GNSS-5G Hybrid Positioning Based on Joint Estimation of Multiple Signals in a Highly Dependable Spatio-Temporal Network
Abstract
:1. Introduction
2. System Model
2.1. GNSS Receiver Measurement Model
2.2. 5G Receiver Measurement Model
2.3. Receiver Clock Model
2.4. GNSS and 5G Joint Positioning Model
3. The Proposed Multiple-Signal Joint Estimation Method
3.1. Multiple-Signal Compact Coupled Filter Group Architecture
3.2. Square Root Unscented Stable Filter
Algorithm 1: SRUSF for the GNSS and 5G joint positioning |
Initialization Denote the estimated state of GNSS and 5G joint positioning and its square root of the prediction error covariance at by and .
For every iteration k = 1, …, T (1) The prior estimate for predicting the state of the system and the square root of its covariance are as follows (2) Generate 2L + 1 sigma points (3) Propagate the sigma points in GNSS-5G joint positioning model (4) Evaluate the predicted value of the measurement result (5) Compute the innovation (6) Calculate the cross covariance (7) Establish a stabilized coefficient and introduce it into the square root covariance of state prediction. (8) Generate the new sigma points using the newly predicted state and execute step 2 to step 6 to repeatedlygenerate new innovation and the cross covariance. (9) Calculate the square root of the innovation covariance (10) Calculate the Kalman gain and update the GNSS and 5G estimate state End |
4. Simulation Results and Analysis
4.1. Parameter Settings
4.2. Performance Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Location-Based Services Global Market Report 2023. The Business Research Company. Available online: https://www.thebusinessresearchcompany.com/report/location-based-services-global-market-report (accessed on 15 May 2023).
- Guo, C.; Qi, S.; Guo, W.; Deng, C.; Liu, J. Structure and performance analysis of fusion positioning system with a single 5G station and a single GNSS satellite. Geo-Spat. Inf. Sci. 2023, 26, 94–106. [Google Scholar] [CrossRef]
- Li, X.; Shen, Z.; Li, X.; Liu, G.; Zhou, Y.; Li, S.; Lyu, H.; Zhang, Q. Continuous Decimeter-Level Positioning in Urban Environments Using Multi-Frequency GPS/BDS/Galileo PPP/INS Tightly Coupled Integration. Remote Sens. 2023, 15, 2160. [Google Scholar] [CrossRef]
- Niu, X.; Tang, H.; Zhang, T.; Fan, J.; Liu, J. IC-GVINS: A Robust, Real-Time, INS-Centric GNSS-Visual-Inertial Navigation System. IEEE Robot. Autom. Lett. 2023, 8, 216–223. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Lou, Y.; Zhang, Y.; Huang, F.; Tu, Z.; Liang, Q. Rail Vehicle Localization and Mapping With LiDAR-Vision-Inertial-GNSS Fusion. IEEE Robot. Autom. Lett. 2022, 7, 9818–9825. [Google Scholar] [CrossRef]
- Jiang, W.; Cao, Z.; Cai, B.; Li, B.; Wang, J. Indoor and Outdoor Seamless Positioning Method Using UWB Enhanced Multi-Sensor Tightly-Coupled Integration. IEEE Trans. Veh. Technol. 2021, 70, 10633–10645. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, C.; Shang, R.; Peng, Z.; Zhang, R.; Gan, L. Environment Perception Based Seamless Indoor and Outdoor Positioning System of Smartphone. IEEE Sens. J. 2022, 22, 17205–17215. [Google Scholar] [CrossRef]
- Kassas, Z.Z.M.; Maaref, M.; Morales, J.J.; Khalife, J.J.; Shamei, K. Robust Vehicular Localization and Map Matching in Urban Environments Through IMU, GNSS, and Cellular Signals. IEEE Intell. Transp. Syst. Mag. 2020, 12, 36–52. [Google Scholar] [CrossRef]
- Bai, L.; Sun, C.; Dempster, A.G.; Zhao, H.; Cheong, J.W.; Feng, W. GNSS-5G Hybrid Positioning Based on Multi-Rate Measurements Fusion and Proactive Measurement Uncertainty Prediction. IEEE Trans. Instrum. Meas. 2022, 71, 8501415. [Google Scholar] [CrossRef]
- Yin, L.; Ni, Q.; Deng, Z. A GNSS/5G Integrated Positioning Methodology in D2D Communication Networks. IEEE J. Sel. Areas Commun. 2018, 36, 351–362. [Google Scholar] [CrossRef]
- Ruan, Y.; Chen, L.; Zhou, X.; Liu, Z.; Liu, X.; Guo, G.; Chen, R. iPos-5G: Indoor Positioning via Commercial 5G NR CSI. IEEE Internet Things J. 2023, 10, 8718–8733. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Z.; Deng, X.; Luo, K. BDS-5G Hybrid Positioning Based on Signal Quality Assessment and Adaptive Switchover Strategy based on Measurement Uncertainty Evaluation. In Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, China, 9–12 December 2022; pp. 435–440. [Google Scholar] [CrossRef]
- Shuai, Q.; Guo, F.; Li, G.; Zhao, X.; Zhu, B.; Sun, J. A Dynamic Continuous Constrained Phase Factor Graph Optimization Method for GNSS Kinematic Precise Point Positioning. IEEE Sens. J. 2023, 23, 10739–10747. [Google Scholar] [CrossRef]
- Li, X.; Dick, G.; Lu, C.; Ge, M.; Nilsson, T.; Ning, T.; Wickert, J.; Schuh, H. Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor From BeiDou, Galileo, GLONASS, and GPS Observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6385–6393. [Google Scholar] [CrossRef]
- Hu, G.; Xu, L.; Gao, B.; Chang, L.; Zhong, Y. Robust Unscented Kalman Filter-Based Decentralized Multisensor Information Fusion for INS/GNSS/CNS Integration in Hypersonic Vehicle Navigation. IEEE Trans. Instrum. Meas. 2023, 72, 8504011. [Google Scholar] [CrossRef]
- Guo, Y.; Vouch, O.; Zocca, S.; Minetto, A.; Dovis, F. Enhanced EKF-Based Time Calibration for GNSS/UWB Tight Integration. IEEE Sens. J. 2023, 23, 552–566. [Google Scholar] [CrossRef]
- Katriniok, A.; Abel, D. Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability. IEEE Trans. Control. Syst. Technol. 2016, 24, 1368–1381. [Google Scholar] [CrossRef]
- Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422. [Google Scholar] [CrossRef]
- Xu, Q.; Gao, Z.; Yang, C.; Lv, J. High-Accuracy Positioning in GNSS-Blocked Areas by Using the MSCKF-Based SF-RTK/IMU/Camera Tight Integration. Remote Sens. 2023, 15, 3005. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, C.; Wang, H. Variable Observability Constrained Visual-Inertial-GNSS EKF-Based Navigation. IEEE Robot. Autom. Lett. 2022, 7, 6677–6684. [Google Scholar] [CrossRef]
- Hu, G.; Gao, S.; Zhong, Y.; Gao, B.; Subic, A. Modified federated Kalman filter for INS/GNSS/CNS integration. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2016, 230, 30–44. [Google Scholar] [CrossRef]
- Hajati, N.; Rezaeizadeh, A. A Wearable Pedestrian Localization and Gait Identification System Using Kalman Filtered Inertial Data. IEEE Trans. Instrum. Meas. 2021, 70, 2507908. [Google Scholar] [CrossRef]
- der Merwe, R.V.; Wan, E.A. The square-root unscented Kalman filter for state and parameter-estimation. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001; Volume 6, pp. 3461–3464. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Lascu, C.; Fadali, M.S. Square Root Unscented Kalman Filters for state estimation of induction motor drives. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA, 17–22 September 2011; pp. 75–82. [Google Scholar] [CrossRef]
- Zhang, D.; Hao, M. Tracking Magnetic Target Based on Internative Multi-Model Square Root Unscented Kalman Filter. IEEE Trans. Magn. 2023, 59, 4000312. [Google Scholar] [CrossRef]
- Li, K.; Chang, L.; Hu, B. A Variational Bayesian-Based Unscented Kalman Filter With Both Adaptivity and Robustness. IEEE Sens. J. 2016, 16, 6966–6976. [Google Scholar] [CrossRef]
- Zou, X.; Li, Z.; Wang, Y.; Deng, C.; Li, Y.; Tang, W.; Fu, R.; Cui, J.; Liu, J. Multipath Error Fusion Modeling Methods for Multi-GNSS. Remote Sens. 2021, 13, 2925. [Google Scholar] [CrossRef]
- Ma, D.; Zhao, K.; Zheng, Z.; Yu, C.; Wang, Y.; Yao, Y. Indoor Positioning With Adaptive Wavelet Denoise Enhancement and Trend Surface Analysis Based Multipath Map. IEEE Sens. J. 2022, 22, 15191–15198. [Google Scholar] [CrossRef]
- Kim, H.; Ma, X.; Hamilton, B. Tracking low-precision clocks with time-varying drifts using Kalman filtering. IEEE/ACM Trans. Netw. 2012, 20, 257–270. [Google Scholar] [CrossRef]
- Koivisto, M.; Costa, M.; Hakkarainen, A.; Leppanen, K.; Valkama, M. Joint 3D Positioning and Network Synchronization in 5G Ultra-Dense Networks Using UKF and EKF. In Proceedings of the 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2016; pp. 1–7. [Google Scholar] [CrossRef]
- ETSI. Physical Channels and Modulation; Document TS 38.211; 3GPP: Sophia Antipolis, France, 2020. [Google Scholar]
- Liu, J.; Gao, K.; Guo, W.; Cui, J.; Guo, C. Role, path, and vision of “5G + BDS/GNSS”. Satell. Navig. 2020, 1, 23. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
5G carrier frequency | 3.5 GHz |
5G bandwidth | 100 MHz |
Subcarrier spacing | 30 KHz |
Total number of satellites | 10 |
Total number of 5G BSs | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Deng, Z.; Hu, E.; Huang, Y.; Deng, X.; Zhang, Z.; Ding , Z.; Liu, B. GNSS-5G Hybrid Positioning Based on Joint Estimation of Multiple Signals in a Highly Dependable Spatio-Temporal Network. Remote Sens. 2023, 15, 4220. https://doi.org/10.3390/rs15174220
Liu J, Deng Z, Hu E, Huang Y, Deng X, Zhang Z, Ding Z, Liu B. GNSS-5G Hybrid Positioning Based on Joint Estimation of Multiple Signals in a Highly Dependable Spatio-Temporal Network. Remote Sensing. 2023; 15(17):4220. https://doi.org/10.3390/rs15174220
Chicago/Turabian StyleLiu, Jingrong, Zhongliang Deng, Enwen Hu, Yunfei Huang, Xiwen Deng, Zhichao Zhang, Zhenke Ding , and Bingxun Liu. 2023. "GNSS-5G Hybrid Positioning Based on Joint Estimation of Multiple Signals in a Highly Dependable Spatio-Temporal Network" Remote Sensing 15, no. 17: 4220. https://doi.org/10.3390/rs15174220
APA StyleLiu, J., Deng, Z., Hu, E., Huang, Y., Deng, X., Zhang, Z., Ding , Z., & Liu, B. (2023). GNSS-5G Hybrid Positioning Based on Joint Estimation of Multiple Signals in a Highly Dependable Spatio-Temporal Network. Remote Sensing, 15(17), 4220. https://doi.org/10.3390/rs15174220