahara, and southwestern
Africa are predicted to experience even more severe heat stress in the future [2,3]. Con-
versely, the risk of flooding due to increased rainfall is predicted to increase in temperate
regions of the Northern Hemisphere, western and eastern Eurasia, South Asia, Southeast
Asia, and the western Amazon [4,5]. These hydrological disasters could result in intense
damage and socioeconomic losses, including wildfires, decreased crop production, and
energy issues related to hydropower [6–8]. Thus, monitoring the moisture status of the
land surface is crucial. Soil moisture (SM), which is defined as the water present among soil
particles, is a hydrological factor that impacts surface–atmosphere interactions [9]. SM in-
teracts with the atmosphere through evaporation (from the land surface) and transpiration
(from plants) and influences water circulation by determining runoff and the infiltration
of precipitation [10,11]. Accurate estimation of SM is, thus, of major importance in terms
of monitoring hydrometeorological disasters, such as droughts and floods, and assessing
energy and water cycles.

In situ SM is measured using gravimetry, time domain reflectometry (TDR), and
dielectric impedance. The gravimetric technique measures the gravimetric water content
(mass of water per mass of dry soil) by weighing soil samples before and after removing
moisture [12]. It is low cost but time consuming in nature because it requires skilled
experience [13]. The TDR and dielectric impedance sensors measure volumetric moisture
content (the water volume per soil volume) [12]. The TDR determines the dielectric constant
by measuring the speed and time of electromagnetic waves [14]. Then, SM is found using a
calibration equation derived from the empirical relationship between the dielectric constant
and the volumetric moisture content of soils with different textures proposed by Topp
et al. (1980) [15]. It is less sensitive to changes in soil salinity, temperature, and soil texture,
and it can be non-destructively observed [16]. However, the installation cost is high, and
in wet soil with high salinity, there is a possibility of error due to loss of reflection and
increased conductivity [15,16]. The Hydraprobe sensor is a ratiometric coaxial impedance
dielectric reflectometer operating at a frequency of 50 MHz [17]. It measures both the real
and imaginary components of the dielectric permittivity using the ratio of the reflected
signal over incident signal [17]. Then, it calculates SM using a calibration equation based
on the real dielectric permittivity, unlike most other SM technologies based on the apparent
permittivity [17]. It is less affected by salts and temperature than TDR sensors because
of the delineation of the dielectric permittivity and operational frequency at 50 MHz [17].
However, given the natural fluctuations in SM levels over time, periodic updates to the
calibration equations are required to ensure accurate SM estimation [18]. These soil moisture
measurement techniques provide accurate SM information for each observation point, but
it is difficult and expensive to provide spatially continuous information.

Representative global SM datasets include those of the National Aeronautics and
Space Administration’s (NASA) Soil Moisture Active Passive (SMAP), the Global Land
Data Assimilation System (GLDAS), and the European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis 5 (ERA5) (Table 1). SMAP provides daily global SM data
derived using the brightness temperature measured via a passive microwave (L-band) ra-
diometer and the tau–omega radiative transfer model (RTM) [19]. The RTM is a model used
to determine brightness temperature based on ground and vegetation emissivity [19,20].
Surface emissivity changes at microwave frequencies are a result of variations in the di-
electric properties between dry and wet soils [20]. Thus, SM is inferred via the reverse
application of the RTM using brightness temperature [19]. GLDAS provides land products
such as SM, soil temperature, snowfall, and rainfall through the integration of satellite-
and ground-based observational data via advanced land surface modeling and data as-
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similation [21]. ERA5, which is the fifth-generation ECMWF reanalysis for global climate
and weather, provides hourly estimates of key atmospheric, ocean wave, and land surface
parameters through the assimilation of model data and worldwide observations [22]. The
SMAP, GLDAS, and ERA5 SM datasets are useful for observing soil moisture in global
regions because they comprise spatially and temporally continuous global SM data with
a short temporal resolution (hourly to daily) (Table 1). However, these datasets have a
relatively low spatial resolutions (9–36 km), limiting their ability to capture land surface SM
changes in local areas, and the GLDAS is only updated monthly, which makes it difficult
to quickly capture the moisture status of the land surface (Table 1). And, besides the
low spatial resolution, they also have limitations in terms of their accuracy. The GLDAS
data showed low accuracy in studies assessing SM accuracy in regard to the Korean [23]
and global regions [24]. The SMAP data had lower accuracy than the GLDAS data in the
Korean region [25]. The ERA5 data also had low accuracy in studies conducted in the
Tibetan Plateau region [26] and Jiangsu Province, China [27]. This result indicates that
these datasets are unsuitable for use in local SM monitoring due to their high inherent
uncertainties. As a result, such global-level data cannot be sufficiently applied to the
local-scale variabilities due to complex and heterogeneous land surfaces in countries like
South Korea [28].

Table 1. Representative global soil moisture data.

Soil Moisture Data SMAP 1 GLDAS 2 ERA5 3

Source NASA NASA ECMWF

Coverage Global Global Global

Update frequency ≤50 h Monthly Daily

Resolution
(temporal/spatial) Daily/9–36 km Daily/0.25◦

(≈27.75 km)
Hourly/0.25◦

(≈27.75 km)
1 Soil Moisture Active Passive; 2 Global Land Data Assimilation System; 3 ECMWF Reanalysis 5.

Meanwhile, with the development of machine learning (ML), it is possible to train
large amounts of data for prediction or classification [29]. As a result, it is possible to
generate estimates of SM not only in bare soil, but also in vegetation areas that are difficult
to calculate via physical techniques. In Liu et al. (2020) [30], SM in cropland was estimated
with high accuracy using ML methods, including a generalized regression neural network
(GRNN), random forest (RF), support vector regression (SVR), and deep neural networks
(DNN), with Sentinel-1 and Sentinel-2 data used as inputs (RMSE = 0.005–0.040 cm3/cm3,
CC ≥ about 0.900) [30]. A higher accuracy was obtained using RF and DNN than using
GRNN and SVR. In Lee et al. (2019) [23], SM modeling was performed using DNN and
various data (e.g., solar insolation, outgoing longwave radiation, broadband albedo, the
normalized difference vegetation index (NDVI), and precipitation). The model using
random sampling (RMSE = 3.644%, CC = 0.895) showed higher accuracy than the model
using yearly sampling (RMSE = 8.745%, CC = 0.473) [23]. However, there were fears that the
accuracy may greatly vary depending on the data sampling methods used, even though it
was a deep learning model. Automated machine learning (AutoML) is a recently developed
ML method that offers high productivity by automating time-consuming and repetitive
tasks involved in ML model development, such as selecting the best ML model among
various models and optimizing hyperparameters [31]. Babaeian et al. (2021) [32] generated
an AutoML-based SM model using NDVI and near-infrared transformed reflectance (NTR)
derived from unmanned aerial system (UAS) data and soil properties. The model had
high accuracy (RMSE < 0.020 m3/m3, CC > 0.900) [32]. However, because the results were
obtained through training and validation using the random sampling method, with only
nine images being acquired during winter (December–February) and early spring (March),
additional validation with sufficient data was necessary. Apart from that study, there has
been little discussion of AutoML-based SM prediction methods. In addition, as previous
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ML-based studies used input data that were not provided in semi-real time, the discussion
of real-time soil moisture information is still limited.

Therefore, in this study, we aimed to retrieve SM grid data that could accurately
capture local-scale variabilities in SM for complex and heterogeneous land surfaces in
countries such as South Korea. We also sought to develop a model based on ML techniques
(RF and AutoML) that could estimate daily SM in real time and calculate SM with stable
accuracy not only via a random sampling method, given the high accuracy demonstrated
in the previous studies [23,30,32], but also via a yearly sampling method. This study
was conducted in Korean regions for which in situ SM data were available. The RF- and
AutoML-based SM models used satellite image data, numerical weather prediction (NWP)
data, and topographic data provided within one day as the input data, and these data
were trained and validated using random sampling and yearly sampling methods. The
remainder of this paper is organized as follows: Section 2 describes the data used, pre-
processing, the input variables used in modeling, the model structure based on RF and
AutoML, and the performance evaluation method used. Section 3 presents an evaluation
of quantitative accuracy of SM predicted via the constructed models using in situ SM and
global SM data, and an evaluation of the qualitative accuracy of the results for extreme
weather events.

2. Data and Methods
2.1. Study Area

The study areas encompassed the country of South Korea, ranging from latitude
33.0◦N–38.7◦N to longitude 125.0◦E–129.6◦E (Figure 1). South Korea is situated in the
mid-latitude temperate climate zone and experiences four distinct seasons [33]. Spring and
autumn typically have clear and dry weather due to the influence of the migratory high
pressure, whereas summer is humid and hot due to the effects of the North Pacific high
pressure [33]. Winter is cold and dry due to the influence of continental high pressure [33].
Over a period of 106 years (from 1912 to 2017), the average annual temperature was 13.2 ◦C,
and the annual precipitation rate was about 1237.4 mm [34]. Geographically, the region is
characterized by the significant presence of the Taebaek Mountains in the east [35], resulting
in higher elevation in the east and relatively lower elevation in the west (Figure 1a). Most
of the topsoil consists of sandy loam, loam, silt loam, clay loam, silty clay loam, and loamy
sand (Figure 1b).
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2.2. Materials

To calculate daily SM in real time, we used satellite images, NWP data, and topo-
graphic data provided within 1 day. The data period lasted from March to November and
from 2014 to 2021 (Table 2). The winter season (December, January, and February) was
excluded because the accuracy of in situ SM data could be reduced due to snow cover
and soil freezing [37]. The Korean Rural Development Administration (RDA) in South
Korea provided SM data (unit: %) collected at 10 min intervals [38]. The SM data were
measured by a time domain reflectometry (TDR) sensor at a depth of 10 cm for more than
73 stations (as of November 2021). However, some of the measurements showed an abrupt
decrease in value (Figure 2a,b), and some SM stations were located in unsuitable places,
such as buildings and parking lots (Figure 3). For these reasons, only 23 SM stations were
selected by screening unsuitable places. Then, through a quality control (QC) process,
extremely low SM values less than negative 3 standard deviations from the daily mean SM
were eliminated (Figure 2c,d). The refined daily averages for the 23 stations were used to
develop and evaluate the SM models.

Table 2. Data used for soil moisture modeling.

Data Type Input Variables Spatial
Resolution

Temporal
Resolution

Update
Frequency Source

In situ data Soil moisture (SM)
(Depth: 0~10 cm) Point 10 min 10 min RDA

Satellite
data

Rainfall 0.1◦ Daily 12 h IMERG

Normalized difference vegetation index
(NDVI)

2 km Daily Daily GK2A

1 km 8 days - VIIRS

Downward shortwave radiation (DSR) 2 km 10 min 10 min GK2A

Numerical weather
prediction

Data

Total downward surface shortwave flux
(DSSF)

1.5 km 3 h
8 times
per day LDAPS

Air temperature (Tair)

Land surface temperature (LST)

Soil temperature (Tsoil)
(Depth: 0~10 cm)

Relative humidity (RH)

Latent heat flux (LE)

Topographic
data

Slope, elevation, topographic ruggedness
index (TRI), and aspect 30 m - - SRTM

DEM

The Integrated Multi-Satellite Retrievals for GPM (IMERG) late precipitation data
and the Geo-Kompsat-2A (GK2A) NDVI and downward shortwave radiation (DSR) data
were used as satellite data. IMERG provides global cumulative daily precipitation data
(unit: mm) with a 0.1-degree resolution, which was estimated using microwave data
obtained from several passive microwave satellites through the Global Precipitation Mea-
surement (GPM) mission of NASA and the Japan Aerospace Exploration Agency (JAXA)
(Table 2) [39]. GK2A is Korea’s geostationary meteorological satellite, which was launched
on 5 December 2018, and it is equipped with Advanced Meteorological Imager (AMI),
which has 16 channels for meteorological and space weather-monitoring missions [40].
GK2A provides daily NDVI and 10-minute DSR data with a resolution of 2 km [41,42]
(Table 2). As GK2A NDVI data underestimate noise, which can be less than 0.3 in summer
due to meteorological factors, such as clouds, heavy rain, and monsoon [43], the data were
used after applying the real-time noise improvement approach to the GK2A daily NDVI
product, as proposed by Lee et al. (2022) [43]. This method corrects GK2A NDVI data
through processes such as time series correction reflecting the growth cycle of vegetation,
the removal of outliers using long-term Moderate Resolution Imaging Spectroradiome-
ter (MODIS) NDVI data, and missing pixel restoration using a penalized least squares
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regression based on discrete cosine transform (DCT-PLS) (Figure A1) [43]. This approach
effectively improved the underestimation via meteorological factors (Figures A2 and A3),
and it showed that the correlation with MODIS NDVI was higher than the original value in
all seasons and the difference decreased [43]. GK2A DSR data were used as daily average
values, being expressed as W/M2 [42]. However, because the GK2A products were only
supplied from July 2019 onwards, insufficient training data were available for stable SM
modeling. Thus, to perform SM modeling using as much data as possible, for the period
before 2020 (2014–2019), we included the NASA Visible Infrared Imaging Radiometer
Suite (VIIRS) 16-day composite NDVI product (VNP13A2), which provided data every
8 days [44], and the Korea Meteorological Administration (KMA) Local Data Assimilation
and Prediction System (LDAPS) total downward surface shortwave flux (DSSF) data [45].
We then confirmed whether these data could be used as substitute data through correlation
analysis. Both the relationships between GK2A NDVI and VIIRS NDVI and between GK2A
DSR and LDAPS DSSF showed high correlation (≥0.823) (Figure 4). Therefore, VIIRS
NDVI and LDAPS DSSF data were used before 2020, and GK2A NDVI and DSR data
were used after 2020. LDAPS is a local forecasting model that predicts weather in the
Korean Peninsula and provides meteorological and surface data every 3 h (8 times per
day) at a resolution of 1.5 km (Table 2) [45–47]. DSSF, air temperature (Tair), land surface
temperature (LST), soil temperature (Tsoil), relative humidity (RH), and latent heat flux
(LE) data from LDAPS were used to perform SM modeling. As noted above, DSSF data
served as substitute data for GK2A DSR, and daily a verage values were used. LDAPS data
for the other variables were obtained at UTC 03:00.
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Figure 4. (a) The correlation between 16-day composite values of GK2A NDVI and VIIRS NDVI,
and (b) the correlation between the daily average values of GK2A DSR and LDPAS DSSF; both
correlations were determined from 1 January 2020 to 31 December 2021.

The topographic data included slope, elevation, topographic ruggedness index (TRI),
and aspect, all of which were considered to be constant variables. The data were extracted
from Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) data at
an approximate resolution of 30 m, which was jointly produced and provided by NASA
and the U.S. National Geospatial-Intelligence Agency (NGA) [48]. The satellite, NWP, and
topographic data were resampled to a 500-m resolution and adjusted to the coordinate
reference system of the World Geodetic System 1984 (WGS84). In addition, these data were
cropped to cover the area of South Korea (latitude 33.0◦N to 38.7◦N, longitude 125.0◦E to
129.6◦E), where SM maps were created.

2.3. Input Variables Used to Perform Soil Moisture Modeling

The 13 explanatory variables used to perform SM modeling consisted of factors that
affect SM status (Figure 5): 10-day cumulative standardized precipitation index (SPI),
20-day cumulative SPI, NDVI, DSR, Tair, LST, Tsoil, RH, LE, slope, elevation, TRI, and
aspect. The 10- and 20-day cumulative SPI (SPI10 and SPI20) were related to precipita-
tion, which supplies water to the land surface. SPI is a widely used drought index that is
recommended by the World Meteorological Organization (WMO) for the diagnosis and
prediction of meteorological drought [49]. As SM status is affected by cumulative pre-
cipitation [50], the SPI based on n-days cumulative precipitation was used. To calculate
SPI10 and SPI20, the cumulative 10- and 20-day precipitation extracted from the IMERG
daily precipitation data, respectively, were calculated, after which step the cumulative
probability of the precipitation was determined using the empirical cumulative density
function (ECDF), with the values being transformed into z-scores. NDVI is calculated
by dividing the difference between near-infrared and red reflectance by their sum and
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represents the degree of vegetation health. As the latter factor tends to decrease under
water stress, NDVI is used to indirectly monitor SM and drought conditions [51,52]. DSR,
Tair, LST, Tsoil, RH, and LE, corresponding to the red arrows in the Figure 5, are related to
SM loss. DSR, which refers to the amount of short-wave radiation derived from the sun,
affects evaporation and transpiration, i.e., water movement from the land surface to the air,
and is the energy source for the land surface [53]. Tair, LST, and Tsoil (depth: 0–10 cm) are
temperature factors that usually cause evaporation on the land surface and transpiration
in vegetation, thus affecting SM [54–56]. RH is the ratio of the current atmospheric water
vapor amount to the saturation water vapor amount at the current temperature, expressed
as a percentage (%). The RH influences evapotranspiration and, therefore, SM, with higher
rates of evapotranspiration occurring on days with a low RH [57]. LE is the amount of heat
released or absorbed when a substance changes state without a change in temperature [58],
with absorption occurring when water changes to vapor via evapotranspiration [59]. LE
is, thus, used to calculate evapotranspiration and related to SM loss [60]. Topographic
factors, such as slope, elevation, TRI, and aspect, were selected because topography, as a
determinant of the direction of water movement, plays an important role in the amount
and distribution of SM [61,62]. Slope was the rate of change in elevation for each DEM cell
and has a value between 0 and 90◦. Elevation was the height of an object or place above
the sea, and its unit is m. TRI was the amount of elevation difference between the adjacent
cells of a DEM [63]. Aspect was the downslope direction of the maximum rate of change in
value between each cell and adjacent cells [64].
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2.4. Model Development and Performance Evaluation

A daily matchup dataset consisting of the 13 aforementioned input variables affecting
SM and in situ SM data was constructed, and SM models were then built using the ML
algorithms RF and AutoML (Figure 6). The RF model classifies or predicts (regresses) via
the ensemble of many decision trees built during the training process and is an improved
technique used to create a single decision tree with a high probability of overfitting [65,66].
As RF randomly constructs many individual decision trees during training, it mitigates
the bias of the model and enhances generalization [67]. The RF-based SM model consisted
of 50 decision trees and had a depth of 20. Default hyperparameters set using H2O,
which is a Java-based ML/AI platform, were used. AutoML enhances productivity by
automating time- and resource-consuming processes (such as algorithm selection, modeling,
hyperparameter optimization, and comparisons between dozens of models) performed to
obtain models with high accuracy [31]. The AutoML library provided by H2O internally
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provides ML models, such as distributed random forest (DRF), a generalized linear model
(GLM), extreme gradient boosting (XGBoost), gradient boosting machine (GBM), and DNN,
and allows the construction of an ensemble model from those models [31]. The constructed
SM models were evaluated using leave-one-year-out (LOYO) cross-validation and random
sampling. In LOYO, the data from a particular year were designated for validation, while
the data from all other years were used to train the model. This process was repeated for
each year to evaluate the model’s performance. Therefore, with a dataset of 8 years, eight
training and validation processes were performed using the LOYO method (Figure 7). This
method could evaluate the average accuracy of models that could be expected in terms
of predicting SM at a future point in time. In the random sampling method, the matchup
dataset was randomly divided into a training set (80%) and a test set (20%), and the models
used to perform SM estimation were then trained and validated. This process was repeated
five times to determine the average performance. The accuracy of SM estimation was
quantitatively evaluated using in situ SM data and four performance indices (mean bias
error (MBE), mean absolute error (MAE), RMSE, and CC) (Table 3), and the results were
compared to GLDAS SM (depth: 0–10 cm) and ERA5 SM (depth: 0–7 cm) data derived from
2020 to 2021. In addition, a qualitative evaluation was conducted by comparing SM maps
derived from the constructed model based on the extreme climate report jointly published
by the KMA and various governmental organizations of Korea.
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Figure 6. Flow chart used to perform modeling of soil moisture. The 13 input variables used to
perform modeling were 10-day cumulative SPI (SPI10), 20-day cumulative SPI (SPI20), normalized
difference vegetation index (NDVI), downward shortwave radiation (DSR), air temperature (Tair),
land surface temperature (LST), soil temperature (Tsoil), relative humidity (RH), latent heat flux
(LE), slope, elevation, topographic ruggedness index (TRI), and aspect. Two sampling strategies,
i.e., leave-one-year-out (LOYO) cross-validation and random sampling (80% for training and 20%
for testing), were employed during the modeling process. The machine learning techniques used to
estimate SM were random forest (RF) and automated machine learning (AutoML).



Remote Sens. 2023, 15, 4168 10 of 28Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 29 
 

 

 
Figure 7. Leave-one-year-out (LOYO) cross-validation. 

Table 3. Performance indices used to evaluate soil moisture models. 

Performance Indices Equation 

Mean bias error (MBE) 
1𝑁 ሺ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑀 − 𝑖𝑛𝑠𝑖𝑡𝑢 𝑆𝑀ሻே

ୀଵ  

Mean absolute error (MAE) 
1𝑁  |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑀 − 𝑖𝑛𝑠𝑖𝑡𝑢 𝑆𝑀|ே

ୀଵ  

Root mean square error (RMSE) ඩ1𝑁 ሺ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑀 − 𝑖𝑛𝑠𝑖𝑡𝑢 𝑆𝑀ሻଶே
ୀଵ  

Correlation coefficient (CC) 

X ൌ  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑀, Y ൌ  𝑖𝑛𝑠𝑖𝑡𝑢 𝑆𝑀, ∑ ሺ𝑋 − 𝑋തሻሺ𝑌 − 𝑌തሻேୀଵට∑ ሺ𝑋 − 𝑋തሻଶேୀଵ ට∑ ሺ𝑌 − 𝑌തሻଶேୀଵ  

3. Results and Discussion 
3.1. Model Performance Evaluation 

In this study, SM models based on RF and AutoML were trained and validated using 
LOYO and random sampling methods. When evaluated using the LOYO method, the two 
models had similar accuracy rates. On average, the MAE between the predicted and in 
situ SMs was about 4.100%, and the MBE was close to zero (Tables 4 and 5). The RMSE 
was approximately 5.300%, and the CC of about 0.730 indicated a strongly positive linear 
relationship (Tables 4 and 5; Figure 8a,b). There were no significant differences between 
the accuracy rates of the SM models trained using RF and AutoML between years, and 
there was no temporal dependency (Tables 4 and 5). SM estimation in future years (e.g., 
2022, 2023, etc.) will, therefore, have a similar accuracy. Moreover, a stable accuracy will 
be obtained even if these models are trained by mixing different data of the same type 
when there is not enough data, such as in the case of NDVI (from VIIRS and GK2A) and 
DSR (from LDAPS and GK2A). 

  

Figure 7. Leave-one-year-out (LOYO) cross-validation.

Table 3. Performance indices used to evaluate soil moisture models.

Performance Indices Equation

Mean bias error (MBE) 1
N

N
∑

i=1
(predicted SM− insitu SM)

Mean absolute error (MAE) 1
N

N
∑

i=1
|predicted SM− insitu SM|

Root mean square error (RMSE)

√
1
N

N
∑

i=1
(predicted SM− insitu SM)2

Correlation coefficient (CC)
X = predicted SM, Y = insitu SM,

∑N
i=1 (Xi−X)(Yi−Y)√

∑N
i=1(Xi−X)

2
√

∑N
i=1(Yi−Y)

2

3. Results and Discussion
3.1. Model Performance Evaluation

In this study, SM models based on RF and AutoML were trained and validated using
LOYO and random sampling methods. When evaluated using the LOYO method, the two
models had similar accuracy rates. On average, the MAE between the predicted and in
situ SMs was about 4.100%, and the MBE was close to zero (Tables 4 and 5). The RMSE
was approximately 5.300%, and the CC of about 0.730 indicated a strongly positive linear
relationship (Tables 4 and 5; Figure 8a,b). There were no significant differences between
the accuracy rates of the SM models trained using RF and AutoML between years, and
there was no temporal dependency (Tables 4 and 5). SM estimation in future years (e.g.,
2022, 2023, etc.) will, therefore, have a similar accuracy. Moreover, a stable accuracy will be
obtained even if these models are trained by mixing different data of the same type when
there is not enough data, such as in the case of NDVI (from VIIRS and GK2A) and DSR
(from LDAPS and GK2A).
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Table 4. LOYO accuracy of the soil moisture model based on random forest (RF).

Year N MAE MBE RMSE CC

2014 6209 3.782 −0.386 4.814 0.740
2015 6219 3.776 −0.378 4.908 0.776
2016 5764 5.130 0.982 6.739 0.667
2017 5004 4.159 0.817 5.351 0.685
2018 4849 3.592 −0.191 4.864 0.792
2019 4666 3.692 0.576 4.755 0.747
2020 4091 3.936 0.543 5.017 0.795
2021 4696 4.712 −0.879 6.158 0.653

Avg. 41,498 4.097 0.136 5.326 0.732

Table 5. LOYO accuracy of the soil moisture model based on AutoML.

Year N MAE MBE RMSE CC

2014 6209 3.670 −0.816 4.737 0.765
2015 6219 3.847 −0.957 5.030 0.775
2016 5764 5.158 0.872 6.780 0.664
2017 5004 4.235 0.688 5.446 0.679
2018 4849 3.686 −0.362 5.005 0.791
2019 4666 3.737 0.323 4.825 0.744
2020 4091 3.997 0.340 5.086 0.783
2021 4696 4.723 −0.969 6.162 0.660

Avg. 41,498 4.132 −0.110 5.384 0.733
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based on (a) LOYO and RF, (b) LOYO and AutoML, (c) random sampling and RF at round 4, or
(d) random sampling and AutoML at round 4.
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In the evaluation using the random sampling method, the matchup dataset was di-
vided accordingly, and training and validation of the RF- and AutoML-based SM models
were performed five times to determine their respective average performances. Both mod-
els used the same training and verification datasets generated on a new random sampling
basis every round. In all rounds, the performance was similar (Tables 6 and 7), and a strong
linear relationship between the predicted and in situ SMs was confirmed in the scatterplots
(Figure 8c,d). SM models based on AutoML had a higher accuracy (MAE = 2.212%, MBE
= −0.003%, and RMSE = 3.186%) and correlation (CC = 0.913) than those based on RF
(Tables 6 and 7). This finding means that AutoML can build models with better predictive
capabilities by automating algorithm selection, modeling, and hyperparameter optimiza-
tion. A tendency toward a higher accuracy based on random sampling than the LOYO
method was also determined. The primary reason for such difference lies in the nature of
random sampling, which aims to obtain a representative sample from a population through
an unbiased selection process [68]. Given the 41,498 matchup datasets, the randomly chosen
test set (20%) will likely share a bias distribution similar to that of the training set (80%).
Based on the LOYO approach, however, the statistical characteristics of the validation
dataset of a specific year may or may not be identical to those of the other years used in
training because of significant differences in weather conditions due to climate change
and extreme weather every year. For this reason, random sampling is more likely to have
higher performance scores than LOYO, but LOYO is closer to realistic conditions recorded
nowadays, considering climate change.

As a result of model training, RF provides variable importance. Figure 9 shows the
average variable importance provided by the RF-based SM models constructed using the
LOYO method. The most important variables used to estimate SM were SPI10 and SPI20,
i.e., precipitation affecting the water supply to the land surface, followed by topographical
variables (elevation, slope, TRI, and aspect) that affect the distribution of SM, the vegetation
variable (NDVI), and SM loss variables (Tsoil, Tair, LST, RH, LE, and DSR).

Table 6. Random sampling accuracy of the soil moisture models based on random forest (RF).

Round N MAE MBE RMSE CC

1 8191 2.708 −0.032 3.781 0.877
2 8191 2.719 0.030 3.749 0.882
3 8191 2.730 −0.045 3.793 0.877
4 8191 2.706 −0.036 3.716 0.882
5 8191 2.701 −0.027 3.749 0.876

Avg. 8191 2.713 −0.022 3.758 0.879

Table 7. Random sampling accuracy of the soil moisture models based on AutoML.

Round N MAE MBE RMSE CC

1 8191 2.185 0.010 3.174 0.914
2 8191 2.268 0.052 3.236 0.912
3 8191 2.218 −0.022 3.212 0.912
4 8191 2.194 −0.048 3.145 0.916
5 8191 2.195 −0.006 3.165 0.912

Avg. 8191 2.212 −0.003 3.186 0.913

3.2. Comparison with Other Soil Moisture Data

A comparison between the daily SM data derived from the global representative
datasets (GLDAS and ERA5) and the RF- and AutoML-based SM models developed in
this study, using the in situ SM data for a 2-year period (2020–2021), showed that the
latter models have higher accuracy rates and stronger correlations than the former datasets
(MAE = 4.350–4.385%, RMSE = 5.656–5.686%, CC ≈ 0.720) (Figure 10a,b). The accuracy
rates of and correlations between GLDAS and ERA5 SM and the in situ data were low
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(MAE = 6.878–7.472%, RMSE = 8.575–9.524%, CC = 0.219–0.407) (Figure 10c,d). Thus, the
models developed in this study were better at predicting SM in Korea.
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3.3. Qualitative Evaluation with Extreme Weather Events

A qualitative evaluation was performed using the SM maps produced via the SM
model based on AutoML, which showed the best performance during the accuracy eval-
uation using the LOYO and random sampling methods, as well as the extreme weather
events that occurred in 2020 and 2021, when heat waves and heavy rain were frequent
in Korea. In June 2020, a heat wave lasted for almost a month (Figure 11a); in July, there
was a long rainy season and a temperature inversion that resulted in lower temperatures
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than those measured in June (Figure 11a,b) [69,70]. These weather events affected the
amount and distribution of SM. Specifically, in June 2020, the low SM status continued
due to the heat wave (Figure 12), while beginning on June 29, which marked the start of
heavy rainfall, there was an increasing trend of SM with the rainy season, as well as a
temperature inversion (Figure 13). In addition, the distribution of SM in July was related to
a deviation in precipitation. Areas with higher-than-average precipitation tended to show
SM distributions ≥ 30%, whereas areas with less-than-average precipitation tended to have
SM distributions < 30% (Figures 13 and 14).

In 2020, between 18 and 21 November, significant rainfall of up to 36.53 mm fell in the
Seoul metropolitan area and southern South Korea (Figure 15a). In areas where heavy rain
had fallen since 18 November, SM increased (Figure 15b).

From the middle to the end of July 2021, ground conditions became significantly dry
due to heat waves and low precipitation [71]. Beginning on 11 July 2021, the persistent
above-average temperatures and below-average precipitation (Figure 16) marked a gradual
decrease in SM, particularly toward the end of July (Figure 17). These results show that SM
estimated via the model built in this study well represented the dry/wet changes in the
land surface that occurred in response to weather events.
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4. Conclusions

RF- and AutoML-based SM models were constructed using various explanatory vari-
ables derived from satellite image data, NWP data, and topographical data provided
within one day to estimate daily SM in real time. SM estimations obtained via both
models had high accuracy rates, as demonstrated by comparisons with the in situ SM
(MAE = 2.212–4.132%, MBE = −0.110–0.136%, RMSE = 3.186–5.384%, CC = 0.732–0.913),
and a higher accuracy was obtained via the AutoML-based SM model, regardless of the data
sampling method (random sampling and LOYO) used. As in previous studies, models us-
ing random sampling had a higher accuracy than those using LOYO, but the latter approach
had a stable accuracy (MAE = 4.097–4.132%, MBE = −0.110–0.136%, RMSE = 5.326–5.384%,
CC = 0.732–0.733). These results indicate that the input variables and model structures were
of low temporal dependence and a high accuracy can be obtained when predicting SM at
any point in time. Furthermore, SM data obtained via the proposed models had a higher
accuracy than GLDAS and ERA5 SM data and, accordingly, enabled much more accurate
monitoring of local-scale SM in Korea. In examinations of spatiotemporal variations in SM,
using daily SM maps to predict extreme weather events in South Korea from 2020 to 2021
(including the heatwave in June 2020, the long rainy season and temperature inversion in
July 2020, the heavy rain in November 2020, and the low precipitation accompanied by
a heatwave in July 2021), it was found that the model effectively captured the dry/wet
changes in the land surface related to the changes in precipitation and temperature.

In this study, we confirmed the possibility of predicting SM in real time with high
accuracy, regardless of the sampling method, using ML models and various variable data
related to SM supplied within one day, as well as the possibility of producing SM data
that could monitor the change in moisture in the local areas considered. Therefore, it is
expected to be useful in terms of analyzing short-term extreme weather events, such as
flash droughts or floods, and it can assist in swift decision-making for disaster/water
management and crop cultivation.
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GLDAS Global Land Data Assimilation System
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KMA Korea Meteorological Administration
LDAPS Local Data Assimilation and Prediction System
LE Latent heat flux
LST Land surface temperature
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MAE Mean absolute error
MBE Mean Bias Error
ML Machine learning
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NDVI Normalized difference vegetation index
NGA U.S. National Geospatial-Intelligence Agency
NTR Near-infrared transformed reflectance
NWP Numerical weather prediction
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Figure A1. Real-time process used to correct the underestimation noise in the GK2A daily NDVI [43].
The six major steps in this process are as follows: (a) Land/water masking of GK2A NDVI is
performed using the data quality flag (DQF) information provided in the GK2A NDVI dataset.
(b) Based on the growth cycle of the vegetation, a moving average-based time series correction is
applied to the declining phase of vegetation growth, which, in this case, extends from September
to March. (c) During the vegetation growth phase (April to August), a time series correction that
combines moving averages and maximum value composite (MVC) is applied. (d) Based on the
monthly minimum value extracted from the long-term MODIS NDVI data between 2012 and 2021, if
the (MODIS NDVI minimum value-corrected GK2A NDVI) value for the same month is ≥0.1, it is
considered to be an outlier and removed. (e) The ratio of outlier pixels to land pixels is calculated; for
an image with <20% outliers, the missing value is restored using the discrete cosine transform-based
penalized least square regression (DCT-PLS) method. (f) For an image containing ≥20% outliers,
applying DCT-PLS is difficult, and the value is instead replaced using a corrected image derived from
the previous data.
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