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Abstract: The Global Navigation Satellite System (GNSS) has been widely used in every area of our
daily life to provide accurate Positioning, Navigation, and Timing (PNT) services. However, due
to the multipatch effect and an obstructed view of the satellite, GNSS receivers are susceptible to
large-ranging errors, which are particularly prevalent in urban areas where precise positioning is
indispensable. The deployment of the high-spatial-density Fifth-Generation (5G) network makes it
possible to provide a broad area with high-precision positioning service. Obviously, it promoting the
deep integration of the GNSS system and the 5G mobile communication network and establishing a
Highly Dependable Spatio-temporal Network (HDSN) have become an inevitable trend. The existing
algorithm for the fusion of multiple signals has difficulty settling problems such as the fast fluctuation
of available signal sources and the poor stability of multi-scale multi-type signal estimation in GNSS-
5G hybrid networks. Here, we propose a Square Root Unscented Stable Filter (SRUSF) for GNSS
and 5G joint positioning with a compact coupled filter group architecture in a highly dependable
spatio-temporal network. A stabilized coefficient is added to guarantee positive covariance of the
estimation error. The possibility of divergence of filtering results due to the variation in signal sources
and the incomplete agreement between the system model and the actual situation are reduced. The
simulation results show that the proposed SRUSF method substantially enhances the positioning
accuracy and reliability compared with the other five joint estimation methods for multiple signals.
This work will enable the terminal of mass users to provide timing and positioning services with
unprecedented accuracy and dependability under the GNSS and 5 G-based spatio-temporal network’s
architecture.

Keywords: highly dependable spatio-temporal network; GNSS; 5G network; hybrid positioning;
estimation method

1. Introduction

A spatio-temporal network is a strategic symbol of comprehensive national strength,
and GNSS and mobile communication networks are important components of the spatio-
temporal network system. The global location-based service market size will grow from
USD 70.27 billion in 2022 to USD 88.42 billion in 2023, with a compound annual growth
rate of 25.8% [1]. The promotion of the deep integration of GNSS system and mobile
communication network, the establishment of a new type of ubiquitous, reliable, and
integrated location service system platform, and the formation of a highly reliable spatio-
temporal network have become an inevitable trend. In recent years, many countries have
carried out a major deployment of space-time service systems using GNSS, next-generation
mobile communications, and big data to strengthen comprehensive information service
capabilities and comprehensively improve the level of the space-time infrastructure’s
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development. Building a highly dependable spatio-temporal network is urgently needed
to solve the problems of network heterogeneity, data-heterogeneity fusion, and trusted
positioning under the spatio-temporal network architecture. The scenario of GNSS and 5G
hybrid positioning is shown in Figure 1.

Figure 1. Scenario of GNSS-5G hybrid positioning in a high-dependability spatio-temporal network.

GNSS can provide users with real-time position, speed, and time information. How-
ever, with users’ increasing requirements with respect to positioning accuracy and robust-
ness, the existing satellite positioning technology can no longer meet the needs of users in
the face of complex scenes with high occlusion, high multipath interference effects, and high
Non-Line-Of-Sight (NLOS) characteristics such as dense buildings and indoor/outdoor
switching [2]. The fusion of GNSS systems with other systems, such as inertial navigation
systems [3–5], visual navigation systems [4,5], local sensor networks [6,7], or wireless
communication networks [2,8–12], is a feasible option at this time. Numerous scholars
have conducted intensive research on this issue. Additional cumulative errors will lead to
a decrease in accuracy in the inertial navigation system. The light environment drastically
restricts the visual navigation system. Local sensor networks such as Bluetooth and UWB
should be deployed independently. The 5G network is a mobile communication system,
without the aforementioned deficiencies, that has a high base station density, broad indoor
and outdoor coverage, and a wide communication bandwidth. Therefore, it is capable of
precisely measuring the relative distance between the base station and the user terminal .
The combination of 5G and GNSS signals can effectively address the problems of limited
GNSS coverage and poor positioning accuracy in urban canyons.

The GNSS has fully served many key industries, such as national defense and military,
mass fields, transportation, public safety, disaster relief and mitigation, agriculture, forestry,
animal husbandry and fishery, and urban governance. However, the service is limited or
even blocked in indoor, underground, urban canyon, and other sheltered environments.
The resources of the 5G mobile communication network are an important supplement to
GNSS, and the deep integration of 5G and GNSS is an effective way to realize a ubiqui-
tous and credible spatio-temporal information service. The positioning standards of R16
and R17 have been established in the 5G mobile communication network, and the R18
standard is being studied, which has the potential of sub-meter-level positioning, and its
positioning signals can cover indoor and outdoor environments, underground environ-
ments, tunnels, urban canyons, and other environments and can become a supplement
to the GNSS under a fully occluded environment (indoor, underground, tunnels, etc.), a
means of integration and enhancement between a semi-occluded (urban canyons, etc.) and
open environment, thus expanding the service scope and scope of GNSS. The GNSS and 5G
joint-positioning methods are mainly divided into three types. Firstly, GNSS positioning
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results are dominant, and 5G base stations are utilized as communication means to transmit
GNSS-enhanced information [13,14]; secondly GNSS positioning signals are blocked or
suffer from significant errors, and the positioning result of 5G PRS signal is dominant [11];
thirdly the positioning terminal can receive the GNSS signal and the 5G positioning signal
at the same time and can obtain the positioning result through the fusion of the two
signals [8–10,12]. Therefore, the fusion positioning algorithm has become a research
hotspot [2,12]. The Extended Kalman Filter (EKF)-based algorithm is a widely used filtering
algorithm that approximates nonlinear dynamics by linearizing system states and measure-
ments. EKF has been extensively applied in GNSS and multi-sensor integration [15–17].
However, the linearization approximation of EKF for nonlinear systems and noise may
lead to the growth of estimation errors. Lu Bai et al. [9] proposed a hybrid sequential-
fusion Multiple-Rate Adaptive Kalman Filter (MRAKF) for GNSS-5G hybrid positioning,
which is able to adaptively adjust the observation noise covariance matrix. MRAKF can
manage the large dynamic range of the measurement noise uncertainty and prevent the
decrease in the positioning accuracy. Julier et al. [18] proposed an Unscented Kalman Filter
(UKF) as a derivative-free alternative to the extended Kalman filter in the framework of
state estimation. Through the utilization of a set of unscented transformation points to
represent the mean and covariance of the state distribution, the state of nonlinear systems
can be estimated with improved precision. Nevertheless, there is a drawback with filter
divergence in the estimation of the state of high-dimensional systems. In GNSS and 5G
fusion, the number of observation data is substantial, and the EKF calculation Jacobian
matrix is intricate. Many researchers [19–22] have utilized a federated filter algorithm based
on the Unscented Kalman Filter to improve the accuracy of low-cost Strapdown Inertial
Navigation Systems (SINSs). The Square Root UKF (SRUKF) [23–25] is a modified form of
UKF, the filter of which is initialized by calculating the matrix square root of the estimation-
error covariance, which is proved to provide a better numerical stability. K. Li. et al. [26]
proposed a modified UKF algorithm called a Variational Bayesian-based Unscented Kalman
Filter (VBHUKF). Adaptation is achieved by estimating the time-varying observation noise
covariance based on Variational Bayesian approximations. The proposed method has
better filtering consistency than the standard UKF, and the VBHUKF filter performs bet-
ter when the observation noise covariance is time-varying and there are outliers in the
observation data.

The main contributions of this paper can be summarized as follows. We have proposed
a multiple-signal, compact, coupled filter group architecture and a Square Root Unscented
Stable Filter algorithm as a solution to the issues in the GNSS-5G hybrid network that the
number of available signal sources fluctuates rapidly, the estimation stability of multi-scale
and multi-type signals is poor, and dependable positioning is difficult. We have added an
additional positive definite parameter to guarantee positive estimation-error covariance.
Ultimately, the high-confidence joint positioning of GNSS and 5G is realized, and the
divergence of fusion positioning results caused is avoided with abnormal observation data.

The remainder of this paper is organized as follows. Section 2 briefly introduces the
GNSS-5G hybrid positioning system model. Section 3 describes the proposed multiple-
signal joint estimation method in detail, including a multiple-signal, compact, coupled filter
group architecture and the realization of a Square Root Unscented stable filter. In Section 4,
the employed simulation settings are explained, the performance of SRUSF in GNSS and
5G Joint Positioning Model is evaluated under different condition, and an analysis of the
proposed method is presented. Finally, conclusions are drawn in Section 5.

2. System Model

In this section, the measurement model of the GNSS positioning signal is described,
followed by a measurement model of the 5G positioning signal, a clock model of the posi-
tioning terminal, and finally, a measurement model of the GNSS and 5G fusion positioning.
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2.1. GNSS Receiver Measurement Model

The measurement equation for the m-th satellite is given by

ym
GNSS[tk] = τGNSS[tk] = hm

GNSS( s[tk]) + ωm
GNSS[tk] (1)

hm
GNSS( s[tk]) =

dm
GNSS[tk]

c
+ δ[tk] (2)

where m is the satellite number, tk denotes the measurement time of the receiver, τGNSS[tk]
denotes the time delay measurement result, and hm

GNSS(s[tk]) indicates the measurement
function that converts the state quantity into the observation quantity, where ω[tk] models
the uncertainty of the measurement, which is modeled as a zero-mean Gaussian random
vector with a covariance of RGNSS. RGNSS is composed of different error sources, including
satellite and receiver clock errors, satellite orbit errors, and errors such as ionospheric
and tropospheric delays, where c represents the speed of light, dm

GNSS[tk] indicates the real
distance between the terminal and the m-th satellite, and δ[tk] denotes the terminal’s clock
bias in relation to the GNSS satellites. The GNSS measurement results are not available if the
GNSS receiver loses its signal under severe multipath effects or when the carrier-to-noise
ratio is extremely low. Therefore, in harsh multipath environments such as navigating in a
canyon deep within a city, the multipath effect-suppression algorithm must be considered.
This article does not discuss the related research on multipath signal modeling or related
methods, for which one can refer to [27,28].

2.2. 5G Receiver Measurement Model

Considering the scene of 3D positioning, assuming that the number of line-of-sight
5G base stations is n, the signal-measurement model of the 5G positioning receiver is as
follows:

yn
5G[tk] = [τ[tk], ϕ[tk], θ[tk]] = hn

5G( s[tk]) + ωn
5G[tk] (3)

where y represents the collection of measurements; n denotes the number of 5G base
stations; tk indicates the measurement time of the receiver; and τ, ϕ, and θ represent
the measurements of the Time Of Arrival (TOA), azimuth Direction Of Arrival (DOA),
and elevation DOA. s[tk] is the state of the 5G receiver at the timestamp tk, ω[tk] denotes
the measurement uncertainty of the receiver, and the nonlinear measurement function
hn

5G( s[tk]) can be expressed as follows:

hn
5GUE(s[tk]) =


dn [tk ]

c + δ[tk]

arctan
(

∆yn [tk ]
∆xk [tk ]

)
arctan

(
∆zn [tk ]√

(∆xn [tk ])
2+(∆yn [tk ])

2

)
 (4)

where dn[tk] =
√
(∆xn[tk])

2 + (∆yn[tk])
2 + (∆zn[tk])

2 indicates the distance from the re-
ceiver to the m-th base station and ∆xn[tk], ∆yn[tk], and ∆zn[tk] denote the distance differ-
ence between the terminal and the base station in x, y, and z directions, respectively. δ[tk]
indicates the clock deviation of the terminal relative to the GNSS satellite.

2.3. Receiver Clock Model

For mass-market users, the clock in the positioning receiver usually uses a low-cost
consumer crystal oscillator, and its clock deviation relative to the time of the GNSS system
is impossible to ignore, which contributes to the clock offset in the terminal being time-
varying. Therefore, the clock offset of the terminal must be modeled to represent or estimate
the clock offset of the device. Therefore, the clock offset of the receiver must be modeled
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to estimate the clock offset of the device. It is shown in [29] that the clock offset of two
consecutive adjacent times can be expressed as

ρ[tk] = ρ[tk−1] + α[tk]∆t (5)

where ∆t represents the time interval between two consecutive measurement times tk−1
and tk, andα[tk] denotes the clock skew, which is also a time-variable quantity

α[tk] = ωα[tk−1] + η[tk] (6)

where η[tk] ∼ N
(

0, σ2
η

)
is additive white Gaussian noise sequence. ω is a coefficient

describing the correlation between α[tk] and α[tk−1]. In this paper, ω is set to 1 based on
empirical values.

2.4. GNSS and 5G Joint Positioning Model

Aiming to take full advantage of the measurement information offered by GNSS
satellites and 5G BSs, we propose a GNSS and 5G fusion positioning model with the input
of the observation data of multiple satellites and multiple 5G BSs, which are named GNSS
and 5G Joint Positioning Model (GNSS and 5G JPM). The purpose of realizing the fusion
positioning of GNSS and 5G is to unify the time-reference and space-reference coordinate
system. In this paper, the BDS time and the Earth-Centered Earth-Fixed (ECEF) coordinate
system are chosen as the unified benchmarks. Assuming that m satellites and n5G BSs
can be observed in each epoch t, the signal-measurement model of the GNSS and 5G Joint
Positioning Receiver (JPR) can be obtained as described in Equation (5):

yGNSS & 5G [tk] =
[
τ1

GNSS [tk], . . . , τm
GNSS[tk], τ1

5G[tk], . . . , τn
5G[tk], ϕ1[tk], θ1[tk], . . . , ϕn[tk], θn[tk]

]T

= hGNSS & 5G (sGNSS & 5G [tk]) + nGNSS&5G[tk]
(7)

where τ1
GNSS[tk], . . . , τm

GNSS[tk] denotes the TOA JPR obtained from the first to the m-th
satellite, τ1

5G[tk], . . . , τn
5G[tk], ϕ1[tk], θ1[tk], . . . , ϕn[tk], and θn[tk] represent the TOA, azimuth

DOA, and elevation DOA of the first to nth 5G base stations received by the JPR, respec-
tively. hGNSS&5G represents the measurement function of JPM hGNSS&5G =

[
h1

GNSS[tk], . . . ,

hM
GNSS[tk], h1

5G[tk], . . . , hN
5G[tk]

]T , and observation noise is composed of m satellites and n5G

base stations nGNSS&5G[tk] =
[
ω1

GNSS[tk], . . . , ωm
GNSS[tk], ω1

5G[tk], . . . , ωn
5G[tk]

]T .
In the case of synchronized satellites and 5G BSs, the system state of the GNSS and 5G

joint 3D positioning can be written as

sGNSS&5G[tk] = [p[tk], v[tk], ρ[tk], α[tk]]
T (8)

The continuous white noise acceleration model in [9] is used here to characterize the
transformation of the JPR’s state.

sGNSS&5G[tk] = FsGNSS&5G[tk−1] + u[tk] (9)

where F denotes the state-transition matrix, and u[tk] is the process noise following a
Gaussian distribution.

F =

 I3×3 ∆t · I3×3 03×2
03×3 I3×3 03×2
02×3 02×3 FClock

, FClock =

[
1 ∆t
0 ω

]
(10)
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The four elements at the top-left corner of matrix F represent the constant-velocity
(CV) model, and ∆t is the interval between two adjacent epochs. FClock describes the JPR
clock model obtained from [29].

Q =


σ2

v ∆t3

3 · I3×3
σ2

v ∆t2

2 · I3×3 03×1 03×1
σ2

v ∆t2

2 · I3×3 σ2
v ∆t · I3×3 03×1 03×1

01×3 01×3
σ2

η ∆t3

3
σ2

η ∆t2

2

01×3 01×3
σ2

η ∆t2

2 σ2
η ∆t

 (11)

where σv and ση denote the variances of the JPR velocity and clock skew in [29], respectively.

3. The Proposed Multiple-Signal Joint Estimation Method
3.1. Multiple-Signal Compact Coupled Filter Group Architecture

The currently widely used multi-signal source-fusion method adopts a cascaded
filter architecture. After the individual positioning results of each sensor are given, the
positioning settlement results are fused according to a certain weighted algorithm. These
types of methods process the observations according to the time sequence according
to the sequential fusion strategy and only need to fuse and estimate the independent
positioning results. The advantage of this fusion method is that the structure is flexible
and the implementation complexity is low. However, the disadvantages of this type of
method are also obvious. Ignoring a large amount of prior information may lead to a
significant decrease in the accuracy of the estimation results. In order to entirely achieve
joint estimation and high-precision measurement of GNSS and 5G signals, this paper
proposes a tightly coupled filter group, whose architecture is shown in Figure 2. This
method first filters the observations of each channel of the GNSS and 5G joint positioning
terminal separately in the first group, and then fuses the observations of each signal source
to give the optimal estimate of the GNSS and 5G joint positioning results in the second
group. In the first group, UKF algorithm is utilized to predict GNSS observation and 5G
observation respectively. In the second group, we adopt the Square Root Unscented stable
filter algorithm proposed in next section, multiple GNSS and 5G measurement obtained
from the first group are efficiently fused into the position estimation to ensure the high
dependability positioning.

Figure 2. GNSS and 5G joint positioning compact coupled filter group architecture.
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The first group utilizes UKF to estimate the observation of 5G and GNSS, a general
algorithm of UKF can be founded in [18] and the state equation of the system can be
expressed as

sGNSS&5G[tk] = [τGNSS[tk], τ5GBS[tk], ϕ5GBS[tk], θ5GBS[tk]

∆τGNSS[tk], ∆τ5GBS[tk], ∆ϕ5GBS[tk], ∆θ5GBS[tk]]
T (12)

where τGNSS[tk], τ5GBS[tk], ϕ5GBS[tk], θ5GBS[tk] denote GNSS TOA, 5G TOA, azimuth angle
and elevation angle, respectively. Furthermore, parameters ∆τGNSS[tk], ∆τ5GBS[tk], ∆ϕ5GBS[tk],
∆θ5GBS[tk] denote the rate of change of the corresponding variables.

In GNSS and 5G fusion positioning scenarios, there often exist a large number of
NLOS channels, and the positioning results of direct integration of multiple signal sources
may result in an unacceptable rise in location error. At present, the widely used NLOS
error suppression methods are mainly divided into error compensation based on NLOS
error distribution model and suppression methods based on observation screening.

Due to the wide coverage of the spatio-temporal network composed of GNSS and 5G
communication networks, the modeling complexity and cost of collecting NLOS errors
are extremely high. In the method proposed in this paper, UKF is used in the first group
to predict and update the observation and the change rate of 5G and GNSS, respectively,
which provides the feasibility for using signal quality evaluation and observation screening
algorithm to exclude the NLOS channel observation information and can prevent excessive
NLOS errors from being introduced into the joint positioning results of the second group.

The second group utilizes the SRUSF algorithm introduced in Section 3.2 to estimate
the receiver’s position, velocity, clock offset, and clock skew. The state equation can be
expressed as

sGNSS&5G[tk] =
[
pT[tk], vT[tk], ρ[tk], α[tk]

]T
(13)

In the GNSS and 5G joint positioning compact-coupled-filter group architecture, each
filter in the first group outputs updated and filtered GNSS and 5G observations into the
second group, which are used to modify the measurements of each channel in the receiver
at the current time. By combining the estimated value of the previous time, the second
group uses the SRURF algorithm to solve the fusion of multiple signal sources’ TOA and
DOA and gives the joint estimation of the position, speed, and clock offset of the positioning
terminal with GNSS and 5G.

3.2. Square Root Unscented Stable Filter

In order to enhance the numerical stability of UKF, the square root form of the state
covariance is introduced. In the Square Root Unscented stable filter implementation,
the square root of the state covariance is propagated directly, avoiding the requirement
to refactorize the covariance at each iteration. In addition, the square root form has
the additional advantages of numerical stability and positive semi-certainty of the state
covariance. During the fusion of GNSS and 5G observations, the stability of the filter must
be guaranteed. Therefore, a stability factor is added as a slight modification to ensure the
reliability of the SRUSF.

Unscented Transformation is introduced in SRUSF, utilizing the deterministic “sam-
pling” method to calculate the mean and covariance terms. The relative locations of
the sampling points and their corresponding weights are based on the following basic
principle: they can capture the most important statistical properties of the prior random
variables. 2 L + 1 sigma points are selected according to the square root decomposition
of a priori covariance. The nonlinear function is applied to each sigma point to yield a
cloud of transformed points, and the estimate of the nonlinearly transformed mean and
covariance can be obtained by weighting the transformed points. The initial system state
sGNSS&5G[t0] ∼ N (m, P) follows a Gaussian distribution with mean m and variance P.
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From the column of system state matrix sGNSS&5G[tk] we can obtain 2 L + 1 sigma
points 

x0 = m
xi = m + (

√
(L + λ)P)i i = 1, . . . , L

xi = m− (
√
(L + λ)P)i−L i = L + 1, . . . , 2L

(14)

Calculating the corresponding weight for each sigma point,

W(m)
0 =

λ

(L + λ)
(15)

W(c)
0 =

λ

(L + λ) + (1− α2 + β)
(16)

W(m)
i = W(c)

i =
1

2(L + λ)
, i = 1, . . . , 2L (17)

where the scaling parameter can be expressed as λ = α2(L + κ)− L. L is the dimension of
the state space matrix, and α and κ determine the distribution of sigma points near the mean
value. The parameter α is typically set to a smaller positive value 1× 10−4 ≤ α ≤ 1 [30]; κ
is a secondary scaling parameter, which is often set to 0; and β is a scalar parameter used to
incorporate prior information on probability distributions over the state space of the system.
For A Gaussian distribution, β = 2 is optimal.

These sigma vectors are propagated through the nonlinear function

yi = h(xi)i = 0, . . . (18)

The covariance of the GNSS-5G joint-positioning state-prediction error can be ex-
pressed as

P−[tk] = FP[tk]FT + Q[tk] (19)

where P[tk] denotes the estimation-error covariance and its square root form R[tk] is pre-
sented in (20), and Q[tk] is the Gaussian process noise matrix at tk.

P[tk] = R[tk](R[tk])
T (20)

By introducing the QR decomposition, the square root of the state prediction covari-
ance can be expressed as

R−[tk] =

(
qr
{[

FR[tk]
√

Q[tk

]]T
})T

(21)

where the “qr” (orthogonal triangular decomposition) is a MATLAB function that denotes
the QR decomposition.

In the GNSS and 5G joint positioning SR-USF algorithm, the process noise consists of
two parts, the deterministic noise and the stochastic noise. The deterministic noise can be
settled using a priori knowledge, while the stochastic noise attributed to the modeling error
should be compensated accurately. Because of this modeling inaccuracy, the innovation’s
expected mean and covariance could be divergent from their actual values in practice.
A stabilized coefficient is proposed here to solve this problem, which will undoubtedly
improve the competitiveness of this method.

R[tk] =
√

ϕ[tk]R−[tk] (22)
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The estimated innovation covariance Pγ,γ[tk] should be larger than or equal to the real
one E

{
γ[tk]γ

T [tk]
}

so as to maintain consistent estimates.

Pγ,γ[tk] ≥ E
{

γ[tk]γ
T [tk]

}
(23)

γ[tk] = y[tk]− ŷ[tk] (24)

where γ[tk] is the innovation sequence and ŷ[tk] is the predicted measurement. It is
significant to point out that the innovation covariance can be written as

Pγ,Y[tk] = H[tk]P[tk]HT [tk] + Q[tk] (25)

where P[tk] is the covariance of the predicted state and the cross-covariance between the
measurements, and the predicted state is denoted by Px,y[tk]:

Px,z[tk] = P[tk]HT [tk] (26)

Combining Equations (25) and (26) leads to Equation (27)

Pγ,γ[tk] = PT
x,y[tk]P−1[tk]Px,y[tk] + Q[tk] (27)

Incorporating across Equations (23) to (27) yields Equation (28), the fading factor introduced
into the predicted state covariance should meet the requirements

ϕ[tk] ≥
E
{

y[tk]yT [tk]−Q[tk](
P−x,y[tk]

)T
(P−[tk])

−1P−x,y[tk]
(28)

where P−[tk] is the covariance of the predicted state P[tk] = ϕ[tk]P−[tk], andP−x,y[tk] is
the cross-covariance of the state and measurement without the fading factor Px,y[tk] =
ϕ[tk]P−x,y[tk].

Consequently, it can be verified that the lower bound of the stabilized coefficient ϕ[tk]
obtained in Equation (28) can be used to mitigate the modeling error by preserving the
estimation consistency of the innovation. The square root of the predicted measurement
covariance can be derived according to Equation (21)

Ry,y[tk] =

(
qr
{[

y∗[tk]
√

U[tk

] ]T
})T

(29)

y∗[tk] = [(y[tk])0 − ŷ[tk] · · · (y[tk])i − ŷ[tk] · · · (y[tk])2L − ŷ[tk]]× diag
(√

W(c)
)

(30)

where L is the dimension of the receiver. (y[tk])i, i = 0, 1, . . . , 2L is the propagated sigma
point, and y[tk] is the predicted measurement results. U[tk] is the Gaussian measurement
noise matrix at tk.

√
W(c) denotes the weight of the sigma points. The state covariance

derived from QR decomposition can be calculated using

R[tk] =

(
qr

{[
χ∗[tk]− y∗[tk] K[tk]

√
U[tk]

]T
})T

(31)

χ∗[tk] =
[
(χ[tk])0 − ŝ[tk] · · · (χ[tk])i − ŝ[tk] · · · (χ[tk])2nx

− ŝ[tk]
]
× diag

(√
W(c)

)
(32)

where (χ[tk])i, i = 0, 1, . . . , 2L denotes the propagated sigma points and K[tk] is the filtering
gain.



Remote Sens. 2023, 15, 4220 10 of 17

The SR-USF algorithm based on the QR decomposition for the GNSS and 5G joint
positioning over the k sampling period is summed up in the Algorithm 1 in detail.

Algorithm 1: SRUSF for the GNSS and 5G joint positioning
Initialization Denote the estimated state of GNSS and 5G joint positioning and its square

root of the prediction error covariance at ti
k by ŝGNSS&5G[tk] and R[tk].

For every iteration k=1, . . . , T
(1) The prior estimate for predicting the state of the system and the square root of its
covariance are as follows

ŝGNSS&5G[tk] = FŝGNSS&5G[tk−1] (33)

R−[tk] =

(
qr

{[
FR[tk]

√
Q[tk]

]T
})T

(34)

(2) Generate 2L+1 sigma points

χ−(0)[tk] = ŝ−GNSS&5G[tk]

χ−(i)[tk] = ŝ−GNSS&5G[tk] +
√

λ + L
(

R−[tk]
)

i

χ−(L+i)[tk] = ŝ−GNSS&5G[tk]−
√

λ + L
(

R−[tk]
)

i

(35)

where i = 1,. . . ,L
(3) Propagate the sigma points in GNSS-5G joint positioning model

y−(i)[tk] = hGNSS&5G

(
χ−(i)[tk]

)
i = 0, 1, . . . , 2L (36)

(4) Evaluate the predicted value of the measurement result

ŷ−[tk] =
2L

∑
i=0

W(m)
i
(
y−[tk]

)
i (37)

where W(m)
i is the mean weights of the sigma points.

(5) Compute the innovation
γ−[tk] = y[tk]− ŷ−[tk] (38)

(6) Calculate the cross covariance

P−x,y[tk] =
2L

∑
i=0

W(c)
i
((

χ−[tk]
)

i − ŝ−[tk]
)
×
((

y−[tk]
)

i − ŷ−[tk]
)

(39)

(7) Establish a stabilized coefficient and introduce it into the square root covariance of state
prediction.

R[tk] =
√

ϕ[tk]R
−[tk] (40)

(8) Generate the new sigma points using the newly predicted state and execute step 2 to
step 6 to repeatedlygenerate new innovation and the cross covariance.
(9) Calculate the square root of the innovation covariance

Ry,y[tk] =

(
qr
{[

y∗[tk]
√

U[tk

] ]T
})T

(41)

(10) Calculate the Kalman gain and update the GNSS and 5G estimate state

K[tk] =
(

Px,y[tk]/Ry,y[tk]
)
/RT

y,y[tk] (42)

ŝ[tk] = ŝ−[tk] + K[tk]γ[tk] (43)

R[tk] =

(
qr

{[
χ∗[tk]− K[tk]y

∗[tk] K[tk]
√

U[tk]

]T
})T

(44)

End
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4. Simulation Results and Analysis

In this section, the performance of SRUSF in GNSS and the 5G joint positioning model
is evaluated regarding measurements’ estimation error and positioning error under differ-
ent conditions. Section 4.1 describes the setup of the simulation scenario and the simulation
parameters, and in Section 4.2, we validate the advantages of the proposed SRUSF algo-
rithm. MATLAB 2022a is used to process the data, and the computer configuration is as
follows: Intel i5-10400H (CPU), 24 GB (RAM), and Windows 10 (64 bit).

4.1. Parameter Settings

Both pseudorange measurements from GNSS and TOA/AOA measurements from 5G
BSs are fused for positioning. Some important simulation parameters for GNSS and 5G
BSs are summarized in Table 1. The transmit signal is the 5G positioning reference signal
(PRS) conforming to 3GPP TS38.211 [31]. The time of the GNSS and 5G network can be
synchronized precisely according to [32].

Table 1. Parameters.

Parameters Value

5G carrier frequency 3.5 GHz

5G bandwidth 100 MHz

Subcarrier spacing 30 KHz

Total number of satellites 10

Total number of 5G BSs 10

The simulation lasts for a total of 1000 s. The update rates of the GNSS and 5G PRS
are set to 1 HZ. The GNSS-5G joint positioning receiver moves straight ahead in the x-
direction at 2 m/s. The STD of the clock skew noise σε is set to 1 ns. Only the line-of-sight
conditions are simulated since the NLOS-suppression and observation-screening functions
are not included.

4.2. Performance Evaluation

We evaluate the horizontal localization accuracy of the proposed hybrid positioning
method over different simulation scenarios and compare it with seven state-of-the-art
methods, including the standard EKF, MRAKF, UKF, SRUKF, VBHUKF, and SRUSF, to
verify its performance. Only 2D scenarios are considered here, but the extension to 3D is
quite straightforward.

(1) Positioning performance of the multiple-signal joint estimation method
The positioning error and the cumulative distribution function (CDF) of the proposed

method are compared with those of the other five methods. From Figures 3 and 4, we can
conclude that among the six observation fusion methods for GNSS and 5G joint positioning,
the positioning algorithm based on the EKF filtering has the largest horizontal positioning
error, and the horizontal positioning error is 1.98 m in 90% of cases. This is probably
because the EKF in the system model uses the Jacobian matrix to calculate the observation
matrix, which will bring a certain degree of precision loss. This could be due to the fact that
the EKF must derive the Jacobian matrix to obtain the observation matrix, which will bring
a certain degree of precision loss. Compared with EKF, the RMSE of MRAKF is reduced by
more than 0.4 m on average, indicating the superiority of adaptive strategy filtering. UKF
utilizes the UT transform to avoid the accuracy loss caused by nonlinear problems, and
its performance is significantly better than standard EKF. In 90% of cases, the horizontal
positioning error is 1.55 m. VBHUKF uses the variable Bayesian approximation to estimate
the covariance of time-varying measurement noise to achieve self-adaptation. Compared
with UKF, it has better filtering consistency, and the positioning accuracy is about 10%
higher than that of UKF. SRUKF introduces the square root form of covariance into UKF
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to ensure the semi-positive qualitative value of the state space covariance matrix, and
the output numerical results are more stable. The proposed SRUSF is superior to the five
other filtering methods, the positioning accuracy is slightly better than that of SRUKF and
significantly better than other methods, and the positioning error of 0.97 m is achieved in
90% of cases. This is mainly due to the fact we have innovatively proposed a tight-coupled
filter group. First, the observations of the GNSS and 5G joint positioning receiver are
filtered independently, and then the observations of each signal source are fused to provide
an optimal positioning estimate. The stabilized coefficient is introduced in the updating
process of the state prediction covariance at the same time, which will undoubtedly reduce
the possibility of the divergence of the filtering results due to the imperfect match between
the system model and the actual situation and ultimately improve the positioning accuracy
of the algorithm.

Figure 3. Positioning error comparison of EKF, MRAKF, UKF, SRUKF, VBHUKF, and the proposed
SRUSF method.

Figure 4. CDF of positioning error for EKF, MRAKF, UKF, SRUKF, VBHUKF, and the proposed
SRUSF method.

(2) Positioning performance with different numbers of available signal sources
The positioning error of the GNSS-5G joint positioning system is closely related to the

following factors: the modeling accuracy of the system model, the measurement error, the
signal propagation error, the geometry of the signal source, the number of visible signal
sources, and the positioning algorithm. The first three items are related to system design
parameters and the baseband signal processing algorithm and are not within the scope of
this paper. The geometry distribution of signal sources also has an important impact on
positioning errors. However, under ideal conditions when the signal sources are evenly
distributed, the impact on positioning errors is relatively small. This paper mainly focuses
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on the relationship between the number of positioning signals received and the positioning
accuracy in the GNSS and 5G joint positioning system, as well as the influence of different
fusion positioning algorithms on the results. Figure 5 presents the relationship between the
positioning RMSE in the horizontal planes and the number of positioning signals.

It can be seen that when the number of positioning signals received by the receiver
increases from 3 to 10, the positioning errors of each fusion algorithm are significantly
reduced. When the number of available positioning signals is further increased, the
positioning accuracy is not greatly improved. Compared with the methods EKF, MRAKF,
UKF, SRUKF, VBHUKF, and SRUSF, the performance of the proposed SRUSF algorithm is
close to that of other methods, but the performance of the SRUSF algorithm is still better
than the other methods, showing high numerical stability.

Figure 5. Positioning RMSE versus the number of positioning signals with different methods.

(3) GNSS and 5G joint positioning performance in a typical environment
In order to further prove the superiority of the SRUSF algorithm proposed in this

paper, three typical GNSS and 5G joint positioning scenarios are considered in this sec-
tion, including the slight occlusion of satellite signals, the moderate occlusion of satellite
signals, and the severe occlusion of satellite signals. We simulate different numbers of
visible satellites and present the performance of various positioning algorithms in different
environments. The 5G positioning base station can be arranged according to the require-
ments, assuming that the 5G base station is evenly distributed around the positioning
receiver. An excessive number of base stations is not conducive to observing the impact
of changes in the number of GNSS satellites on the positioning accuracy, so the number
of 5G positioning base stations is set to four. We generate three sets of observation data
with different accuracy levels, and the mean of the real positioning results is set to 0, and
STDs are set to 0.5, 0.4, and 0.3 m. In the three typical scenarios, the sky plot and the Taylor
diagram are given.

In the sky plot, the blue circle represents the GNSS satellite, the number in the middle
represents the satellite number, the purple hexagram represents the 5G positioning base
station, and the number in the middle represents the base station number. The rings
from the outside to the inside represent different elevation angles, ranging from 0 to 90
degrees, and the numbers on the outside of the outermost circle represent azimuth angles,
ranging from 0 to 360 degrees. In the Taylor diagram, the red axis represents the STD of the
positioning result, the green dashed line represents the RMSE of the positioning result, and
the blue axis represents the correlation coefficient of the output result. Figure 6 shows the
scene in which GNSS signals are slightly blocked. The geometric distribution of satellites is
good, 10 GNSS satellites can be seen, the elevation distribution is between 10° and 80°, and
four 5G positioning base stations can be seen. The EKF algorithm performs the worst, and
the STD and RMSE of the output results of MRAKF, UKF, SRUKF, VBHUKF, and SRUSF
are very close to each other. The SRUSF proposed in this paper is about 7% higher than the
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suboptimal SRUKF algorithm, and the data consistency of SRUKF and SRUSF is obviously
better than that of other methods.

Figure 7 shows a scene in which GNSS signals are moderately obstructed, such as the
entrance of a tunnel or the side of a tall building. The geometric distribution of satellites
is poor, and six GNSS satellites can be seen. The RMSE of EKF, MRAKF, UKF, SRUKF,
VBHUKF, and SRUSF deteriorated significantly compared with what is shown in Figure 6,
but the increase in RMSE in SRUSF proposed in this paper is the least, which is 18%
lower than the suboptimal SRUKF algorithm. In addition, it can be seen that the correlation
coefficient of SRUSF is significantly higher than other methods, which reflects the advantage
of adding a stabilized coefficient in the state prediction covariance during the updating
process.

(a) Sky plot (b) Taylor diagram

Figure 6. GNSS-5G hybrid positioning with slight occlusion. (a) Sky plot (b) Taylor diagram.

(a) Sky plot (b) Taylor diagram

Figure 7. GNSS-5G hybrid positioning with moderate occlusion. (a) Sky plot (b) Taylor diagram.

Figure 8 shows a scene where GNSS signals are severely blocked, such as an urban
canyon or an indoor environment. Only two GNSS satellites can be seen, and elevation is
distributed between 10° and 30°. The RMSE of EKF, MRAKF, UKF, SRUKF VBHUKF, and
SRUSF is significantly larger than that in Figure 7 and the correlation coefficient sharply
is reduced as well. However, the proposed SRUSF remains the optimal algorithm and is
about 9% better than the suboptimal SRUKF algorithm.
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(a) Sky plot (b) Taylor diagram

Figure 8. GNSS-5G hybrid positioning with severe occlusion. (a) Sky plot (b) Taylor diagram.

As can be seen in Figures 6–8, the SRUSF algorithm proposed in this paper outperforms
other methods in all three typical scenarios: slight occlusion, moderate occlusion, and severe
occlusion of satellite signals. In the scenario with slight occlusion, the performance of each
positioning algorithm is close because of the sufficient number of visible signal sources. The
SRUSF algorithm has the most obvious advantage in the scene with moderate occlusion,
and the RMSE of the output is about 18% higher than that of the suboptimal SRUKF
algorithm, and the data correlation coefficient is also the largest. In the scene with severe
occlusion, the RMSE of each algorithm increases significantly, and the correlation coefficient
decreases at the same time, but the performance of the SRUSF algorithm is still superior to
that of the other algorithms. On the whole, the output results of SRUSF based on the square
root of covariance are more stable. SRUSF innovatively introduces the stabilized coefficient
to predict the covariance matrix of the error, which further prevents the divergence of
filtering results and increases the dependability of the output. The multiple-signal joint
estimation method based on SRUSF algorithm is more suitable for GNSS and 5G hybrid
positioning because of the more reliable and dependable state estimation results.

5. Discussion

The potential real-world applications of this article can be divided into the following
three aspects. Firstly, enhanced localization and tracking: this research can be widely
applied to scenarios requiring high-precision positioning. Through the integration of 5G
New Radio (NR) Release 17 and GNSS, a positioning accuracy of 0.2 m can be achieved
in indoor and outdoor environments, which will provide essential support for human
activity trajectory recognition and robot navigation. Secondly, smart manufacturing: the
integration of 5G and GNSS will offer paramount advantages in smart factory scenarios.
This could enable factory nodes and robots to seamlessly navigate, coordinate, and map
the environment, which is conducive to fulfilling the demand of ultra-reliability, ultra-low
latency, and massive connectivity often encountered in smart factory scenarios. Finally,
vehicle-to-everything (V2X): autonomous vehicles are expected to fundamentally change
the transportation industry, increasing highway capacity and traffic flow and hopefully
reducing accidents. The integration of 5G and GNSS could provide environmental infor-
mation to support fast vehicle platooning, secure and seamless access, and simultaneous
localization and mapping.

In this paper, a multiple-signal joint estimation method for GNSS-5G hybrid posi-
tioning in a highly dependable spatio-temporal network is proposed. A multiple-signal
compact coupled filter group architecture is presented to fuse the measurements of GNSS
and 5G. This filter group first filters the observations of each channel of the GNSS-5G joint
positioning terminal separately and then fuses the observations of each signal source to give
the optimal estimate of the GNSS-5G joint positioning results. Furthermore, a Square Root
Unscented stable filter is proposed to guarantee positive estimation-error covariance and
avoid the divergence of fusion positioning results caused by abnormal observation data
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since the square root of the covariance with stabilized coefficient rather than the covariance
itself propagates. Finally, comprehensive simulations are carried out to evaluate regarding
the measurements’ estimation error and positioning error under different conditions. It is
obvious that the proposed SRUSF method substantially enhances the positioning accuracy
and reliability compared with the five multiple-signal joint estimation methods. Especially
in the scene with moderate occlusion, the RMSE of SRUSF is 18% higher than that of the
suboptimal algorithm.

6. Conclusions

In this study, we sought to provide a GNSS and 5G signal joint processing method
in support of the general applicability of a highly dependable spatio-temporal network.
The proposed approach exhibits considerable promise for multiple-signal joint estimation.
This paper will provide significant assistance for highly dependable PNT services for mass
users under the GNSS-and-5G-based spatio-temporal network architecture. In the future,
we will start from the mass-scale application of the integration of the GNSS and 5G mobile
communication network, considering the credibility of positioning results provided via
the novel spatio-temporal network, to further improve the precision, availability, and
dependability of the PNT service. However, a field test still needs to be carried out in the
actual environment in the future. In addition, although the errors caused by multi-type
and multi-scale signal switching are considered in this paper, more complex error models
and suppression methods can be studied in the future to further improve the receiver’s
robustness to unknown errors.
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