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Abstract: With the comprehensive promotion of digital construction in China, cameras scattered
throughout the country are of great significance in obtaining first-hand data. However, their potential
role is limited due to the lack of georeference information on current surveillance cameras. Provided
surveillance camera images and real scenes are combined and given georeference information, this
problem can be solved, allowing cameras to generate significant social benefits. This article proposed
an accurate registration method based on misalignment calibration and least squares matching
between real scene and surveillance camera images to address this issue. Firstly, it is necessary to
convert the navigation coordinate system from which cameras obtain data to the photogrammetric
coordinate system and then solve for the misalignment and internal orientation elements of the
camera. Then, accurate registration is achieved using the least squares matching on pyramid images.
The experiment obtained surrounding image data of two common scenes with lens pitch angles
of 45◦, 55◦, 65◦, 75◦, and 85◦ using the surveillance camera and obtained a 3D real scene model of
each scene using a low-altitude aircraft. The experiment results show that the proposed method in
this paper can achieve the expected goals of accurately matching real scene and surveillance camera
images and assigning georeference information. Through extensive data analysis, the success rate
and accuracy rate of registration are 98.1% and 97.06%, respectively.

Keywords: misalignment calibration; least squares; surveillance video georeference; real scene

1. Introduction

With the rapid progress of urbanization in China, there is video surveillance on urban
buildings, roads, military strongholds, factories, and so on [1–3], which is responsible for
public security management in cities, road control, illegal invasion, and illegal operation.
However, the amount of data is massive, making it difficult to observe the region of
interest. When the scale of the surveillance system exceeds the monitoring capabilities
of humans, security operators must mentally map each surveillance monitor image to a
corresponding area in the real world. This progress is very abstract and requires prior
training for viewers [4]. Thus, the traditional method of manually watching and analyzing
videos is no longer applicable, and intelligent video surveillance systems have emerged as
the times require. In recent years, intelligent monitoring devices have developed rapidly
and have achieved integration with Geographic Information Systems (GIS). However, there
is still a problem of insufficient registration accuracy, resulting in low positioning accuracy.

Although there are thousands of cameras collecting a large amount of data every
day [3], their greater role has not been fully realized. The most important drawback is that
existing cameras do not have georeference information. Combining the image information
obtained by the camera with geographic information, the retrieval of real-time information
about a certain location will be obtained quickly. Currently, China is fully promoting digital
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construction, and the research in this paper provides a significant theory and method for
promoting Smart City. With the combination of cameras and geographic information, all
cameras will no longer only play a monitoring role; instead, each camera will be a powerful
data source and basis for urban resource monitoring, urban security management, forest
fire prevention, and other aspects. If a traffic accident occurs somewhere in the city, the
relevant surveillance video of the accident location cannot be retrieved quickly without
being georeferenced [5]. Similarly, a fire in the forest or the discovery of illegal buildings in
a certain location cannot be located quickly. If intelligent monitoring with thermal sensors
and actuator systems are integrated, the temperature of the ignition point through thermal
sensors can be monitored and provide immediate feedback to the fire department, thereby
minimizing losses and even achieving the goal of preventing fires.

Therefore, this paper proposed a camera georeference method based on misalignment
calibration and least squares image matching, which solves the problem that the image
cannot be quickly and accurately located through the camera and achieves the effect of
integrating image information and GIS information [6].

The innovation of this paper lies in proposing a new mathematical model to calculate
camera parameters and misalignment parameters, as well as a method to achieve accurate
registration of surveillance camera images and real scenes. Rapid and accurate matching
of real scene information and surveillance camera information is realized, and the goal of
quickly locating a place of interest and retrieving relevant images is achieved [7].

The remaining paper is organized as follows: Section 2 presents related works regard-
ing video surveillance, integration of real scene information and GIS information, and
camera calibration. In Section 3, the proposed methods and their key steps in detail are
described, including the transformation method of the navigation coordinate system, a
method of getting the internal parameters and misalignment parameters, and a method
of using the least squares image matching based on pyramid images to achieve accurate
registration. In Section 4, the implementation of the proposed method and the obtained
experimental results are presented. Finally, Section 5 presents the conclusions and prospects
for future research.

2. Related Works

As early as 1942, Siemens AG installed the first video surveillance system in Germany
to monitor the launch of V-2 rockets [8]. Later, in order to combat crimes, the US installed
video surveillance on its main commercial streets in 1968. The above are all traditional
cameras based on a matrix of video displays, maps, and indirect controls. However, the
goal of intelligent video surveillance is to efficiently extract useful information from a large
amount of video surveillance by automatically detecting, tracking, and identifying objects
of interest and understanding and analyzing their activities.

Modern video surveillance systems rely on automation through intelligent video
surveillance and better display of surveillance data through context-aware solutions and
integration with virtual GIS environments [9]. Souleiman et al. used geospatial data for
camera pose estimation and conducted 3D building reconstruction. They proposed a
method based on GPS measurement, video sequences, and rough 3D model registration
of buildings [10]. Schall et al. proposed a method that relies on GPS and an inertial
measurement unit (IMU) to perform camera attitude estimation, thereby enhancing the
visualization of underground GIS infrastructure applications in reality [11]. Lewis et al.
made use of georeferenced video data and focused on using Viewpoint data structures
to represent video frames to enable geospatial analysis and considered the potential of
spatial video as video data to represent georeferencing [12]. Xie et al. proposed the
integration of GIS and moving objects in surveillance videos by using motion detection and
spatial mapping [13]. Robert T. Collins et al. proposed a VSAM testbed system based on
video surveillance and monitoring data for three years. The system can achieve automatic
tracking of targets [4]. The purpose of the above work is to achieve the integration of image
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information and GIS information, with the aim of enhancing reality; however, they cannot
achieve accurate matching between the real scene and surveillance camera images.

In terms of camera calibration work, Zhang proposed a simple camera calibration
technique to determine radial distortion by observing a planar pattern shown at a few dif-
ferent orientations [14]. Lee and Nevatia developed a video surveillance camera calibration
tool for urban environments that relies on vanishing point extraction [15]. Vanishing points
are easily obtainable in urban environments since there are many parallel lines, such as
street lines, light poles, buildings, etc. The calibration of environmental camera images
by means of the Levenberg—Marquardt method has been studied by Muñoz et al. [16].
Although these correction methods are good, they do not have universality. Based on the
characteristics of information obtained from real scenes and surveillance camera images, a
new mathematical correction model to solve camera parameters is proposed in this paper.

In the research on automatic feature point detection, many people have compared and
analyzed various extraction algorithms [17–19]. In addition, F Remondino et al. proposed
that image matching was one of the key steps in 3D modeling and mapping in 2014 [20].
Saleem et al. conducted a study between remote sensing images and UAV imagery in
2016 [21]. In 2017, Xiaohui Yuan et al. proposed a method that uses a time-of-flight camera
to detect the feature points and action tracking [22].

Although many people have proposed some good ideas and put them into practice,
there are still many shortcomings.

Over the same field, they were using different feature points and determining their
performance:

• For traditional monitoring, when the scale of the surveillance system exceeds the moni-
toring capabilities of humans, security operators must mentally map each surveillance
monitor image to a corresponding area in the real world [9];

• This method is manually operated, so it has great automation potential;
• This method is unable to achieve accurate registration of images and actual ground.

Our research can overcome the above problems, achieve the integration of image
information and real scenes, and achieve fast and accurate matching. In recent years, our
country has vigorously developed digitization, and the research can provide powerful
theories and methods for the progress and development of digital cities, especially making
important contributions to China’s social development and urban progress.

3. Methods

In order to achieve accurate registration of surveillance camera images and real scenes,
the first step is to convert the position and attitude parameters obtained by the surveillance
camera into a photogrammetric coordinate system. The second step is to calibrate the camera
and misalignment parameters. Then, the surveillance camera images and real scenes are
accurately registered using least squares matching based on geometry priors. The framework
of the integration of surveillance video images and real scenes is shown in Figure 1.

3.1. Coordinate System Transformation for Surveillance Video

In the process of the surveillance camera collecting data, the position and attitude
recorded by the surveillance equipment are based on the navigation coordinate system [23].
However, the actual application is under the map projection frame, so the navigation
coordinate system needs to be converted into the photogrammetric coordinate system.

Generally, the navigation coordinate system is represented by Yaw, Pitch, and Roll,
while the exterior orientation parameters (EOs) of each image frame in the photogrammetric
coordinate system are generally represented byω,ϕ, κ, referred to as the OPK angle system.
In order to convert the (Yaw, Pitch, Roll) into the (ω, ϕ, κ), the definition of different
coordinate systems and rotation angles must be considered. The reference frames and their
representation used in this paper are shown in Table 1.
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Figure 1. The integration of surveillance video images and real scenes.

Table 1. Overview of the required frames.

Frames Abbreviation

Navigation frame g
Body frame u

Camera frame c
Map projection frame s

In addition, it is necessary to consider the mapping system used, as well as the impact
of the curvature and meridian deviations of the Earth on the angle [24]. The z-axes of the
navigation coordinate system and the projection coordinate system both point upward
along the ellipsoidal normal, but the y-axis of the navigation coordinate system points
toward the true north direction, while the y-axis of the projection coordinate system points
toward the grid north direction. Both x-axes are perpendicular to the plane composed of
their respective y-axis and z-axis. And the relationship between the navigation coordinate
system and the projection coordinate system is shown in Figure 2.
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The meridian deviation mainly affects the orientation relative to geographic orienta-
tion [24], and the computational formula of the meridian deviation is as follows:
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γ = cos β · t · λ + 1
3 cos3 β · t(1 + 3η2 + 2η4)λ3 + 1

15 cos5 β · t(2t2 + 15η2 − 15η2t2)λ5

+ 1
315 cos7 β · t(17− 26t2 + 2t4)λ7 + O(λ7) (1)

where t = tan β, η = e′ · cos2 β, and e′ is the second eccentricity. β is the latitude of the
projective point and λ is the longitudinal difference between the projective point and central
meridian of the universal transverse Mercator (UTM)-coordinate system.

Due to the meridian deviation, there is a distortion in the north direction, and this
distortion is recorded as γ. To eliminate the effects of the meridian deviation, the coordinate
system must be rotated γ around the Zn-axis. Therefore, a transformation matrix is required
to compensate for the meridian deviation. Where g’ is the navigation coordinate system
that has eliminated the meridian convergence

Rg
g′ =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (2)

The lower index of all the following formulas represents the original system, while
the upper index represents the target system.

Due to the different directions of the coordinate axes in navigation and in photogrammetry,
two additional transformation matrices are needed to obtain an equivalent oriented system,
namely from the body coordinate system (u) to the camera coordinate system (c) and from the
projection coordinate system (s) to the navigation coordinate system that has eliminated the
meridian convergence (g’). The two transformation matrices are shown as follows:

Tc
u = Tg′

s =

0 1 0
1 0 0
0 0 −1

 (3)

And from the navigation coordinate system (g) to the body coordinate system (u) is as
follows:

Ru
g =

1 0 0
0 cos φ sin φ
0 − sin φ cos φ

 ·
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 ·
 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (4)

where φ is Yaw, θ is Pitch and ψ is Roll.
Combining the above transformation matrices can get the rotation matrix Rc

s of pho-
togrammetry, which is made up of the attitudinal angles of images (ϕ,ω, κ) as follows:

Rc
g = Tc

u · Ru
g · R

g
g′ · T

g′
s (5)

3.2. Surveillance Video Georeference Method
3.2.1. Camera and Misalignment Calibration for Surveillance Video

The calibration method in this paper is to use existing real scenes to pick up control
points. The real scenes used in this paper are all obtained from drone images processed
by ContextCapture to ensure their accuracy. However, due to the low resolution of the
existing real scene model, very few feature points are extracted in weak texture regions.
Relying solely on a single camera to obtain control points in one direction is not sufficient
for camera calibration, so we need to obtain surrounding image data. The entire solution
process model is shown in Figure 3.
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Figure 3. The process of camera and misalignment calibration.

The surveillance camera records the relative attitude Rrel between images with high
accuracy. Moreover, due to various uncertainties during installation, the camera may have
misalignment, resulting in the camera not being horizontal or not pointing to the specified
zero direction. Only the camera parameters, the misalignment of the surveillance camera,
and the position of the surveillance camera are considered unknowns. The initial value of
the camera parameters can be obtained by the EPnP method [25]. Based on the principle of
spatial resection, the model of calibration can be conducted as:X

Y
Z

 = λ · Rmis · Rrel

x− x0
y− y0
− f

+

XS
YS
ZS

 (6)

where (X, Y, Z) is the coordinate of the ground control point and λ is the scaling factor.
The corresponding image point (x, y) is the observation. The unknowns include principal
distance f , principal point (x0, y0), perspective center (XS, YS, ZS) and misalignment Rmis.
The Rmis is the rotation matrix that rotates from the placement direction to the zero direction.
From the above analysis, it can be seen that this equation has nine unknowns, and each
ground control point corresponds to a coordinate observation value of an image point. Two
error equations can be formulated, so it is required to solve this equation with at least five
non-coplanar and relatively evenly distributed control points. Take Mount Tai Square of
Shandong University of Science and Technology from a low-altitude aircraft as an example.
The schematic diagram is shown in Figure 4.
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Linearize the above equation to obtain the error equation, and the result is shown in
Equation (7). The initial values of the following parameters are ϕmis = 0, ωmis = 0, κmis = 0,
x0 = width/2, y0 = height/2, the initial values of f is the focal length of the camera, and
the initial values of other parameters can be provided using the triangulation method. ϕmis,
ωmis, κmis are the three angles for misalignment angle, L denotes the constants, and A, B, C
are coefficient matrices.

v = A

dϕmis
dωmis
dκmis

+ B

dx0
dy0
d f

+ C

dXs
dYs
dZs

− L (7)

Then, simplify the above equation; the matrix form of the error equation can be
expressed as Equation (8). And the normal equation is conducted as Equation (9).

V = AX1 + BX2 + CX3 − L (8)

AT A ATB ATC
BT A BTB BTC
CT A CTB CTC

X1
X2
X3

 =

ATL
BTL
CTL

 (9)

Solving the normal equation can obtain X1, X2 and X3, which includes the internal
parameters and the EOs for the first image. The correction values are added to their initial
values, and the process is iterated until the obtained correction values are smaller than the
allowable error.

3.2.2. Accurate Registration Method with Geometry Priors

After calibration, preliminary registration of surveillance camera images and real
scenes has been achieved, but due to residual attitude angle errors in the previous step,
strict registration cannot be achieved. Therefore, it is also necessary to use the least squares
method for accurate registration. The least squares image matching process is shown in
Figure 5.
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Considering the fact that projected images of real scenes may have linear gray-scale
distortions compared to images captured by cameras; therefore,

g1(x, y) = h0 + h1g2(a0 + f (x), b0 + f (y)) (10)

where g1(x, y) represents a point on the camera image, g2(a0 + f (x), b0 + f (y)) represents
a point on the real scene, h0 and h1 is the radiation deformation correction parameter,
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a0 and b0 is the offset, f (x) is the x-coordinate of the point on the real scene, f (y) is the
y-coordinate of the point on the real scene. Linearizing the equation, the error equation for
least squares image matching can be obtained:

v = c1dh0 + c2dh1 + c3da0 + c4db0 − ∆g (11)

The initial value is set as: h0 = 0, h1 = 1, a0 = 0, b0 = 0 and the observed value ∆g
is the gray-scale difference of the corresponding pixels. Next, solve the coefficients of the
error equation representing Equation (11) in matrix form and perform a normalization
solution. Finally, compare the obtained correction number with the tolerance to determine
whether to continue the iteration.

Accurate matching can be achieved by completing the above operations, but in the face
of large data volumes, the matching efficiency will be greatly reduced. Therefore, pyramid
image matching is considered. By constructing pyramid images, a matching strategy
from top to bottom and from coarse to fine is adopted to achieve fast and accurate image
matching. The basic principle is that due to low-pass filtering and sampling, the top of the
pyramid retains the most obvious, energy-intensive, and large feature structure features.
However, small-scale and weak textures are annihilated by multiple smoothing. Because
the top of the pyramid is an image generated after multiple filters, mainly including low-
frequency components. Therefore, feature matching at the highest level of the pyramid is
more robust for features that are structurally large and have strong contrast. The projected
image can be obtained by rasterizing the triangular mesh of the real scene. There is a
function named “Raster” that can convert a triangular mesh into a depth map in OpenMVS.
Based on this, the texture can be projected onto the image to ensure its projection accuracy.
The entire accurate registration process is shown in Figure 6.
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4. Results and Discussion
4.1. Description of Experimental Equipment

The surveillance camera equipment used in this experiment is DH-SD-8A1440XA-
HNR, with a minimum focal length of 5.5 mm and a maximum focal length of 220 mm. It
is equipped with a 1/1.8-inch CMOS sensor in which the image size is 2560 × 1440, and
the pixel size is about 1.97 µm. It has a range of 61.4 to 2.27◦ horizontal and 35.99 to 1.3◦

vertical field of view (FOV). The heading angle can rotate continuously from 0 to 360◦, and
the pitch angle range is between −30 and 90◦ for continuous monitoring. The experimental
equipment parameters are shown in Table 2
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Table 2. Experimental equipment parameters.

Parameter Attribute

Name DH-SD-8A1440XA-HNR
Focal length 5.5 mm

Maximum focal length 220 mm
Sensor 1/1.8-inch CMOS

Image size 2560 × 1440
Pixel size 1.97 µm

FOV Horizontal: 61.4 to 2.27◦

Vertical: 35.99 to 1.3◦

Heading angle 0 to 360◦

Pitch angle −30 to 90◦

To verify the performance of the proposed method, systematic experiments and analy-
ses are performed in this paper using surveillance camera equipment. In this experiment,
surrounding image data with lens pitch angles of 45◦, 55◦, 65◦, 75◦ and 85◦ of two common
scenes are obtained, including Mount Tai Square and the south gate of Shandong University
of Science and Technology. At the same time, 18 images are obtained for each pitch angle.
The experimental equipment and study areas are shown in Figure 7.
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4.2. Result and Analysis of Camera Calibration

Considering some weak texture fields, feature point extraction is difficult. And the
limited feature points obtained by the camera in a single direction it is not sufficient for camera
calibration. Therefore, the method of obtaining surrounding image data is adopted to solve
the problem. Next, take Scene 1 as an example; by picking eight feature points (g1, g2, g3,
g4, g5, g6, g7, g8) on a 3D real scene model and the camera captured a total of six images by
obtaining surrounding image data. On the 3D real scene model, the selected feature points on
the plane can obtain the control point coordinates with an accuracy of about 2 cm. At the same
time, edge points cannot be picked because the error is significant. The first image contains
two feature points (g1, g2), the second image contains three feature points (g2, g3, g4), the third
image contains two feature points (g4, g5), the fourth image contains two feature points (g5,
g6), the fifth image contains three feature points (g5, g6, g7), and the sixth image contains three
feature points (g7, g8, g1). The distribution of feature points and the distribution of feature
points for each image are shown in Figure 8. Moreover, the results of camera calibration are
shown in Tables 3 and 4. After the calibration is completed, the re-projection error of known
ground control points and unknown points obtained from multi-view space intersections are
analyzed. Through experimental analysis, it is known that the re-projection error is less than
0.2 pixels.
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Table 3. The calibration result of camera parameters.

Number x0 (Pixel) y0 (Pixel) f (Pixel)

Camera 1 1286.47 717.86 2448.52
Camera 2 1282.55 722.37 2453.71

Table 4. The calibration result of camera position and misalignment.

Number Longitude (E) Latitude (N) Altitude (m) ϕmis
(Degree)

ωmis
(Degree)

κmis
(Degree)

Camera 1 120.1246358 36.0009723 33.859 −1.2 2.6 3.5
Camera 2 120.1249309 35.9999611 35.454 0.8 −3.4 2.7

4.3. Result and Analysis of Position and Attitude Conversion Parameters

The camera attitudes recorded by the monitoring equipment used in this experiment
are represented as (P, T, Z), where P represents the heading angle, T represents the pitch
angle, and Z represents the zoom ratio of the camera. The original location information
recorded by the camera is shown in Table 5.

Finally, the coordinate system conversion method proposed in this paper can be used
to calculate the converted parameters, and the result of position and attitude conversion
parameters is shown in Table 6.
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Table 5. Position parameters.

Number P T Z

Image 1 20.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 2 40.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 3 60.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 4 80.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 5 100.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 6 120.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 7 140.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 8 160.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 9 180.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 10 200.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 11 220.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 12 240.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 13 260.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 14 280.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 15 300.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 16 320.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 17 340.0 45.0/55.0/65.0/75.0/85.0 1.0
Image 18 360.0 45.0/55.0/65.0/75.0/85.0 1.0

Table 6. Position and attitude conversion parameters in case of pitch angle 55.

Number Northing Easting Altitude ϕ ω κ

Image 1 240819.543391 3987880.875025 33.859000 31.745092666 50.954142676 −34.226973360
Image 2 240819.543391 3987880.875025 33.859000 47.129444042 38.057075507 −55.904693437
Image 3 240819.543391 3987880.875025 33.859000 54.575139746 22.451284505 −70.487256792
Image 4 240819.543391 3987880.875025 33.859000 57.420430967 5.813279602 −81.981622930
Image 5 240819.543391 3987880.875025 33.859000 56.920176724 −11.042711394 −92.796826270
Image 6 240819.543391 3987880.875025 33.859000 52.859705079 −27.468807568 −104.942423737
Image 7 240819.543391 3987880.875025 33.859000 43.416094145 −42.481735575 −121.202882060
Image 8 240819.543391 3987880.875025 33.859000 24.604964601 −53.899705132 −146.141765924
Image 9 240819.543391 3987880.875025 33.859000 −4.889093366 −57.475691796 178.522277674

Image 10 240819.543391 3987880.875025 33.859000 −31.745092666 −50.954142676 145.773026640
Image 11 240819.543391 3987880.875025 33.859000 −47.129444042 −38.057075507 124.095306563
Image 12 240819.543391 3987880.875025 33.859000 −54.575139746 −22.451284505 109.512743208
Image 13 240819.543391 3987880.875025 33.859000 −57.420430967 −5.813279602 98.018377070
Image 14 240819.543391 3987880.875025 33.859000 −56.920176724 11.042711394 87.203173730
Image 15 240819.543391 3987880.875025 33.859000 −52.859705079 27.468807568 75.057576263
Image 16 240819.543391 3987880.875025 33.859000 −43.416094145 42.481735575 58.797117940
Image 17 240819.543391 3987880.875025 33.859000 −24.604964601 53.899705132 33.858234076
Image 18 240819.543391 3987880.875025 33.859000 4.889093366 57.475691796 −1.477722326

4.4. Result and Analysis of Registration Accuracy

After coordinate system transformation and internal parameter calibration, rough
registration has been achieved between the 3D real scene and surveillance camera images,
but there are still small errors, as shown in Figure 9. Next, based on the OpenCV library,
write C++ code to iterate several times on the pyramid image for registration; the iterative
process is shown in Figure 10. The experiment used 20 sets of data from two common
scenes, collecting obvious feature points such as window corners, floor intersections, and
obvious boundaries of natural features as registration points. According to the statistical
results of a large amount of data, the registration success rate of the proposed method
in this paper reaches 98.1%, and the accuracy rate reaches 97.06%. The success rate and
accuracy rate of each group of experimental data are shown in Table 7.
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image in each group represents the source image, the second image represents 1 iteration, the third
image represents 5 iterations, the fourth image represents 50 iterations, and the fifth image represents
100 iterations.

The success rate is equal to dividing the successful cases by the selected cases, while
the accuracy rate is equal to dividing the right cases by the successful cases. The success
rate indicates how many of the sample points we have selected have been successfully
registered. Successful registration may not necessarily be the samples of interest to us, and
the correct registration of interest is the accuracy rate.

From the experimental results, it can be seen that some cases failed to match. Through
analysis, it can be concluded that the reasons for the failure of some sample points are as
follows: (1) The features are not clear enough. (2) The local deformation of the 3D real
scene model where the feature points are located. This will result in incomplete elimination
of the geometric deformation of the feature points relative to the image, which affects the
least squares matching.
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Table 7. The success rate and accuracy rate of the experiment.

Number Selected Cases Successful Cases Right Cases Success Rate Accuracy Rate

1 55 55 54 100% 98.18%
2 52 52 51 100% 98.08%
3 64 62 60 96.88% 96.77%
4 44 44 42 100% 95.45%
5 52 50 49 96.15% 98%
6 66 65 63 98.48% 96.92%
7 58 58 57 100% 98.28%
8 72 69 69 95.83% 100%
9 49 47 44 95.92% 93.62%

10 48 47 47 97.92% 100%
11 66 66 63 100% 95.45%
12 63 62 60 98.41% 96.77%
13 59 57 56 96.61% 98.25%
14 46 45 45 97.83% 100%
15 55 55 52 100% 94.55%
16 42 40 37 95.24% 92.5%
17 65 63 59 96.92% 93.65%
18 58 58 58 100% 100%
19 47 46 44 97.87% 95.65%
20 47 46 45 97.87% 97.83%

Total 1108 1087 1055 98.1% 97.06%

5. Conclusions

The main contribution of this paper is to propose a method for accurate registration of
real scene and surveillance camera images, which solves the technical difficulty that existing
cameras do not have georeference information. The conversion relationship between the
navigation coordinate system and the photogrammetric coordinate system is considered
firstly, unifying image information and real scenes under the same coordinate reference, and
then the paper proposes a mathematical model for camera internal parameter calibration.
At the same time, the misalignment angle automatic calibration method based on the
collinearity equations to calculate the camera misalignment parameters is used, and then
extracted feature points are used for matching. So far, the rough matching has been
completed. However, due to the influence of zoom lenses, surface elevation error, and
attitude angle error, accurate matching cannot be achieved. Therefore, to achieve accurate
matching of real scene and surveillance camera images, a support window estimation
method of using least squares image matching based on pyramid images is proposed and
achieves good results.

The theory and method of accurately registering real scenes and surveillance camera
images proposed in this paper have made an extremely important attempt for the devel-
opment of smart cities and digital cities. Compared to the previous research, it has made
great progress. If this technology is put into practice, there will be significant efficiency
improvements in urban security, traffic management, and fire monitoring in China.

However, due to our pioneering research, future research can explore more application
directions for integrating surveillance camera image information and real scenes, as well as
finding more efficient and accurate registering methods.
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