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Abstract: Satellite data and algorithms directly affect the accuracy of phenological estimation; there-
fore, it is necessary to compare and verify existing phenological models to identify the optimal
combination of data and algorithms across the Mongolian Plateau (MP). This study used five phe-
nology fitting algorithms—double logistic (DL) and polynomial fitting (Poly) combined with the
dynamic threshold method at thresholds of 35% and 50% (DL-G35, DL-G50, Poly-G35, and Poly-G50)
and DL combined with the cumulative curvature extreme value method (DL-CUM)—and two data
types—the enhanced vegetation index (EVI) and solar-induced chlorophyll fluorescence (SIF)—to
identify the start (SOS), peak (POS), and end (EOS) of the growing season in alpine meadow (ALM),
desert steppe (DRS), forest vegetation (FV), meadow grassland (MEG), and typical grassland (TYG)
of the MP. The optimal methods for identifying the SOS, POS, and EOS of typical grassland areas
were Poly-G50 (NSE = 0.12, Pbias = 0.22%), DL-G35/50 (NSE = −0.01, Pbias = −0.06%), and Poly-G35
(NSE = 0.02, Pbias = 0.08%), respectively, based on SIF data. The best methods for identifying the SOS,
POS, and EOS of desert steppe areas were Poly-G35 (NSE = −0.27, Pbias = −1.49%), Poly-G35/50
(NSE = −0.58, Pbias = −1.39%), and Poly-G35 (NSE = 0.29, Pbias = −0.61%), respectively, based on
EVI data. The data source explained most of the differences in phenological estimates. The accuracy
of polynomial fitting was significantly greater than that of the DL method, while all methods were
better at identifying SOS and POS than they were at identifying EOS. Our findings can help to
facilitate the establishment of a phenological estimation system suitable for the Mongolian Plateau
and improve the observation methods of vegetation phenology.

Keywords: plant phenology; solar-induced chlorophyll fluorescence; enhanced vegetation index;
comparison of methods; differences in phenology

1. Introduction

Vegetation phenology refers to the different timing nodes (e.g., germination, leaf
unfolding, flowering, fruiting, senescence, and dormancy) that occur periodically in vege-
tation over many years [1,2]. Vegetation phenology is an important indicator of climate
change and plays a vital role in regulating ecosystem structures and functions [3]. Land
surface phenology (LSP) observes such seasonal changes in land surface vegetation through
sensors [4] and contains three commonly used, important indicators, namely, the start (SOS),
peak (POS), and end (EOS) of the growing season. Previous studies on LSP have been
limited to comparing phenology data sources or algorithms, and differences in phenology
identification caused by diverse combinations of data sources and methods remain unclear.
Phenology plays an important role in maintaining the stability of the overall carbon–water
cycle of the ecosystem [5]; therefore, selecting appropriate phenology identification schemes
for different ecosystems and accurately estimating large-scale phenology play key roles in
ecological and environmental management.

Satellite remote sensing has been extensively used in large-scale phenological re-
search, and many studies have shown significant differences in phenological estimates
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based on different remote sensing data sources [6,7]. Current phenology estimation data
sources are primarily divided into two categories: (1) The greenness of vegetation canopy
morphology, represented by the normalized difference vegetation index (NDVI) and the
enhanced vegetation index (EVI) [8]. Obtaining vegetation phenology information from the
perspective of vegetation morphology and greenness using such indices has been widely
adopted [9]. However, some studies have found that spring starts earlier, leaf shedding
occurs later [10,11], and the growing season is longer when identification is based on VI
data [12]. (2) The vegetation physiological signal, represented by solar-induced chloro-
phyll fluorescence (SIF). As it does not contain nonfluorescent targets, SIF has unique
advantages in characterizing the phenological information of vegetative physiological
development [13]. SIF has been increasingly applied in phenological studies in areas
with sparse vegetation coverage [14,15]. However, comparisons of phenological identifi-
cation based on these two data sources and evaluations of their applicability in different
ecosystems are lacking.

Climate change has led to the degradation of ground vegetation in some areas, creat-
ing new challenges in the identification accuracy of current phenological algorithms [16].
Phenological studies have attempted to determine phenological estimation models suitable
for arid regions with sparse vegetation [17]. The present general LSP extraction process
is primarily divided into two steps. The Savitzky–Golay filter [18], asymmetric Gaussian
filter [19], double logistic function [20], time-series harmonic analysis [21], and other meth-
ods have been used for the first step: reconstructing a time-series curve. The threshold [22],
derivative [23], fitting [24], and other methods have been used for the second step: extract-
ing key phenological parameters. Previous research has focused on the comparison of two
aspects: phenological parameter extraction algorithms [25] and phenological parameters
calculated from diverse data collections [26,27]. However, limited attention has been paid
to the aspects and attributes of vegetation phenology that reflect the choice of methods
and data. Therefore, current phenological research aims to compare the accuracy of phe-
nological identification based on different data and methods and determine the optimal
combination of data and algorithms for different vegetation types.

The Mongolian Plateau (MP) is located in an arid/semiarid region with a vast grass-
land area and is an important ecological barrier in northern Asia. In the context of severe
global climate fluctuations, changes in plant phenology will affect the energy exchange in
the Eurasian ecosystem and feedback to the global climate system [28]. However, most
phenological identification studies considered differences in phenological estimation in
isolation from data [29] or methods [30], but the primary factors affecting the accuracy of
phenological estimations could not be identified. It is impossible to objectively evaluate
phenological characteristics on a large scale. Therefore, this study analyzed the differences
in the temporal and spatial characteristics of phenology on the MP by identifying three
phenological parameters using different data sources and methods.

2. Materials and Methods
2.1. Study Area

The main part of the MP, including Mongolia and the Inner Mongolia Autonomous
Region of northern China, was selected as the study area (Figure 1, 87◦40′E–122◦15′E,
37◦46′N–53◦08′N). This region has apparent seasonal variations in natural vegetation, a
fragile and sensitive ecological environment, complex and variable physical geography,
and diverse landscape ecological types. The elevation increases gradually from east to west,
with an average of 1580 m (Figure 1a). The vegetation cover types include alpine meadow
(ALM), desert steppe (DRS), forest vegetation (FV), meadow grassland (MEG), and typical
grassland (TYG) (Figure 1b).
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Figure 1. Study area. (a) Elevation of the study area. (b) Land cover types and locations of flux 
towers. Photographs of each flux site obtained from http://www.chinaflux.org/ (accessed on 11 Oc-
tober 2022). 
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2.2.1. Eddy Covariance Flux Data 

Daily gross primary productivity (GPP) from flux data based on the eddy covariance 
(EC) method of the China Flux Observation Consortium (ChinaFLUX, 
http://www.chinaflux.org/, accessed on 11 May 2023) were compared with LSP estimated 
from remote sensing data (Figure 2). Three sites located in the study area (Figure 1b) were 
selected for analysis (Table 1): two TYG sites (Baiyin Xile and Duolun, Inner Mongolia) 
and one DRS site (Siziwang, Inner Mongolia). 

Table 1. Flux site names, coordinates, and land cover type from 2003 to 2018. 

Site Name Lat. (°N) Lon. (°E) Land Cover Type % of Land 
Cover 

Available 
Range 

Baiyin Xile 43.326 116.404 Typical grassland 21.1% 2004–2010 
Duolun 42.047 116.284 Typical grassland 21.1% 2006–2010 

Siziwang 41.790 111.897 Desert Steppe 28.4% 2010–2012 
% of total land cover = area of one land cover type/total area of the study area*100%. 

Figure 1. Study area. (a) Elevation of the study area. (b) Land cover types and locations of flux
towers. Photographs of each flux site obtained from http://www.chinaflux.org/ (accessed on 11
October 2022).

2.2. Data Sources
2.2.1. Eddy Covariance Flux Data

Daily gross primary productivity (GPP) from flux data based on the eddy covari-
ance (EC) method of the China Flux Observation Consortium (ChinaFLUX, http://www.
chinaflux.org/, accessed on 11 May 2023) were compared with LSP estimated from remote
sensing data (Figure 2). Three sites located in the study area (Figure 1b) were selected for
analysis (Table 1): two TYG sites (Baiyin Xile and Duolun, Inner Mongolia) and one DRS
site (Siziwang, Inner Mongolia).
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Table 1. Flux site names, coordinates, and land cover type from 2003 to 2018.

Site Name Lat. (◦N) Lon. (◦E) Land Cover Type % of Land
Cover

Available
Range

Baiyin Xile 43.326 116.404 Typical grassland 21.1% 2004–2010
Duolun 42.047 116.284 Typical grassland 21.1% 2006–2010

Siziwang 41.790 111.897 Desert Steppe 28.4% 2010–2012
% of total land cover = area of one land cover type/total area of the study area*100%.

We collected daily GPP data from the study field sites. The data products were
calibrated using the method described by Papale et al. [31], followed by gap filling and
partitioning as described by Reichstein et al. [32]. Net ecosystem exchange (NEE) was
divided into ecosystem respiration (Re) and GPP after quality control, where GPP was
calculated using Equation (1):

GPP = RE−NEE (1)

2.2.2. Remote Sensing Data

EVI data from 2001 to 2020 were derived from the 16-day MOD13A1 (Collection 6.1)
EVI product provided by NASA (https://e4ftl01.cr.usgs.gov/, accessed on 20 October
2022) with a spatial resolution of 500 m; this data type is widely used to infer vegetation
phenology and growth. The data are calibrated for errors caused by adverse atmospheric,
radiation, and geometric conditions and can be used to characterize the vegetation radiation
and greenness status. In this study, the spatial resolution was resampled to 0.05◦ to match
the fluorescence dataset. The MOD13A1 EVI data have large areas with filling values or
pixels of poor quality (such as cloud-coverage pixels), which lead to a large amount of
missing data and affect experimental results. When performing quality control on the time
series, cloud-coverage pixels (to be reconstructed) were filled with the weighted average
of adjacent pixels of better quality (reference pixels). The weight was determined by the
spectral angle similarity (distance between cells) between the pixel to be reconstructed and
the reference pixel [33]. Finally, the amplitude-limit method was used to greatly increase
the proportion of pixels that can obtain phenology in the MP [17]. The “amplitude-limit
method” refers to a technique used to restrict the magnitude or range of certain values in
a given context and is utilized in situations where extreme or unrealistic values must be
constrained to ensure the validity and reliability of results. That is, when the number of
pixels of >0.09 in the specified time series was >4, phenology was extracted; otherwise, it
was eliminated.

SIF data were obtained from the GOSIF dataset (https://globalecology.unh.edu, ac-
cessed on 21 June 2022) based on the inversion of the OCO-2 global SIF product provided
by Xiao et al., with a high spatiotemporal resolution of continuous global coverage and
long-term records (2001–2020, 8-day, 0.05◦). SIF effectively characterizes the photosynthetic
state of vegetation [34]. After quality control, according to the fluctuation characteristics
of the curve, pixels whose peak value in the growing season was >60% of the maximum
value before turning green were used for phenological extraction. Otherwise, they were
excluded from the analysis.

Land-cover-type data were obtained from the MCD12C1 land cover product (https:
//lpdaac.usgs.gov/products/mcd12c1v006/, accessed on 20 October 2022) with a spatial
resolution of 0.05◦ and were used to analyze differences in phenology retrieval algorithms
for different vegetation types.

2.3. Methods
2.3.1. Phenology Extraction Algorithms

Five methods were applied as phenology extraction algorithms to SIF and EVI data to
identify the SOS, EOS, and POS from 2001 to 2020. This study used five phenology fitting
algorithms—double logistic (DL) and polynomial fitting (Poly) combined with the dynamic
threshold method at thresholds of 35% and 50% (DL-G35, DL-G50, Poly-G35, Poly-G50)

https://e4ftl01.cr.usgs.gov/
https://globalecology.unh.edu
https://lpdaac.usgs.gov/products/mcd12c1v006/
https://lpdaac.usgs.gov/products/mcd12c1v006/
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and DL combined with the cumulative curvature extreme value method (DL-CUM). The
unit was recorded as the day of the year (DOY), and the combinations of algorithms were
as follows:

(1) DL-G35

This method was based on fitting time-series curves using dual logistic fitting functions
and then using dynamic thresholds defined as 35% to determine phenological parameters
(Figure 3a). SOS was defined as the first day when the EVIratio value exceeded 0.35 (G35) in
a year, and EOS was defined as the first day after SOS when the EVIratio value fell below
0.35 (G35) in a year. POS was the date of the peak of the fitted curve [22]. The specific
algorithms were as follows:

y(t) =
c

1 + ea+bt + d (2)

EVIratio = (EVIt − EVImin)/(EVImax − EVImin) (3)

where EVIt is the EVI value for a given time t and EVImax and EVImin are the maximum
and minimum EVI values in the annual EVI cycle, respectively.
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Figure 3. Algorithms for identifying phenological indicators by different methods on the Mongolian
Plateau. (a) Algorithm principle of the methods of double logistic (DL) and polynomial (Poly) fitting.
(b) Algorithm principle of DL-CUM. SOS, POS, and EOS represent the start (SOS), peak (POS), and
end (EOS) of the growing season, respectively. The DL and polynomial fitting functions were used for
reconstructing a time-series curve. DL-CUM was used to extract vegetation phenological parameters
based on the cumulative vegetation index.

(2) DL-G50

This method was the same as DL-G35 except that the dynamic thresholds were defined
as 50% and the corresponding critical EVIratio value was 0.5 (G50).

(3) Poly-G35

Time-series curves were fitted using a polynomial fitting function (Equation (4)), and
phenological parameters were extracted using the threshold values shown in Figure 2 [35]:

y = a6x6 + a5x5 − a4x4 + a3x3 − a2x2 + a1x + a0 (4)

where x is the DOY and a is the fitting coefficient. A binary six-polynomial fit was used.

(4) Poly-G50

This method was the same as Poly-G35 but used the 50% threshold.

(5) DL-CUM
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This method extracts vegetation phenological parameters based on the cumulative veg-
etation index [36]. The original SIF/EVI time-series curve was converted into a “prologue-
type NDVI cumulative curve.” The DL function was then used to fit the cumulative NDVI
time curve, and the phenological parameters were extracted according to the curvature
extremum K. As shown in Figure 3b, SOS was defined as the time when K reached the first
derivative maximum, EOS was the time of the first derivative minimum in the late growing
season, and POS was the point at which the positive and negative values of K changed.
The formulae used were as follows:

K =
dα
ds

= − b2cz(1− z)(1 + z)3[
(1− z)4 + (bcz)2

]1.5 (5)

z = e(a+bt) (6)

where t is the date; y(t) is the EVI at date t; a and b are the estimated empirical coefficients;
[c + d] is the maximum value cumulative EVI or SIF; and d is the minimum value, i.e.,
background value.

2.3.2. Evaluation of Land Surface Phenology Retrieval Algorithm

The phenology indicators were extracted from the daily GPP time-series data of each
ChinaFLUX site using the phenology identification algorithm corresponding to the re-
mote sensing data and were used as a standard for judging the accuracy of phenology
identification. These phenology indicators were compared with the LSP indicators gener-
ated using the EVI and SIF data. Nash–Sutcliffe efficiency (NSE) [37] and percentage bias
(Pbias) [38] were used as indicators of accuracy when assessing the agreement between the
LSPs generated from the remote sensing data (EVI and SIF) and the GPP data. R2 was not
used because of large uncertainties in its application to event-based simulations with small
sample sizes [39]. Calculation of the indices used in this study was as follows:

NSE = 1− ∑n
i=1(Os,i −Om,i)

2

∑n
i=1
(
Om,i −Om

)2 (7)

Pbias =
∑n

i=1(Os,i −Om,i)
2

∑n
i=1 Om,i

(8)

where n is the number of simulations; Os,i is the simulated values output by the algorithms
based on SIF and EVI data in the i-th year; and Om,i is the average output value of the
measured data by GPP in the i-th year. NSE is in the range from −∞ to 1, and the closer
the value is to 1, the closer the simulation result is to the observed data, and the better the
model performance. A Pbias with a low magnitude indicates an accurate model simulation,
and a Pbias of zero indicates no systematic deviation between the simulated and observed
values. Positive values indicate model underestimation bias and negative values indicate
model overestimation bias.

3. Results
3.1. Evaluation of Land Surface Phenology Retrieval Data and Algorithms

The identification results of phenological parameters based on EVI data were ver-
ified using the site data of three flux tower sites for a total of 15 years (Figure 4). The
results showed that the simulated phenological parameters in the typical steppe were closer
to the phenological results of the flux GPP than those in DRS. Specifically, for TYG, the
Poly-G50 (NSE = −0.53, Pbias = −0.57%) method gave the most accurate estimate of SOS
(Figure 4d); DL-CUM significantly overestimated SOS and DL-35 significantly underes-
timated it. Estimating POS by DL fitting was optimal, and DL-CUM had the smallest
deviation (NSE = 0.04, Pbias = 0.19%). EOS from DL-CUM (NSE = 0.28, Pbias = −0.1%) had
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the highest accuracy, while DL-G35 and DL-G50 had different degrees of overestimation
(Figure 4b,e). For DRS, Poly-G35 (NSE = −0.27, Pbias = −1.49%) had the best recognition
effect for SOS. POS identified by all the algorithms for DRS had large deviations, but the
POS identified by the two threshold methods under the polynomial fitting (NSE = −0.58,
Pbias = −1.39%) method was relatively small. EOS estimated by Poly-G35 (NSE = 0.29,
Pbias = −0.61%) for DRS was in good agreement with the results of the station GPP, while
the deviation of the DL-CUM results was the largest (Figure 4i,l).

In summary, among the five methods based on EVI, although DL-CUM achieved the
best performance in identifying the phenological parameters of TYG (Figure 4g–i), it was
not suitable for DRS. Poly-35 showed the strongest potential when based on EVI data in
DRS (Figure 4j–l). In addition, among the three phenological parameters, SOS and POS had
the highest consistency with real SOS, while EOS had the highest uncertainty.

For SIF data (Figure 5), there was also a larger error for DRS than for TYG. For TYG,
Poly-G50 (NSE = 0.12, Pbias = 0.22%) had the highest consistency in identifying SOS, while
DL-CUM and Poly-G35 had large degrees of overestimation (Figure 5g,m). DL fitting
combined with 35% and 50% thresholds (NSE = −0.01, Pbias = −0.06%) gave the best
POS results, followed by DL-CUM; polynomial fitting was the worst. The Poly-G35
(NSE = 0.02, Pbias = 0.08%) method has the highest accuracy in identifying EOS in
the TYG region (Figure 4l). For DRS, all methods overestimated the SOS, and DL-G50
(NSE = −3.43, Pbias = 5.99%) performed relatively well (Figure 4f). In POS estimation,
although all methods had different degrees of underestimation, the POS recognition results
of DL fitting with the 35% and 50% thresholds were closest to the real POS (NSE = −1.0,
Pbias = −2.92%). In terms of EOS, all methods showed overestimation; however, DL-CUM
performed the best (NSE = −2.72, Pbias = 2.71%). In summary, all methods could well
determine SOS and POS, but the EOS results showed significant uncertainty.

The optimal data sources for the three phenological parameters in TYG were all SIF,
while those for DRS were all EVI. The optimal identification scheme for SOS in TYG
coverage areas was Poly-G50 based on SIF data (NSE = 0.12, Pbias = 0.22%), and the
optimal combination for identifying POS was the polynomial fitting method with SIF data
(NSE = −0.01, Pbias = −0.06%). The optimal identification scheme for EOS was Poly-
G35 based on SIF data (NSE = 0.02, Pbias = 0.08%). SOS for DRS areas had the highest
accuracy using Poly-G35 with the EVI data (NSE = −0.27, Pbias = −1.49%). The optimal
solution for POS was DL fitting with the EVI data (NSE = −0.58, Pbias = −1.39%). For
EOS, the combination of EVI data and Poly-G35 had the highest accuracy (NSE = 0.29,
Pbias = −0.21%). In summary, the potential of SIF for estimating phenology can only be
realized in areas with relatively large vegetation coverage, with EVI-based phenology more
suitable for DRS with sparse vegetation. The polynomial fitting method performed better
than the DL fitting for both vegetation types.

3.2. Phenology Estimated from EVI

The differences among the five phenology algorithms based on EVI data were com-
pared across the whole study area. SOS recognized by Poly-G35 (DRS) and Poly-G50 (TYG)
was closest to the real SOS and was defined as SOStrue. From Figure 6d, although DL-G50
overestimated SOS in central and northwestern regions, it was more consistent in regions
where SOStrue exceeded 70%. Meanwhile, in Figure 6g, SOSTYG from the DL-CUM method
differed from that of Poly-G35 by up to 28.48 days; the smallest difference was for FV
(15 days). The difference between SOSDL-G35 and SOStrue for DRS was at least 1 day
(Figure 7a). Similarly, in terms of POS estimation, except for DL-CUM, the other methods
were defined as POStrue; DL-CUM underestimated POS in the entire area. Figure 6h shows
that POS in most regions of the MP was earlier than 185 days (Figure 7b). Under the same
threshold, POS based on DL fitting in the central and northeastern MP was earlier than
that based on polynomial fitting. In terms of EOS, DL-CUM (TYG) and Poly-G35 (DRS)
were defined as EOStrue under the corresponding vegetation coverage types, and EOS
estimated by Poly-G35 had the largest difference from EOStrue (Figure 6i,l). In particular,
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TYG had the largest difference. The earliest EOS detected by DL-CUM was 249 days,
51 days earlier than Poly-G35. In FV, the EOS of DL-G35 was different by 33 days from that
of DL-CUM (Figure 7c). Under the same threshold, the EOS of the MP eastern FV based on
DL fitting was later than that of polynomial fitting, showing the opposite characteristics of
the peak period.
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polynomial fitting with 35% and 50% thresholds (Poly-G35 and Poly-G50).
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Figure 5. Cross-comparison between start (SOS), peak (POS), and end (EOS) of growing season
retrieved from SIF data and those retrieved from GPP data at two TYG (Baiyin Xile and Duolun
County) sites (red; total of two sites, n = 12) and one DRS (Siziwang) site (blue; n = 3). (a,d,g,j,m) SOS,
(b,e,h,k,n) POS, and (c,f,i,l,o) EOS from five methods: double logistics with 35% and 50% thresholds
(DL-G35 and DL-G50), double logistic cumulative curvature extremum method (DL-CUM), and
polynomial fitting with 35% and 50% thresholds (Poly-G35 and Poly-G50).
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Figure 6. Spatial distributions of phenological parameters on the Mongolian Plateau based on
enhanced vegetation index (EVI) data. (a,d,g,j,m) Spatial patterns of multiyear averaged start of
growing season (SOSEVI), (b,e,h,k,n) peak of growing season (POSEVI), and (c,f,i,l,o) end of growing
season (EOSEVI) using five methods: double logistics with 35% and 50% thresholds (DL-G35 and
DL-G50), the double logistic cumulative curvature extremum method (DL-CUM), and polynomial
fitting with 35% and 50% thresholds (Poly-G35 and Poly-G50).
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Figure 7. Boxplots of phenology identified by different methods from 2001 to 2020 in different
vegetation types based on enhanced vegetation index (EVI) data. (a) Temporal patterns of multi-
year averaged start of growing season (SOSEVI), (b) peak of growing season (POSEVI), and (c) end
of growing season (EOSEVI) using five methods: double logistics with 35% and 50% thresholds
(DL-G35 and DL-G50), the double logistic cumulative curvature extremum method (DL-CUM), and
polynomial fitting with 35% and 50% thresholds (Poly-G35 and Poly-G50).

3.3. Phenology Estimated from SIF

The differences in the five phenology algorithms based on SIF data were compared
across the whole study area. SOS recognized by DL-G50 (DRS) and Poly-G50 (TYG) was
closest to the real SOS and defined as SOStrue. As shown in Figure 8g, the differences between
the earliest SOS and SOStrue of DL-CUM in central and western regions of the MP were the
largest; for DRS, it reached 33.41 days. As vegetation cover increased, the differences among
the different methods reduced (Figure 9a). SOSDL was later than SOSPoly (Figure 8b,e), and
the 50% threshold gave a later estimate than the 35% threshold (Figure 8a,d).

POS identified by the DL fitting method was defined as POStrue. From Figure 8b,e,h,k,n,
POSPoly was much later than POSDL. In particular, DRS in the central and western parts
of the MP had the largest differences, reaching 13 days (Figure 9b). Only the DL-CUM
method produced a difference of ~10 days compared with other methods in >40% of the
regions. This indicates that all phenology identification algorithms have high accuracy in
estimating POS but that DL-CUM has the most limitations.

DL-CUM (DRS) and Poly-G35 (TYG) were defined as EOStrue under the corresponding
vegetation coverage types. From Figure 9c, the difference was largest in FV, and Poly-G35
EOS was > 27 days later than EOStrue. From Figure 8f,i, >70% of the DL-G50 and DL-
CUM areas had relatively consistent spatial distributions, which confirms that DL-G50
may be suitable for identifying phenology in such areas. All other methods differed from
the selected EOStrue. In particular, Poly-G35, while achieving the best performance in
validation with flux towers in TYG, had the lowest agreement with other methods in other
vegetation types. This also shows that EOS always has greater uncertainty than SOS and
POS in the identification scheme.
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Figure 8. Spatial distributions of phenological parameters in the Mongolian Plateau based on solar-
induced chlorophyll fluorescence (SIF) data. (a,d,g,j,m) Spatial patterns of multiyear averaged start of
growing season (SOSSIF), (b,e,h,k,n) peak of growing season (POSSIF), and (c,f,i,l,o) end of growing
season (EOSSIF) using five methods: double logistics with 35% and 50% thresholds (DL-G35 and
DL-G50), the double logistic cumulative curvature extremum method (DL-CUM), and polynomial
fitting with 35% and 50% thresholds (Poly-G35 and Poly-G50).
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Figure 9. Boxplots of phenology identified by different methods from 2001 to 2020 in different
vegetation types based on solar-induced chlorophyll fluorescence (SIF) data. (a) Temporal patterns
of multiyear averaged start of growing season (SOSSIF), (b) peak of growing season (POSSIF), and
(c) end of growing season (EOSSIF) using five methods: double logistics with 35% and 50% thresholds
(DL-G35 and DL-G50), the double logistic cumulative curvature extremum method (DL-CUM), and
polynomial fitting with 35% and 50% thresholds (Poly-G35 and Poly-G50).

4. Discussion
4.1. Algorithm and Data Performance

Since the vegetation morphological phenology represented by EVI and the physiolog-
ical phenology of vegetation photosynthesis represented by SIF correspond to different
attributes of vegetation [40], there remain large differences in the identification of pheno-
logical parameters between different data sources [14,41]. In comparing the phenological
identification results of EVI and SIF with those of GPP at the flux tower site, we found that
the phenological identification accuracy of SIF was higher overall. This difference may
be attributed to the close association between SIF and GPP. There is a certain hysteresis
effect between leaf growth and photosynthesis [42]. Differences in phenological accuracy
between SIF and EVI are advantageous in different vegetation types and more obvious in
grasslands with sparse vegetation. Specifically, EVI is superior to SIF in terms of phenology
identification in desert steppe areas (Figures 4 and 5), which may be due to SIF being a
weak signal and having low values and great uncertainty for sparse vegetation areas. EVI,
on the other hand, has a wider application prospect in the identification of phenological
parameters in arid, sparsely vegetated areas [11,43]. The value of SIF in phenology in
areas with better vegetation coverage is currently being affirmed [7,44]. When estimating
the phenology of typical grasslands, the performance of SIF data in typical grasslands is
superior, suggesting that, under certain land cover conditions, SIF can more effectively
remove the interference of ground background nonfluorescent targets compared with EVI,
proving SIF has greater potential than vegetation-greenness-based indices in large-scale
phenological simulation studies [45,46] and showing the limitations of SIF in estimating
phenology in arid desert steppes.

Comparing the different fitting methods, the phenological identification results of
the two sets of data showed that the Poly fitting method was closer to the phenological
identification results of the GPP than DL fitting methods (Figures 4 and 5), consistent with
the results of Snyder et al. [47]. After Poly fitting, the phenological results of 35% and 50%
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thresholds were compared, showing that the accuracy of the 35% threshold was higher,
possibly due to the time span of 50% dynamic threshold identification being short, thereby
overestimating SOS and underestimating EOS. On the contrary, 50% after DL fitting was
more accurate than 35%, possibly because the shape of the plant-growth curve fitted by
DL was narrower, which does not match the real phenological changes, and the phenology
cannot be accurately estimated, especially in the desert steppe (Figures 6 and 8). At the
same time, our findings demonstrated that the Poly fitting method has higher applicability
in arid/semiarid areas, especially in arid desert steppe areas [48]. However, compared with
the phenological identification accuracy in typical grasslands, the identification accuracy of
phenology in the desert steppe was lower, due to the smaller number of years of stations
available in the desert steppe (Table 1) and larger fitting errors [49].

Assuming that the difference caused by the number of stations is low, compared
with the phenological parameters identified by GPP, the EOS errors generated by different
phenological algorithms were usually larger than those for SOS and POS, and EOS had
more uncertainty than SOS, consistent with previous findings [50,51]. It could be attributed
to the fact that seasonal decoupling of physiological states and green information mainly
occurs in autumn and that autumn vegetation has a more sensitive response to climate [52].
The phenology recognition accuracy of different phenology recognition algorithms is
significantly different due to differences in algorithms and parameters in different fitting
methods [30]. The Poly fitting method can better track the growth trajectory curve of
vegetation than the DL fitting method (Figures 4 and 5). The vegetation growth cycle fitted
by DL is shorter than that of Poly, since the SIF curves of the same vegetation type are more
“steep and sharp”, while the EVI curves are more “slow and wide”. Therefore, different
thresholds have less influence on SIF phenology and greater influence on EVI phenology.

4.2. Limitations and Prospects

An in-depth analysis of the differences in the identification of phenology arising from
using different data and methods was conducted in this study; however, there remain some
deficiencies that must be addressed in future research. The use of a data source with a
coarse resolution of 0.05◦ indicates that the phenological differences of mixed species in
a 5 × 5 km pixel are negligible. Since the plant function types of different species may
vary, a phenological value was used to represent a 25 km2 area, which was not highly
representative. Therefore, future studies should combine high-resolution data such as
Sentinel-2 to improve the estimation accuracy of LSP [10]. In addition, EVI data provided
every 16 days may miss important nodes of vegetation phenology changes, which may
explain why it was different from the phenology identified using the same algorithm for
SIF data with 8-day resolution [53]. To capture phenological information more accurately,
data with shorter time steps should be used in the future.

Secondly, due to the limitation of the number and range of flux stations in the study
area, only the 15-year data from the three stations of TYG and DRS in Inner Mongolia were
used for verification, which has two shortcomings: firstly, the typical grassland area was
vast, and having only two sites was insufficient to represent the typical grassland. Secondly,
due to the lack of verification of large-scale FV and MEG, the applicability of data and
methods cannot be evaluated, and the optimal data or algorithms found following the
verification of existing stations do not correspond to their applicability to the Mongolian
Plateau as a whole. To overcome these limitations, future research should collect and record
more field measurement data for better reliability.

In future phenology research, it is necessary to combine multiple remote sensing data
sources at finer time and space scales, make full use of the advantages of SIF and EVI in
identifying phenology in different vegetation coverage areas, and comprehensively consider
vegetation physiology. Due to the difference between physiological and morphological
phenologies, research on phenological parameters over large spatial ranges is another
future direction [54].
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5. Conclusions

Using two types of remote sensing data combined with five phenological fitting
methods to identify phenology, this study conducted a difference analysis of phenology
identification and screened the optimal combination of phenology data sources and algo-
rithms for the MP. The main conclusions are as follows:

(1) The optimal methods for identifying the SOS, POS, and EOS of typical grassland areas
were Poly-G50 (NSE = 0.12, Pbias = 0.22%), DL-G35/50 (NSE =−0.01, Pbias = −0.06%),
and Poly-G35 (NSE = 0.02, Pbias = 0.08%), respectively, based on SIF data. The best
methods for identifying the SOS, POS, and EOS of desert steppe areas were Poly-G35
(NSE = −0.27, Pbias = −1.49%), Poly-G35/50 (NSE = −0.58, Pbias = −1.39%), and
Poly-G35 (NSE = 0.29, Pbias = −0.61%), respectively, based on EVI data.

(2) The data source was the main contributor to differences in estimates of vegetation
phenology on the MP. EVI data were more compatible than SIF data for identifying
phenology in sparsely vegetated areas.

(3) Satellite remote sensing can accurately capture phenological changes, but different
algorithms will affect the recognition accuracy. In the same data, the sparser the
vegetation, the greater the error of the phenology identification scheme.

The results of this study make an important contribution to improving current phenol-
ogy estimation models, establishing a phenology estimation system suitable for the MP,
and perfecting vegetation phenology observations.
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