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Abstract: The escalating frequency and severity of global wildfires necessitate an in-depth under-
standing and monitoring of wildfire smoke impacts, specifically its contribution to fine particulate
matter (PM2.5). We propose a data-fusion method to study wildfire contribution to PM2.5 using
satellite-derived smoke plume indicators and PM2.5 monitoring data. Our study incorporates two
types of monitoring data, the high-quality but sparse Air Quality System (AQS) stations and the
abundant but less accurate PurpleAir (PA) sensors that are gaining popularity among citizen scientists.
We propose a multi-resolution spatiotemporal model specified in the spectral domain to calibrate the
PA sensors against accurate AQS measurements, and leverage the two networks to estimate wildfire
contribution to PM2.5 in California in 2020 and 2021. A Bayesian approach is taken to incorporate all
uncertainties and our prior intuition that the dependence between networks, as well as the accuracy
of PA network, vary by frequency. We find that 1% to 3% increase in PM2.5 concentration due to
wildfire smoke, and that leveraging PA sensors improves accuracy.

Keywords: Bayesian analysis; calibration; citizen science; spatiotemporal methods; spectral analysis

1. Introduction

Airborne particles are a serious environmental health risk globally, contributing in
excess of 7 million premature deaths each year [1]. Fine particulate matter (PM2.5, particles
with a diameter of less than 2.5 micrometers) has been causally linked to cardiovascular
morbidity and mortality [2] and are therefore regulated under the provisions of the Clean
Air Act [3] to protect human health and wellbeing. As a result, the emissions of PM2.5 from
many antropogenic sources, such as transpiration and industry, have been on a steady
decline [4] and wildfires have become the single largest source [5], potentially off setting
reduction in emissions from other sources.

High concentrations of fine particles and gasses found in smoke have also produced
alarming impacts on health [6,7]. During peak wildfire seasons, smoke exposure can
exacerbate health problems, causing a spike in emergency department visits [8]. In an
epidemiological study of health impacts by Thilakaratne et al., they estimated that 2.2%
of annual respiratory health burden, or 92 ED visits per 100,000 people, is attributed to
ambient particulate matter and that wildfire days account for over 15% of that burden [9].
However, providing a definite answer as to how much of particle pollution can be attributed
to wildfires remains a challenging problem because instruments measure a total ambient
concentration which is composed of natural, anthropogenic, and wildfire sources.

Previous research [10–12] has studied the contribution of wildfires on PM2.5 concen-
trations by integrating remote sensing data on the location and extend of smoke plumes
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and PM2.5 readings from Air Quality System (AQS) monitors deployed by the Environ-
mental Protection Agency (EPA). These studies revealed that wildfires contribute to 40% of
unhealthy days and substantially increase PM2.5 concentrations [13,14]. Wildfire smoke
impacts are dynamic and often affect areas without a monitoring station, as AQS monitors
have limited spatial coverage due to the high cost and difficulty in installation. It is im-
portant to make air quality information available to the public quickly during wildfires,
therefore AQS alone provides insufficient data source for monitoring wildfire emissions.

The increased incidence of days with poor air quality due to wildfires has created a
demand and public interest for monitoring particulate pollution. Perhaps the most preva-
lent sensors are PurpleAir (PA), which are installed by members of the public, providing
a real-time (every two minutes) monitoring of PM2.5 with extensive spatial coverage [15].
However, it is known that PA sensors are less reliable compared to the AQS, and thus
correction to the sensor readings is needed [16,17]. Barkjohn et al. developed a correction
equation using meteorological conditions including relative humidity and temperature, as
both measurements affect the accuracy of the instrument [15]; however, this calibration is
developed for a US-wide correction and without smoke impacts. Another simple linear
correction model under smoke impacted conditions was proposed by Holder et al. in [18].
As the sensor performance can be affected by geographic and environmental conditions, it
is more reasonable to relax the assumption of a constant spatially varying bias, but rather
capture the spatiotemporally varying bias.

Previous studies have either separated anthropogenic PM2.5 from smoke emissions
using chemical transport models or by subtracting out historically observed averages [19].
However, neither approach provides a definite answer as to how much of particle pollu-
tion can be attributed to wildfires. Data fusion is a widely used method that integrates
information from different types of sensors to provide a robust and complete description of
a process of interest [20,21]. It has been used extensively to estimate spatially and tempo-
rally resolved air quality surfaces. For example, Reich et al. [22], Warren et al. [23], and
Friberg et al. [24,25] use data fusion method to study the complex relationship between
monitoring data and outputs from Community Multi-Scale Air Quality (CMAQ), a deter-
ministic chemical transport model. Nguyen et al. [26] combines observations from two
noisy datasets to predict the true aerosol process. More recently, several researchers have
exploited the usefulness of low-cost sensors such as Purple Air to map air quality and
quantify the uncertainty of estimation [27–29]. Other spatiotemporal data fusion methods
include Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [30] and
ST-Cokriging [31]. STARFM fuses spatial information from fine-resolution imagery and
temporal information from coarse-resolution imagery. ST-Cokriging uses cross-variograms
for prediction by assigning weights to observations from different sources. These methods
cannot be directly applied to our analysis as both are more suitable for prediction than
quantifying the contribution from wildland fires. ST-Cokriging uses numerical approach
to solve for weight parameters, where it assigns weights to all nearby observations in a
period. Similarly, STARFM employs a sliding window to assign weights to observations
in a searching window, where the weights are determined by spectral, temporal, and
location differences. In our case, it would be difficult to determine the spectral and location
differences due to spatially misaligned AQS and PA readings. Most similar to our approach
is Stein et al. [32], who also use a spectral transformation in time and spatial processes to
capture dependence between stations for a single fixed monitoring network. We extend
this approach to handle multiple data networks.

This study aims to provide an estimate of wildfire contribution on air quality in
California by supplementing the remotely sensed smoke plume indicators with PA data.
We propose a multi-resolution Bayesian approach fusing information from both AQS
monitors and PA sensors to estimate the contribution to PM2.5 caused by wildfires. We
apply a Discrete Fourier Transform (DFT) to account for temporal correlation, transforming
the data from the time domain to the frequency domain, and model the spatial correlation
in the frequency domain. To quantify the relative increase in PM2.5 concentrations due to
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wildfires, we propose regression and matching estimators, as discussed in Section 2.3. Our
findings will not only enhance understanding of the relationship between wildfires and
air pollution but also inform policy and decision-making related to wildfire management,
public health, and climate change impacts.

2. Materials and Methods
2.1. Data Sources and Exploratory Analysis

Our analysis incorporates data from three distinct sources: satellite-derived smoke
plume indicators obtained through the National Oceanic and Atmospheric Administration’s
Hazard Mapping System (HMS), PM2.5 measurements from AQS monitoring stations, and
PM2.5 readings from PA monitoring stations. Figure 1 shows all three data sources for 20
September 2021 in California. We collect hourly data and average them to daily level from
each source for 2020 and 2021 fire seasons, spanning 1 July to 31 October. We selected
California because of its susceptibility to wildland fires, and 2020 and 2021 because these
years have sufficient PA monitors. The original PM2.5 readings from both AQS and PA
stations are right-skewed and likely heteroskedastic so we apply the log transformation to
all PM2.5 readings.

Figure 1. HMS smoke plume density (shaded regions) in California on 20 September 2021 and the
locations of PA (purple dots) and AQS (black dots) monitoring stations.

2.1.1. Satellite-Derived Smoke Plume Indicators

Exposure to wildland fire smoke is assessed using smoke plume indicators supplied
by the HMS [33]. This automated data product integrates observations from multiple polar
and geostationary satellites to generate polygons representing smoke plume extents on a
daily basis. Distinct polygons are provided for low-, medium-, and high-density plumes.
These smoke plume indicators tend to underestimate the actual intensity of smoke, as
they primarily rely on satellite imagery with an approximate spatial resolution spanning
several miles [34,35]. Additionally, smoke visibility is limited to daytime hours, resulting
in a significant underestimation of smoke levels during the night. While the HMS data are
among the most reliable widely-available measures of plume extent, Ref. [35] shows that it
may underestimate wildland fire contribution to PM2.5.



Remote Sens. 2023, 15, 4246 4 of 17

2.1.2. AQS Monitoring Stations

The AQS monitoring stations, deployed by the US Environmental Protection Agency
(EPA) and state, local, and tribal air pollution control agencies, provide precise PM2.5
measurements. However, their distribution is spatially sparse due to the high cost and
complexity associated with their installation and maintenance.

2.1.3. PA Sensors

PA sensors are low-cost monitoring devices deployed by individuals and organizations
for continuous ambient air pollutant tracking. Even during wildland fire events, PA sensors
have been show to strongly correlate with gold standard measurements [36]. Despite their
affordability and ease of installation, PA sensors offer less accurate PM2.5 readings and are
significantly influenced by environmental factors, such as temperature and humidity [15].
We use bias corrected data for all analyses. However, this initial bias correction based on
Barkjohn et al. in [15] may be insufficient because it only depends on a linear trend in
temperature and humidity and is constant across space and time. Therefore, our Bayesian
data fusion model adds a more flexible spatiotemporal bias correction term.

Before fitting the statistical model, we implemented several pre-processing steps on the
PA data and standardized temperature and humidity. PA stations feature two independent
channels, Channel A and Channel B, both of which measure ambient PM2.5 independently.
To achieve a more accurate estimation of the actual ambient PM2.5 concentration, we
discarded readings where the measurement difference exceeded 200 µg/m3. We discarded
readings where the daily readings have constant high PM2.5 readings over 2000 µg/m3.
We choose the threshold of value of 2000 µg/m3 because some PA stations have a constant
reading around 2000 µg/m3, and all other stations have values at most at 800 µg/m3,
which suggests a data collection error. Subsequently, the mean reading from Channel A
and Channel B was considered as the PA measurement.

A majority of PA stations measure temperature (in Fahrenheit) and relative humidity.
Because the temperature and humidity are spatially smooth, we employ a 10-nearest-
neighbor approach to impute stations with missing temperature and humidity values and
unobserved sites in California.

In 2021, more than 7800 outdoor PA sensors were operational in California. We only
use outdoor sensor for comparison with AQS stations. We have included only those PA
stations that reported fewer than 18 missing days during the fire seasons, resulting in a
total of 1080 for 2020 and 712 PA stations for 2021. Figure 2 displays the distribution of
PM2.5, aggregated across stations for 2021, by smoke plume intensity. A similar pattern is
observed in both PA stations and AQS stations where PM2.5 measurements escalate in the
presence of a smoke plume.

Figure 3 shows one AQS and a nearby PA monitor daily readings over the fire season
in 2021. For this stations, the two types of monitors have a high degree of correlation,
and both monitors’ readings are elevated when under the high smoke plume. Figure 4
investigates the relationship between AQS stations and their corresponding nearby PA sites
across California. For each AQS site, we compute its correlation with the closest PA site.
Figure 4 plots these correlations, binned by the distance between the AQS and PA sites.
The correlation is high when the stations are close and decreases with distance, suggesting
that PA data will be a useful supplement to the spatial model.
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Figure 2. Distribution of log PM2.5 (µg/m3) by smoke plume level for PA and AQS stations. Four
smoke plume levels from left to right are: no smoke, low, medium, and high plume density. The
number of observations for each smoke plume level and each sensor type is displayed in the box.

Figure 3. One AQS monitor at 37
◦
20′N, 121

◦
53′W (downtown San Jose) and a nearby PA monitor

PM2.5 readings over the fire season in 2021. Dates from 07/18 to 09/03 and 09/29 to 10/13 are
covered in high smoke plume region and are indicated by “High” above.

Figure 4. Sample correlation between AQS and nearby PA stations versus the distance (km).
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2.2. Statistical Model

We propose a multi-resolution Bayesian model for modeling AQS and PA measure-
ments jointly in the spectral domain. Let Y1t(s) and Y2t(s) be AQS and PA measure-
ments, respectively, for spatial location s at time (day) t ∈ {1, . . . , nt}, and Xt(s) =
{X0t(s), . . . , Xpt(s)} be a corresponding vector of covariates with X0t(s) = 1 for the in-
tercept. The p = 5 covariates are temperature, relative humidity and indicators of low,
medium and high density smoke plumes at site s and day t. We note that temperature and
relative humidity are standardized to have mean zero and variance one and that the AQS
and PA measurements are not taken at the same spatial locations.

The observations are decomposed as Yjt(s) = Zjt(s) + ε jt(s) for j ∈ {1, 2}, where j = 1
and j = 2 indicate AQS and PA monitors, respectively, Z1t(s) and Z2t(s) are spatiotemporal

processes, and ε jt(s)
indep∼ Normal(0, τ2

j ) is error. The time span of our data is relatively
short, therefore, its reasonable to assume the spatiotemporal processes are stationary within
the modeling period. We will apply Fourier transformation to the spatiotemporal processes
Zjt(s) with respect to time to remove the temporal dependence. The resulting spectral
processes Z∗jl(s) capture periodicity, are independent over frequency {ωl , l = 1, . . . , nt} and
spatially correlated. For time series observed at equal time intervals, we can apply the DFT.
The spectral processes at frequency ωl is

Z∗jl(s) =
nt

∑
t=1

exp(−itωl)Zjt(s) (1)

and measures the variation in Zjt(s) at frequency ωl . Terms with small ωl (low fre-
quency) represent long-term trends such as month-to-month averages and terms with
large ωl (high frequency) represent short-term trends such as day-to-day variation. Let
{Z∗j1(s), . . . , Z∗jnt

(s)} be the unique real components of the DFT of {Zj1(s), . . . , Zjnt(s)} at
frequencies {ω1, . . . , ωnt} with ω1 ≤ · · · ≤ ωnt .

The spectral processes Z∗jl(s) are dependent across j = 1, 2, as they represent the two
networks measuring the same underlying PM2.5 process. They are also spatially dependent
processes as locations nearby may exhibit similar periodicity. We model the cross network
dependence and spatial dependence for each ωl as

Z∗1l(s) = Ul(s) and Z∗2l(s) = AlUl(s) + Vl(s), (2)

where spatial process Ul(s) is the true PM2.5 concentration for frequency l. The PA stations
are assumed to be measuring a biased and noisy version of the true PM2.5 with discrepancy
Vl(s). The coefficient Al controls the dependence across networks. Both the bias Vl(s)
and cross-dependence Al vary by ωl to allow for a multi-resolution calibration of the
two networks. We model Al linearly as Al = βA0 + βA1 · ωl , where βA0 and βA1 are un-
known coefficients. This allows the correlation between the processes to vary stochastically
with frequency. For example, if PA is more reliable for long-term trends than day-to-day
variation, then we expect larger (smaller) correlation between networks for small (large) ωl .

The true process Ul(s) and discrepancy term Vl(s) are both regressed onto the covari-
ates. Since we are developing a model in the spectral domain, we will also apply DFT to
each covariate in Xt(s) with respect to time and denote this as X∗j (s) = {X∗0l(s), . . . , X∗pl(s)}
Define the covariates for the true process Ul as X∗ul(s) = X∗j (s), containing all five covari-
ates, and define Xvl(s) = {X∗0l(s), X∗1l(s), X∗2l(s)} to include only temperature and relative
humidity for bias correction [15]. We model Ul(s) and Vl(s) as independent (with each
other and over l) Gaussian processes with means E{Ul(s)} = X∗ul(s)βu and E{Vl(s)} =
X∗vl(s)βv, variances Var{Ul(s)} = σ2

ul and Var{Vl(s)} = σ2
vl , and spatial correlations

Cor{Ul(s), Ul(s′)} = exp(−||s− s′||/ρu) and Cor{Vl(s), Vl(s′)} = exp(−||s− s′||/ρv).
The regression coefficients βu = (βu0, . . . , βup)T control the effects of the covariates

on the true PM2.5 process U. Although we specify the model in the spectral domain, the
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DFT is a linear operator and thus the covariates can be interpreted as usual in the spatial
domain since the mean AQS response is

E{Y1t(s)} = Xt(s)βu (3)

Therefore, βu is of primary interest. In particular, the components of βu that correspond to
the smoke plume indicators are used to summarize the wildland fire contribution to PM2.5.

The regression coefficients βv = (βv0, βv1, βv2)
T control the effect of the covariates

on the discrepancy term V, and thus the contribution of the covariates to the PA bias. By
allowing the covariance parameters σ2

ul and σ2
vl to vary by frequency (l), we allow for a

different degree of dependence between the networks at different temporal scales, with

Cor{Z∗1l(s), Z∗2l(s)} =
Al√

A2
l + σ2

vl/σ2
ul

. (4)

The prior for the variance components is

σ2
ul ∼ InvGamma(aul , bul) and σ2

vl ∼ InvGamma(avl , bvl) (5)

where the hyperparameters are modelled as log-linear in frequency, e.g., log(aul) =
γau1 + γau2 · ωl the prior captures the intuition that the variance is higher in month-to-
month variation than day-to-day variation, and the correlation between two sources vary
over frequencies.

2.3. Quantifying the Wildland Fire Contribution

To estimate the PM2.5 contribution from wildfire, given the estimated parameters
above, we consider two metrics based on either regression or matching. For the regression
metric, let X0

t (s) be the covariate vector with three plume indicators fixed at zero. For the
matching estimator, define P(s) as the set of days for which site s is in a smoke plume
(any density) and P̄(s) as the set of non-plume days. We match each plume day with
a non-plume day with similar meteorology and time period. Let At(s) = P̄(s) ∩ {t −
30, . . . , t + 30} be the set of non-plume days within 30 days of plume day t. For each plume
day, we selected the matching day mt(s) as

mt(s) = arg mind∈At(s) |tempt(s)− tempd(s)|+ φ|humidityt(s)− humidityd(s)| (6)

where φ above is a scaling factor adjusting the magnitude of humidity and temperature, we
set φ = 1 so that the best matching station has equal weights on temperature and humidity.
Then at site s the estimated contribution from wildland fires per day are

1. Regression estimator: δ1(s) = 1
nt

∑nt
t=1{Xt(s)− X0

t (s)}βu

2. Matching estimator: δ2(s) = 1
nt

∑t∈P(s){Z1t(s)− Z1t′(s)} for t′ = mt(s).

In the matching estimator, Z1t(s) is the true PM2.5, the transformed pairs of Z∗1l(s) in
(2) obtained by inverse DFT, and thus this estimator accounts for spatiotemporal bias and
correlation. Since the analysis is on the log-scale, we plot exp{δ1(s)} and exp{δ2(s)}which
estimate the multiplicative effect, i.e., exp{δ1(s)} = 1.05 corresponds to a 5% increase in
PM2.5 in the presence of a smoke plume.

2.4. Computational Algorithm

To complete the Bayesian model, we specify uninformative prior distributions for
the model parameters. The regression coefficients have Gaussian priors βu, βv ∼ Normal
(0, c2Ip+1). The variance parameters have conjugate priors τ2

j ∼ InvGamma(a, b). The

hyperpameters have Gaussian priors γau1, γau2, γav1, γav2 ∼ Normal(0, c2). To give unin-
formative priors we set a = b = 0.01 and c = 10. Due to poor convergence, the dependence
parameters βA0 and βA1 were fixed based on cross-validation to minimize mean squared
prediction error for AQS stations.
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The main computational bottleneck of spatial modeling is manipulating spatial co-
variance matrices to estimate the range parameters ρu and ρv. Given the large size of the
air pollution dataset, a reasonable simplification is to estimate the range parameters using
variogram and then assume they are fixed for the purpose of fitting the final model. The
estimated spatial range from variograms are ρu = 177 and ρv = 111 kilometers.

Given the range parameters are fixed, the remaining parameters are estimated using
Markov Chain Monte Carlo (MCMC) methods. In particular, we perform Gibbs sampling
steps for most parameters and Metropolis sampling for some hyperparameters. We generate
8000 posterior samples and discard the first 5000 as burn-in. The MCMC details are
relegated to the Appendies A–C. Appendix A gives the details of each MCMC step. A
simulation study is included in the Appendix B to verify the algorithm produces reliable
parameter estimates. Convergence is monitored using trace plots for several representative
parameters shown in Appendix C.

3. Results
3.1. Summary of the Fitted Model

Table 1 gives the estimates of the regression coefficients for both the true process βu and
bias correction term βv. All three smoke plume levels positively affect PM2.5 concentrations,
with high smoke plumes having the greatest impact, followed by medium and low smoke
plumes. These results are consistent between 2020 and 2021. The bias correction terms,
however, are not significant. Given that PA readings have already been corrected as per [15]
using temperature and relative humidity, it is reasonable that these variable do not explain
trends in bias. We note that our model does include more general spatiotemporal bias
correction in Vl(s) and including this bias term leads to improved results, as discussed
below.

Table 1. Posterior mean (95% interval) for the model parameters. The regression coefficients are
given separately for the true PM2.5 process (βu) and bias correction (βv). A “***” indicates that the
95% interval excludes zero.

2020 Fire Season

Parameter True PM2.5 Bias Correction

Temperature 0.115 (0.106,0.125) *** −0.002 (−0.009,0.005)
Humidity 0.064 (0.048,0.080) *** 0.012 (−0.002,0.035)
Plume—Low 0.007 (0.003,0.011) *** /
Plume—Medium 0.022 (0.012,0.032) *** /
Plume—High 0.049 (0.033,0.065) *** /

2021 Fire Season

Parameter True PM2.5 Bias Correction

Temperature 0.006 (0.004,0.008) *** 0.006 (−0.003,0.015)
Humidity 0.000 (−0.001,0.001) −0.011 (−0.026,0.003)
Plume—Low 0.011 (0.001,0.021) *** /
Plume—Medium 0.018 (0.007,0.029) *** /
Plume—High 0.041 (0.031,0.051) *** /

Figure 5 plots the estimated wildland fire contribution both years and both metrics.
The estimated wildland fire contribution ranges from a 1–3% increase in PM2.5, depending
on the location. Both metrics yield similar estimates of contribution and spatial patterns.
The impact of wildfires varies across the state and years. In 2020, both Northern and Central
California experienced significant wildfire impacts, while only Northern California faced
major effects in 2021. This is in line with the fact that 2020 had the highest frequency of
wildfires across all states, whereas 2021 witnessed a single, massive wildfire in Northern
California [37]. Figure 6 shows the posterior standard deviation of the contribution. The
uncertainty of estimation in 2020 is generally smaller than 2021. Moreover, both estimators
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give roughly the same undertainty estimation, with matching estimator only slightly more
stable than regression estimate.

2020 Contribution, Regression Estimate 2020 Contribution, Matching Estimate

2021 Contribution, Regression Estimate 2021 Contribution, Matching Estimate

Figure 5. Smoke contribution to PM2.5. Contributions are exponentiated to reflect actual percentage
contribution. For example, 1.01 and 1.03 mean wildfire contributes to roughly a 1% to 3% increase in
PM2.5.

In addition to covariate effects, the data-fusion model provides an evaluation of the
concordance between AQS and PA stations. Equation (4) defines the correlation between
the two networks as a function of the spectral frequency, ωl . Figure 7 plots the correlation
between AQS and PA by period, i.e., 1/ωl . For example, period 7 (30) corresponds to
variation that occurs on a weekly (monthly) scale. Figure 7 shows that the correlation
between AQS and PA stations increases from short-term, such as day-to-day variation, to
long-term, such as month-to-month variation. In the short-term, the correlation is lower
since the readings are taken at different spatial locations and are subject to small scale
variability. Over the long run, the correlation is higher as both sources estimate ambient
unbiased PM2.5 readings.
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2020 Std, Regression Estimate 2020 Std, Matching Estimate

2021 Std, Regression Estimate 2021 Std, Matching Estimate

Figure 6. Posterior standard deviation of smoke contribution to PM2.5. The posterior standard
deviations are not exponentiated, and they show uncertainty estimation on the original scale.

Figure 7. Posterior distribution of the correlation between AQS and PA by period. Small periods
capture short-term variation, such as day-to-day variation, while large periods capture long-term
variation, such as monthly trends.

3.2. Model Comparisons

To assess the effectiveness of integrating additional PA readings, we compared the
proposed data-fusion model (“Data fusion”) with two simpler alternatives. The first uses
only AQS data (“AQS only”) and discards the PA data (i.e., sets Al = 0 for all l). The second
naively (“Naive”) combines AQS and PA data and treats them as a single source without
spatiotemporal bias adjustment (i.e., sets Al = 1 and Vl(s) = 0 for all s, and includes an
indicator variable in the regression term, βu, to distinguish two types of data).
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The estimated parameters for each model, along with the corresponding posterior
standard deviations, are presented in Table 2. Clearly, incorporating PA monitors signifi-
cantly reduces the posterior standard deviation. For many of the parameters the reduction
in uncertainty is striking, with the standard deviation being 2–4 times smaller for the
data-fusion model. Also, with the AQS-only model, only high smoke plumes exhibit a
significant contribution due to a higher standard deviation. In contrast, when merging AQS
and PA data, both medium and high smoke plume levels show significant contributions.

Table 2. Posterior mean (standard deviation) for the model parameters βu for the CA data using the
proposed data-fusion model, the model that uses only AQS data, and the naive data-fusion model
that ignores bias in the PA data. A “***” indicates that the 95% interval excludes zero.

2020 Fire Season

Parameter Data Fusion AQS Only Naive

Temperature 0.115 (0.005) *** 0.105 (0.024) *** −0.418 (0.066) ***
Humidity 0.064 (0.008) *** 0.086 (0.022) *** −1.125 (0.052) ***
Plume—Low 0.007 (0.002) *** 0.005 (0.012) 0.107 (0.078)
Plume—Medium 0.022 (0.005) *** 0.020 (0.014) 0.271 (0.052) ***
Plume—High 0.049 (0.008) *** 0.042 (0.016) *** 0.637 (0.079) ***

2021 Fire Season

Parameter Data Fusion AQS Only Naive

Temperature 0.006 (0.001) *** 0.015 (0.003) *** −0.014 (0.006) ***
Humidity 0.000 (0.000) 0.008 (0.002) *** −0.039 (0.003) ***
Plume—Low 0.011 (0.004) *** −0.001 (0.014) −0.330 (0.032) ***
Plume—Medium 0.018 (0.004) *** 0.023 (0.016) 0.230 (0.074) ***
Plume—High 0.041 (0.005) *** 0.054 (0.017) *** 0.980 (0.071) ***

Furthermore, to verify that our proposed methodologies not only improve parame-
ter estimation but also lead to accurate PM2.5 predictions, we performed a 5-fold cross-
validation for the three models using data from 2021. We randomly split the AQS stations
into five folds. For each fold, we build predictive models based on the other AQS stations
and all PA stations and make predictions at the test sites. Performance was compared based
on three key metrics: Root mean squared error, 95% prediction coverage, and prediction
variance. For all models, we fix the spatial range parameters (ρu and ρv) based on the
variogram analysis of the full dataset. The cross-dependence parameter Al is fixed at 0.2.

The results in Table 3 show that the performance of the AQS-only analysis is fairly sim-
ilar to the proposed data-fusion approach, with slightly smaller prediction mean squared
error and larger average prediction variance. Therefore, carefully including the additional
PA data mainly reduces the prediction variance. However, naively including the PA data
gives much higher prediction errors and low coverage.

Table 3. Root mean squared error (“RMSE”), coverage of 95% prediction intervals (“Coverage”)
and average prediction variance (“Ave Var”) for the cross-validation study comparing the proposed
data fusion model to models that ignore PA data (“AQS only”) and includes PA data without bias
correction (“Naive”).

Model RMSE Coverage Ave Var

Data Fusion 0.42 0.89 0.13
AQS only 0.40 0.91 0.16
Naive 0.66 0.73 0.18

In summary, the AQS-only and data fusion model produce fairly similar out-of-
sample prediction accuracy, therefore the main benefit of including the PA data is reducing
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uncertainty in parameter estimates. Also, the Naive model gives a 50% larger RMSE and
low coverage, emphasizing the need for a careful data fusion approach.

4. Discussion

In this study, we examine the impact of wildland fires on PM2.5 concentrations in
California during the fire seasons of 2020 and 2021. As we can see from Figure 5, PM2.5
contributes to about a 3% increase in parts of California that are heavily affected by wildland
fires in both 2020 and 2021; in most other areas the increase ranges from 1.0% to 2.3%.
To obtain precise estimates, we combine remotely-sensed smoke-plume indicators with
AQS and PA measurement networks. To model the spatiotemporal correlation of PM2.5
concentration and relationship between AQS and PA monitors, we first transform the data
from spatial domain to frequency domain, and then use a data-fusion approach to model
spatial correlations while accounting for biases in the PA data. Furthermore, we use a
Bayesian approach to compute posterior distributions of the quantities of interest to fully
characterize uncertainty.

As shown in Table 2, we find that including PA monitors significantly increases the
precision of the estimated contribution of wildland fire smoke to total PM2.5. Using only
AQS data we find that medium and high smoke plume levels significantly contribute to
PM2.5 concentration with standard deviations as large as 0.017, and the data fusion approach
that supplements AQS with PA data gives similar parameter estimation, with standard
deviation as small as 0.004. Moreover, the data fusion model also estimates a significant
low smoke plume level contribution. However, as we can see from Table 3, since PM2.5
concentration is relatively smooth across space and AQS stations are evenly distributed
across the state, incorporating PA readings does not improve prediction performance even
for the data-fusion approach. Comparing prediction performance does reveal that simple
data fusion model such as the model that ignores bias in the PA data gives inferior prediction
results. Based on Table 1, with our model, all three smoke plume levels demonstrate a
significant contribution to PM2.5 concentration, and the impact varies across different
regions depending on the year. This study highlights the value of utilizing both AQS
and PA data in understanding the impact of wildfires on air quality and informs future
monitoring and management efforts.

There are some limitations of our current work. First, as mentioned above, the satellite-
derived smoke plume levels might underestimate the actual smoke level, which may lead
to underestimation of wildfires’ contribution to PM2.5 [34]. Second, due to computational
limitations and poor MCMC convergence, we fixed the spatial correlation range parameters
for both AQS and PA monitors and parameters that control the relationships between
AQS and PA data. The analysis would more fully quantify uncertainty if we are able to
implement a fully Bayesian analysis. Our analysis of the smoke contribution is also limited
because we only consider temperature and relative humidity and no other meteorological
variables or anthropogenic sources. Another limitation is that we use only HMS smoke
indicators to denote fire smoke, which has known limitations [35]. Although we estimate
the relationship between HMS and PM2.5 concentration using the data, HMS may fail to
capture the smoke contribution from some fires.

We have taken a purely statistical approach to estimating the contribution of wild-
land fires on ambient air pollution. An area of future work is to incorporate numerical
models to simulate the process. Dispersion models, e.g., HySPLIT [38], combine the lo-
cation and size of fires and meteorological conditions in a mathematical model to track
particulate matter emanating from a fire. Of course, numerical models also have bias and
other limitations [39], but combining their output within our statistical framework would
likely further refine our estimates. Further, instead of using one range parameter for all
frequencies, it is possible to get variogram estimates of ranges over frequencies. Similarly,
instead of assuming the same βu and βv for all locations, it may be better to estimate
spatially-varying βu and βv, although this would be computationally intensive. To extend
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the current work, we can estimate the contribution over the entire U.S., although more
efficient computational methods would be required for this analysis.
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Appendix A. MCMC Algorithm

Assume the n1 AQS monitors are at spatial locations s1, . . . , sn1 and the n2 PA monitors
are located at sn1+1, . . . , sns for ns = n1 + n2. The observations can be written as the
vectors Y1t = [Y1t(s1), . . . , Y1t(sn1)]

T , Y2t = [Y2t(sn1+1), . . . , Y1t(sns)]
T and Yt = (YT

1t, YT
2t)

T .
Similarly, for frequency l let Y∗jl , Ujl and Vjl be vectors of length nj and Y∗l , Ul and Vl be
vectors of length ns, analogous to Yt. The covariate matrices of size nj × p are denoted X∗jl
and X∗l is the ns × p matrix that stacks X∗1l and X∗2l . Then the model in the spectral domain
is

Y∗1l = Ul + E1l and Y∗2l = AlUl + V2l + E2l (A1)

where Ejl
indep∼ Normal(0, τ2

j Inj). Using this notation, the spatial models are defined by

E(Ujl) = X∗jl βu, E(Vjl) = X∗jl βv, Cov(Ujl , Ukl) = σ2
ulΣujk and Cov(Vjl , Vkl) = σ2

vlΣvjk. The
full ns × ns spatial correlation matrices are denoted Σu and Σv.

Each MCMC iteration we impute missing data and update the error variance parame-
ters in the spatial domain, and then update all remaining parameters in the spectral domain.
The missing values are simply drawn from the univariate normal distribution

Yjt|rest ∼ Normal(Zjt(s), τ2
j ) (A2)

independently over j and t. The error variances are drawn from full conditional distribu-
tion τ2

1 |rest ∼ InvGamma[n1nt/2 + a, ∑n1
i=1 ∑nt

t=1{(Y1t(si)− Z2t(si)}2/2 + b] and τ2
2 |rest ∼

InvGamma[n2nt/2 + a, ∑ns
i=n1+1 ∑nt

t=1{(Y2t(si)− Z2t(si)}2/2 + b].
After imputation in the spatial domain, the data are complete and can be projected

into the spectral domain where they are independent over time. The spatial processes are
updated as

Ul |rest ∼ Normal

{
Ωul

(
TA1

l (Y
∗
l −Vl) +

1
σ2

ul
Σ−1

u X∗l βu

)
, Ωul

}
(A3)

V2l |rest ∼ Normal

{
Ωvl

(
1
τ2

2
(Y∗2l − AlU2l) +

1
σ2

vl
Σ−1

v22X∗2l βv

)
, Ωvl

}

https://aqs.epa.gov/aqsweb/airdata/download_files.html
https://community.purpleair.com/t/making-api-calls-with-the-purpleair-api/180
https://www.ospo.noaa.gov
https://github.com/hyang199723/PAFusion
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where Ak
l is diagonal with first n1 elements equal one and the remaining n2 elements

equal Ak
l , T is diagonal with first n1 elements equal τ−2

1 and the remaining n2 elements
equal τ−2

2 , Vl is the vector with n1 zeros followed by V2l , Ω−1
ul = TA2

l +
1

σ2
ul

Σ−1
u and

Ω−1
vl = 1

τ2
2

In2 +
1

σ2
vl

Σ−1
v22.

The regression coefficients and bias parameters are updated as

βu|rest ∼ Normal

{
Pu

(
nt

∑
l=1

1
σ2

ul
X∗l

TΣ−1
u Ul

)
, Pu

}
(A4)

βv|rest ∼ Normal

{
Pv

(
nt

∑
l=1

1
σ2

vl
X∗2l

TΣ−1
v22V2l

)
, Pv

}

where P−1
u = ∑nt

l=1
1

σ2
ul

X∗l
TΣ−1

u X∗l +
1
c2 Ip and P−1

v = ∑nt
l=1

1
σ2

vl
X∗2l

TΣ−1
v22X∗2l +

1
c2 Ip. The remain-

ing hyperparameters are updated as

σ2
ul |rest ∼ InvGamma

(
ns

2
+ aul ,

(Ul − X∗l βu)
TΣ−1

u (Ul − X∗l βu)

2
+ bul

)
(A5)

σ2
vl |rest ∼ InvGamma

(
n2

2
+ avl ,

(V2l − X∗2l βv)
TΣ−1

v22(V2l − X∗2l βv)

2
+ bvl

)
.

Finally, γau1, γau2, γav1 and γav2 are updated using a Metropolis step with Gaussian candi-
date distribution tuned to give acceptance rate around 0.4.

Appendix B. Simulation Results

We conduct a simulation study to demonstrate the reliability of the MCMC algorithm.
The regression parameters, βu and βv, are fixed at the mean of the 2021 model output in
Table 1. We generate a total number of 80 AQS stations and 500 PA stations with 60 time
steps. The spatial locations are randomly sampled from the region (0, 15)2. The data was
generated in the frequency domain using the following equations:

Y1l(s) = Ul(s) + ε1(s) and Y2l(s) = AlUl(s) + V2l(s) + ε2(s). (A6)

The variables Ul and Vl are drawn from Gaussian processes as described in (2). The range
parameters are set to ρu = 2 and ρv = 4. The error variances of ε1(s) and ε2(s) are set to
1.6 and 3.6, respectively. The values of Al are fixed at the best Al selected from the real data
which is Al = 0.2.

To simulate realistic smoke plume frequencies, we assigned percentages to represent
the occurrence of low, medium, and high smoke plume levels. Specifically, 20% of the
days corresponded to low smoke plume levels, 15% to medium levels, and 10% to high
levels. Temperature and humidity values were randomly generated from standard normal
distributions.

The covariates were initially generated in the time domain and then transformed to
the frequency domain. The values of σul form a decreasing sequence ranging from 50 to
10, with larger values assigned to lower frequencies. Similarly, σvl follows a decreasing
sequence from 40 to 10. Finally, the values of βu and βv are the mean values from Table 1.

We generate 50 datasets from this model. For each simulated dataset, we fit the model
with ρu, ρv and Al fixed at the true values and generate 8000 MCMC iterations and discard
the first 5000 as burn-in. Since our main interest is in the covariate effects, for each dataset
we record the effective sample size of the MCMC algorithm [40] and the posterior mean
estimator and 95% posterior interval.

For each dataset and each parameter, we compute the posterior mean, standard
deviation and 95% interval and measure MCMC convergence using the effective sample
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size. The average of the posterior means, standard deviations and effective samples sizes,
and the empirical coverage of 95% intervals are shown in Table A1. The posterior means
show small bias, the coverage is near the nominal level and the effective sample size
coefficients indicate reasonable convergence.

Table A1. True value used for the fixed effects for the true PM2.5 (βu) and bias (βv) to simulate
data and the average (SD) over the 50 datasets of the posterior mean estimators (“Ave post mean”),
coverage of 95% posterior intervals and average (SD) effective sample size based on 3000 MCMC
iterations.

Type Covariate True Value Average Post Mean Coverage ESS

PM2.5

Temperature 0.118 0.117 (0.013) 100% 420.23 (0.14)
Humidity 0.064 0.069 (0.022) 96% 307.27 (0.10)
Plume-Low 0.007 0.006 (0.132) 100% 875.99 (0.29)
Plume-Medium 0.022 0.020 (0.037) 98% 376.91 (0.13)
Plume-High 0.049 0.050 (0.176) 100% 480.22 (0.16)

Bias Temperature −0.002 0.003 (0.019) 92% 168.75 (0.06)
Humidity 0.012 0.009 (0.041) 96% 176.97 (0.06)

Appendix C. MCMC Convergence

We display several representative trace plots of the data fusion model to verify the
convergence of our MCMC algorithm for the 2021 CA analysis. After burn-in, the MCMC
chains appear to have converged.
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Figure A1. Trace plots of parameters of interest (βu) for the 2021 California data analysis.
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