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Abstract: Spatial prediction of soil ammonia (NH3) plays an important role in monitoring climate
warming and soil ecological health. However, traditional machine learning (ML) models do not
consider optimal parameter selection and spatial autocorrelation. Here, we present an integration
method (tree-structured Parzen estimator–machine learning–ordinary kriging (TPE–ML–OK)) to
predict spatial variability of soil NH3 from Sentinel-2 remote sensing image and air quality data. In
TPE–ML–OK, we designed the TPE search algorithm, which encourages gradient boosting decision
tree (GBDT), random forest (RF), and extreme gradient boosting (XGB) models to pay more attention
to the optimal hyperparameters’ high-possibility range, and then the residual ordinary kriging model
is used to further improve the prediction accuracy of soil NH3 flux. We found a weak linear correlation
between soil NH3 flux and environmental variables using scatter matrix correlation analysis. The
optimal hyperparameters from the TPE search algorithm existed in the densest iteration region, and
the TPE–XGB–OK method exhibited the highest predicted accuracy (R2 = 85.97%) for soil NH3 flux in
comparison with other models. The spatial mapping results based on TPE–ML–OK methods showed
that the high fluxes of soil NH3 were concentrated in the central and northeast areas, which may be
influenced by rivers or soil water. The analysis result of the SHapley additive explanation (SHAP)
algorithm found that the variables with the highest contribution to soil NH3 were O3, SO2, PM10,
CO, and NDWI. The above results demonstrate the powerful linear–nonlinear interpretation ability
between soil NH3 and environmental variables using the integration method, which can reduce the
impact on agricultural nitrogen deposition and regional air quality.

Keywords: soil ammonia; XGBoost; ordinary kriging; spatial prediction; hyperparameter

1. Introduction

As an alkaline gas, ammonia (NH3) can effectively reduce the occurrence of acid
rain [1,2]. NH3 can be used to synthesize fertilizers, which greatly improves agricultural
productivity and meets growing food demand [3]. However, the large-scale volatilization
of NH3 into the atmosphere leads to air pollution and nitrogen deposition, which leads
to the eutrophication of water bodies and the destruction of biodiversity [4,5]. As an
indirect source of nitrogen dioxide (N2O) emissions, NH3 has an important impact on
global warming. It is estimated that the potential of carbon dioxide (CO2) to cause global
warming is only about 1/265 times that of N2O in one hundred years [6,7], and global NH3
emission is projected to increase rapidly to 132 Tg by 2100 [8], with the major emission
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source of NH3 being agriculture. The nitrification of NH3 will lead to soil acidification
and eutrophication [9]. NH3 is highly dependent on environmental variables compared to
other gases due to its volatile characteristics [9–11]. Therefore, there is an urgent need for
rapid and effective methods to predict NH3 emissions from the soil with environmental
variables to provide data support for alleviating NH3 emissions or studying NH3 from
soil-influencing factors.

Traditional soil NH3 measurement requires a lot of sampling work, which consumes
significant manpower resources and causes cost waste. Additionally, laboratory determina-
tion requires using a concentrated sulfuric acid (H2SO4) and boric acid (H3BO3) solution.
The time period for obtaining soil NH3 content is long, and it can easily cause secondary
environmental pollution. Spatial prediction is an important method that can be used to
realize the continuous distribution of NH3 in farmland soil in comparison with the high cost
and difficulty of a soil NH3 content survey. It is essential to develop a high-performance
prediction model with efficient environment variables for spatial prediction of soil NH3 flux,
which is of profound significance to alleviating global warming and improving air quality.

Air quality (such as PM2.5, NO2, and SO2) has been shown to closely interact with soil
ammonia. Because of the important role of NH3 in aerosol nucleation and haze [12], the
gradual decrease in the formation of NH+

4 aerosols will lead to a significant increase in the
residence time of NH3 in the atmosphere [13], while excessive NH3 stays in the aerosol
phase, which may reduce the removal of the condensed phase [14]. On the contrary, the
reaction of SO2 and NH3 with active radicals and NOx may also affect the formation of O3
and secondary aerosol intermediates [15,16]. Gu et al. (2022) found that the reduction in
acidic precursors sulfur dioxide and nitrogen oxides in recent years has also reduced the
chemical sink of NH3 in the atmosphere [13]. This is because gaseous NO2 is a reaction
intermediate that reacts with NH3; NH3 has a good adsorption effect on NO2. The concen-
tration of SO2, NO2, CO, and other precursors is significantly higher, which may impact
the production of NH+

4 in the environment [14].
A large number of methods have been widely used in the field of soil gas flux pre-

diction. Geostatistical interpolation is a basic method that can estimate the target of any
coordinate with zero deflection and minimum variance [17,18]. For example, Roberto et al.
collected 50 soil CO2 flux samples using the dynamic concentration method and interpo-
lated the discrete points to obtain the spatial variability result of CO2 flux in the survey area
based on the ordinary kriging (OK) model [19]. However, since only the spatial coordinates
have no information about other auxiliary variables, the semivariogram constructed by the
kriging method depends on the measured point pairs, resulting in low spatial prediction
accuracy of soil gas flux [20].

With the development of artificial intelligence, the machine learning (ML) method is
often used to construct the relationship between environmental variables and targets, and is
applied extensively in the prediction of farmland soil gas flux [20,21]. The commonly used
models include support vector machine (SVM), artificial neural network (ANN), random
forest (RF), and gradient-boosted regression (GBR). For example, Abbasi et al. used the
RF model with multi-source input variables (i.e., air temperature, soil organic matter, soil
moisture, soil total carbon, solar radiation, etc.) to predict CO2 fluxes from the soil in
the inorganic fertilizer environment in combination with field measured CO2 fluxes [22].
Morad et al. used the RF model, multivariate adaptive spline curve (MDSC), and general
linear model (GLM) to predict soil NO, CO2, and nitrogen oxide fluxes under no-tillage and
conventional tillage, respectively, in the case of temperature, soil moisture, and crop straw
rate as environmental variables and found that the prediction results of RF model were
the best [21]. Daniel et al., used quantile regression forests to predict the distribution of
soil–atmosphere CH4 and CO2 fluxes in forest watersheds in different seasons by inputting
DEM-derived topographic attributes [23]. The ML method is an efficient and robust
substitution compared with traditional soil gas measurement methods [22,24].

However, the existing ML models suffer from two shortcomings in explaining the rela-
tionship between environmental variables and soil gases. On the one hand, the prediction
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performance of ML models is affected by hyperparameters. Previous studies have shown
that hyperparameters can significantly affect the performance and accuracy of prediction
models. Additionally, these hyperparameters also affect each other. It is difficult to capture
the global optimal hyperparameters of the prediction model by using artificial trial-and-
error experimentation and default hyperparameters. The automatic parameter adjustment
method with high efficiency and robustness is an important auxiliary method to realize
automatic ML [19]. For example, Yan et al., used a grid search (GS) algorithm to optimize
and find the hyperparameters of the RF model, light gradient boosting machine (LGBM),
and adaptive boosting models to adjust the parameter values so that the model performed
best [25]. However, the GS algorithm is very time-consuming because it traverses all
parameters in an isolated manner [26] and cannot meet the requirements of identifying
global optimality [27]. Zhu et al., used an efficient Bayesian optimization method to find
the optimal combination of hyperparameters of the extreme gradient boosting (XGB) model
with higher prediction accuracy than GS [26]. On the other hand, the interpretation of the
relationship between environmental variables and soil gas by ML is monotonous. The ML
model has certain limitations on the data set and is suitable for nonlinear data sets [21],
ignoring the spatial autocorrelation between adjacent observation data [28].

A new prediction model, the integration kriging model, has been proven to be more ac-
curate in predicting soil properties in many current studies [29–35]. For example, Guo et al.
found that the integration method has advantages in predicting the spatial variability of soil
organic matter in the case of comparing the methods of RF, stepwise linear regression (SLR),
and the combination of RF and residual kriging by inputting topographic attributes, such
as geological units, climate factors, and vegetation indices [28]. Based on 73 years of NO2
observation data from 14 monitoring stations, Chen et al. predicted the spatial–temporal
characteristics of NO2 concentrations in Taiwan using the NO2 data interpolated krig-
ing method and the land use regression model with local non-traditional geographical
predictors [36].

However, whether the integration of the TPE-based ML model and geostatistical model
can significantly improve the spatial prediction accuracy and explain the relationship be-
tween environmental variables and soil NH3 flux is still unclear (i.e., nonlinear and linear
coupling characteristics). Therefore, to overcome the limitations of the hyperparameter
adjustment and spatial autocorrelation neglect of ML modeling, the objective of this study
is to demonstrate the increased predicted model performance using TPE–ML–OK-based
models with Sentinel-2 remote sensing image and air quality data, which involves estab-
lishing ML models, determining the optimal hyperparameters using the TPE algorithm,
building a residual ordinary kriging model, and revealing the relationships between key
variables and soil NH3 flux via explainable analysis. The environment variables (i.e.,
Sentinel-2 remote sensing image and air quality data) related to soil NH3 were collected
first. Then, the tree-structured Parzen estimator (TPE) search was applied to find the
optimal hyperparameters of the gradient boosting decision tree (GBDT), random forest
(RF), and extreme gradient boosting (XGB) models, and the residual ordinary kriging
model was used to further predict and mapping the soil NH3 flux. Finally, the relationships
between environmental variables and soil NH3 were evaluated using the SHapley additive
explanation (SHAP) method.

2. Materials and Methods

Figure 1 shows the flowchart in this study and includes three phases: (i) collection and
preprocessing of sampling and environmental variable data (vegetation index and texture
features from Sentinel-2 L2A image, interpolation analysis of air quality stations data, and
soil NH3 sampling); (ii) construction of integration method (machine learning model, TPE
hyperparameter optimization, and residual ordinary kriging); and (iii) accuracy evaluation
of prediction results, soil mapping using TPE–ML–OK models, and importance analysis of
environmental variable using the SHAP method.
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2.1. Overview of Study Area

The study area is situated in the Yellow River Delta (YRD), East China (36◦55′–38◦10′N,
118◦07′–119◦10′E). It has a temperate continental monsoon climate, and the terrain inclines
from southwest to northeast along the Yellow River (Figure 2). Soil types are divided into
five categories: cinnamon soil, Shajiang black soil, fluvo-aquic soil, saline soil, and paddy
soil. Based on the statistical yearbook of Dongying in 2020, the average temperature in the
study area is 14.1 ◦C, the annual precipitation is 665.3 mm, and the annual sunshine hours
are 2998.5 h. The study area mainly contains oil, natural gas, oil shale, and many other
mineral resources, which is the main production area of the Shengli Oilfield. However, the
soil pollution caused by oilfield development in this area indirectly affects the survival rate
of soil microorganisms and, thus, the absorption, transformation, and utilization of NH3 by
some soil microorganisms, which changes the NH3 content in the soil. Spatial prediction
of soil NH3 is of great significance in improving microclimate change, air pollution, and
nitrogen loss from farmland in the study area.

2.2. Soil Sample Collection and Analysis

In the farmlands of the study area, 134 sampling points were uniformly and randomly
arranged from 22 September 2022 to 29 September 2022. The NH3 volatilization was
measured per day at 8:00–10:00 a.m. and 3:00–5:00 p.m. The concentration of NH3 was
determined using the continuous airflow enclosure method, and a cylindrical plexiglass
chamber (20 cm in diameter and 30 cm in height) was installed in the soil of each sample plot.
We inserted the air chamber into the soil of 5 cm and connected the air in the glass chamber
from the air outlet to the pump-suction gas-phase speedometer (FZ2800-2, Guangzhou,
China) through the pipeline. The measurement interval of each sample point was 10 min,
the measurement was carried out in three parallels, and the initial and final NH3 content
(unit ppm) was recorded on the spot. The initial NH3 content was converted into emission
flux (unit: kg N ha−1 d−1) according to Equation (1) [37,38].

AE = c× v× 14× 1440× 106 × 10−9/(mv× 0.0177) (1)

AE represents the volatilization flux of NH3 in farmland soil, c represents the content
of soil NH3 (m mol mol−1) from the pump-suction gas-phase speedometer, v represents the
air velocity (0.25 L min−1), 14 represents the molar mass of NH3 (g mol−1), 1440 represents
the conversion from min−1 to d−1 (1 d 1440 min), 106 represents the conversion from m−2
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to ha−1, 10−9 represents the conversion from mg N into kg N, mv represents the molar
volume of the NH3, and 0.0177 is the covered area of the air chamber (m2).
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2.3. Environmental Variables
2.3.1. Remote Sensing Data

Based on the Sentinel-2 L2A remote sensing image (23 September 2022), the remote
sensing index was calculated and obtained. The data comes from the European Space
Agency (https://scihub.copernicus.eu/, accessed on 12 November 2022). The L2A image
data were preprocessed (i.e., atmospheric correction), and four vegetation index factors
were calculated using band 2, band 3, band 4, band 5, band 6, and band 8, including visible
atmospheric resistant index (VARI), soil-adjusted vegetation index (SAVIred), normalized
difference water index (NDWI), and plant senescence reflectance index (PSRI) (Table 1); the
resolution of all vegetation variables was 10 m × 10 m.

Table 1. Indexes derived from Sentinel-2 L2A image.

Index Formula Reference

VARI (band3− band4)/(band3− band4 + band2) [39]
SAVIred (band8− band5)× 1.5/(band8+ band5+ 0.5) [40]
NDWI (band3− band8)/(band3 + band8) [41]
PSRI (band4− band3)/band6 [42]

https://scihub.copernicus.eu/
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Texture features can reflect additional information, such as hue changes and attributes
of remote sensing images, and have been widely used in the extraction or classification
of ground object information [43–45]. For example, many studies have used the GLCM
method to calculate the relative frequency between the pixel brightness values of remote
sensing images to obtain spatial information gain, which effectively improves the interpre-
tation and classification accuracy of ground objects [46–48]. Based on the 11 bands of the
preprocessed Sentinel-2 L2A image, the texture features were also calculated and analyzed
using filter/co-occurrence measures in ENVI 5.3 software. A total of 88 texture features
were obtained, including eight transformations: entropy (ENT), correlation (CORR), mean
(MEAN), homogeneity (HOM), contrast (CTRA), dissimilarity (DIS), angular second mo-
ment (SECM), and variance (VAR). In order to simplify the variable dimension, the first
three principal components were obtained using principal component analysis (PCA) in
ENVI 5.3 software, and the total variance contribution rate that can be explained is 65.83%.
The features with high load values of PC1, PC2, and PC3 were mainly concentrated in
band 6–band 9; band 1–band 4; and band 5, band 10, and band 11 after texture transforma-
tion (Figure 3). These principal components (PC1–PC3) representing image texture features
can reflect soil physical information such as spatial information (i.e., pattern, shape, size,
etc.), geometric morphology, texture, and coverage on the soil surface, and have important
implications for the basic soil conditions of NH3 emissions.
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2.3.2. Air Quality

The air quality in the study area indirectly interfered with soil microbial interaction,
affecting soil NH3 emissions. In order to be consistent with the sampling time of soil NH3,
the selected time of air quality data was the monthly average of September 2022. Six air
quality pollutants (CO, NO2, O3, PM2.5, PM10, and SO2) were obtained as environmental
variables for spatial prediction of NH3. The data were obtained from the real-time air quality
release system (http://218.58.213.53:8081/dyfb_air/fb_web/dongying.html, accessed on

http://218.58.213.53:8081/dyfb_air/fb_web/dongying.html
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10 November 2022) of Dongying Environmental Protection Bureau, including 40 air quality
monitoring stations. The air quality data of all stations were processed using interpolation
analysis with a resolution of 10 m × 10 m in ArcGIS 10.7 software.

2.4. Machine Learning Model
2.4.1. Random Forest

Random forest (RF) is a tutorial integration algorithm with a decision tree as a base
estimator [49]. In the modeling process of RF, different subsets are randomly sampled from
the provided dataset and then used to build multiple decision trees. According to bagging
rules, the results of several decision trees were synthesized to predict soil NH3 fluxes, that
is, the average values of the results output by several base estimators. The learning ability
of the RF model is strong, and it can overcome the over-fitting problem caused by a highly
dimensional variable input. The RF model has been widely used in soil, ecology, and other
fields [50–52]. The core hyperparameters of the RF model that need to be optimized are
shown in Table 2. For example, max_depth and max_features have a significant impact on
the prediction accuracy and splitting depth of the basic estimator.

Table 2. Information description of core hyperparameters of RF model.

Hyperparameters Type Range Explanation

n_estimators int (50, 80) Number of trees
max_depth int (10, 17) The maximum depth of a tree

min_impurity_decrease float (0, 0.1) Minimum impurity in the node split

min_samples_split int (2, 8) The minimum samples required for
node re-split

max_features int, float, string (0, 64, “log2”, sqrt”,
“auto”)

The number of features needed to
find the best segmentation

2.4.2. GBDT

Gradient boosting decision tree (GBDT) is one of the ensemble ML models that uses
classification and regression tree (CART) as the basic model [53]. Different from the
bagging rule of the RF model, the GBDT model meets the basic process of the boosting rule,
calculates the loss function based on the results of the previous base estimator, and uses the
loss function to affect the next base estimator (Equation (2)) [53].

fn(x) = fn−1(x) + Tn(x) (2)

fn(x) and fn−1(x) represent the n-th (n ≥ 1) and n − 1 weak learners, respectively.
Tn(x) represents a new learner based on the residual of the n − 1 weak learner. The
current i-th learner fi(x) in the GBDT model is affected by all previously trained weak
learners [49,54,55] and finally integrated multiple base estimators and output soil NH3
prediction values. Because GBDT is optimized in the base estimator, loss function, fitting
residual, and random sampling, it has a stronger learning ability than most boosting
algorithms. GBDT is one of the most stable machine learning algorithms in actual scenarios.
The core hyperparameters and information of the GBDT model are shown in Table 3.

Table 3. Information description of core hyperparameters of GBDT model.

Hyperparameters Type Range Explanation

n_estimators int (90, 120) Number of trees
learning_rate float (0.2, 0.3) The learning speed

subsample float (0.6, 0.72) The proportion of subsampling
max_depth int (5, 10) The maximum depth of a tree

max_features int, float, string (2, 16, “log2”, “sqrt”,
“auto”)

The number of features needed to
find the best segmentation

min_impurity_decrease float (2, 4) The amount of information gained to
consider when splitting nodes
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2.4.3. XGB

The eXtreme gradient boosting (XGB) is a new machine-learning model proposed by
Chen et al. in 2016. It has been optimized based on the GBDT algorithm, making XGB
have better results in dealing with regression and classification problems [51,52]. As an
advanced boosting algorithm, XGB builds the next weak learner based on the results of
the previous weak learner in each iteration [53]. The advantage of the XGB algorithm
is that the objective function with a regular term controls overfitting [54]. In addition,
similar to the RF model, XGB also supports column sampling, which extracts some data for
training during the iteration process so as to control overfitting by reducing the amount
of calculation. Compared with the first-order Taylor expansion of GBDT, XGB adopts
the second-order Taylor expansion, which can approximate the real loss function more
accurately. Equation (3) shows the objective function (O(t)) [51].

O(t) ∼= ∑ n
i=1[L(yi, ŷ(k−1)

i ) + gi fk(xi) +
1
2

hi f 2
k (xi)] + Ω( fk) (3)

where yi and ŷi represent the i-th measured value and the predicted value at step t, respec-
tively, L represents the loss function, Ω represents the regular term, xi and fk represent
the i-th input variables and the k-th tree, respectively, and gi and hi represent the first and
second derivatives of the L, respectively. Then, the final objective function (Equation (4)) at
the j-th leaf Ij = {i|q(xi)} = j is as follows:

O(t) = ∑ T
j=1[(∑ i∈Ij gi)ωj +

1
2
(∑ i∈Ij

hi + λ)ω2
j ] + γT, (4)

where T represents the total leaf nodes of the XGB model, ωj and γ represent the scores on
the j-th leaf and complexity of leaf nodes, respectively, and λ is a compromise parameter
that scales the penalty. The core hyperparameters and information of the XGB model are
shown in Table 4.

Table 4. Information description of core hyperparameters of XGB model.

Hyperparameters Type Range Explanation

subsample float (0.85, 1) Construct the sampling rate of each tree to
the sample

num_round int (30, 50) The number of trees
eta float (0.2, 0.3) Learning rate

lambda float (0, 4) Regularization section for processing XGB

min_child_weight float (0.1, 2.8) The sum of weights of the minimum leaf
node sample

colsample_bytree float (0.92, 1) The proportion of features used in
training out of all features

colsample_bynode float (0.95, 1) Sub-sampling rate of columns split
per node

max_depth int (1, 4) Maximum depth of a tree

2.4.4. TPE Search Algorithm

Not only is the internal structure of the above prediction model complex, but many
hyperparameters also need to be adjusted. Moreover, the hyperparameters have a great
influence on the prediction performance of the model [55,56]. Hyperparameters usually
refer to the parameters shared between different modules, functions, classes, or objects in
the model. These parameters can be used by multiple components to achieve data transfer,
interaction, and sharing of information. The traditional manual adjustment will take a lot
of time and cost, and the effect is not good. Studies have shown that compared with the
GS algorithm, the Bayesian optimization (BO) algorithm cannot easily plunge the local
optimum and is more efficient. Bayesian optimization is considered the most advanced
superparameter optimization framework at present and is widely used in various fields
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of AutoML [57]. It uses the frequency of the minimum value to judge. The frequency
reflects the probability of the minimum value to some extent. The higher the frequency,
the greater the probability that the function has a minimum value. Tree-structured Parzen
estimator (TPE) is one of the most advanced BO algorithms based on tree-structured Parzen
density estimation. First, the TPE algorithm defines two probability density functions
(Equations (5) and (6)) based on y∗ (i.e., the value at the quantile r in the y-set).

r = p(y < y∗) (5)

p(x | y) =
{

l(x) i f y < y∗

g(x) i f y ≥ y∗
(6)

Then, the TPE optimization algorithm selects EI (expected improvement) as the evalu-
ation criterion (Equation (7)):

EIy∗(x) =
∫ y∗

−∞
(y∗ − y)p(y | x)dy =

∫ y∗

−∞
(y∗ − y)

p(x | y)p(y)
p(x)

dy (7)

Finally, we can obtain Equation (8):

EIy∗(x) =
ry∗l(x)− l(x)

∫ y∗
−∞ p(y)dy

rl(x)− (1− r)g(x)
∝
(

r +
g(x)
l(x)

(1− r)
)−1

(8)

In Equation (8), we can see a direct correlation between the value of EI and the value
of g(x)/l(x). In order to improve EI, we make the probability of l(x) as large as possible
and the probability of g(x) as small as possible so as to select the most suitable x value.
In each iteration, the algorithm returns x∗ with the maximum EI value, and the returned
x∗ will participate in the next iteration so as to repeatedly find the best hyperparameter
combination of the soil NH3 prediction model. In this study, packages (i.e., xgboost,
sklearn.model_selection, sklearn.ensemble, hyperopt, etc.) are imported into the Python 3.9
programming environment to build the above algorithms (i.e., RF, GBDT, XGB, and TPE).

2.5. The Integration Method

The integration method was used to further improve the prediction accuracy of soil
NH3 flux. First, the residual value rTPE−ML(xi) between the true value z(xi) of soil NH3
and the predicted value zTPE−ML(xi) of the TPE-optimized ML method (i.e., TPE-GBDT,
TPE-RF, and TPE-XGB) was calculated (Equation (9)).

rTPE−ML(xi) = z(xi)− zTPE−ML(xi) (9)

Then, the ordinary kriging (OK) interpolation algorithm was used in ArcGIS 10.7
software to obtain the residual spatial continuity distribution of the TPE-optimized machine
learning model. The formula of the OK model (Equations (10) and (11)) is as follows [58]:

γ̂(h) =
1

2N(h)

N(h)

∑
i=1

[z(xi)− z(xi + h)]2 (10)

ẑOK(xi) =
n

∑
i=1

λiz(xi) (11)

where γ̂(h) represents the experimental semivariogram in the kriging interpolation process,
N(h) represents the number of sampling points separated by h (where h is the lag distance
between z(xi) and z(xi + h), and λi is the optimal weight. ArcGIS 10.7 software was used to
realize the spatial interpolation calculation of the OK model. Finally, the spatial prediction
results of soil NH3 flux in the hybrid geostatistical model were obtained by adding the
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spatial prediction value of the TPE-optimized machine learning model to the residual
kriging value (Equation (12)) [59].

zTPE−ML−OK(xi) = zTPE−ML(xi) +
n

∑
i=1

λizTPE−ML(xi) (12)

where zTPE−ML−OK(xi) includes the comprehensive prediction results of tree-structured
Parzen estimator–random forest–ordinary kriging (TPE–RF–OK), tree-structured Parzen
estimator–gradient boosting decision tree–ordinary kriging (TPE–GBDT–OK), and tree-
structured Parzen estimator–extreme gradient boosting–ordinary kriging (TPE–XGB–OK),
representing the optimal spatial estimation of soil NH3 flux.

2.6. Verification

In this study, the datasets were randomly divided into 70% for the training set and 30%
for the test set to build a prediction method. For accuracy evaluation, root mean square
error (RMSE) (Equation (13)) and coefficient of determination (R2) (Equation (14)) were used.
xi and x̂i are, respectively, the real value of soil NH3 flux and the prediction value of the
super parameter optimization model, and xi and x̂i are, respectively, the average of the real
value of soil NH3 at all sample points and the average of the estimated value of the model.

RMSE =

√
1
n∑n

i=1 (x̂i − xi)
2 (13)

R2 =
[∑m

i=1 (xi − xi)(x̂i − x̂i)]
2

∑m
i=1 (xi − xi)

2∑m
i=1 (x̂i − x̂i)

2 (14)

Because the ensemble learning models, deep learning models, and other models are
extremely complex, abstract, and difficult to understand, the importance score of each
environmental variable was output and visualized using the SHapley additive explanation
(SHAP) analysis so that we can determine which environmental variables play a leading
role in affecting soil NH3 flux. As a unified interpretation framework, SHAP can calculate
the importance score of each feature in the data so as to explain the model. In this study,
the SHAP package was imported into the Python 3.9 programming environment to explain
the predicted method and visualize the importance of different environment variables.

3. Results and Analysis
3.1. Statistical Analysis

Figure 4 shows the normalized numerical distribution of NH3 flux in soil and auxiliary
variables. The soil NH3 fluxes are concentrated in the median area, and the data structure
is normally distributed. PSRI, PC1, and PC2 also showed significant normal distribution.
However, the values of other variables showed skewed or bimodal distribution. There were
significantly nonlinear characteristics among different environmental variables. The linear
correlation between similar variables was strong, the positive linear correlation between
vegetation index factors (i.e., SAVIred and NDWI, VARI and PSRI, and SAVIred and PSRI)
was high (r > 0.2), the negative linear correlation between soil texture factors (PC3 and
PC1) was strong (r = 0.39), and there was a high correlation between air quality variables.
Obviously, there was a positive linear correlation between soil NH3 flux and O3 (r = 0.21)
and a weak linear correlation with other variables. The above correlation analysis results
show complex fitting characteristics between soil NH3 flux and environmental variables.
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3.2. Spatial Prediction of Soil NH3 Using TPE–ML–OK Method
3.2.1. Evaluation of Hyperparameter Optimization Process

Figures 5–7 show the sampling point iteration trend of GBDT, RF, and XGB models
in the TPE optimization process, respectively. Obviously, the sampling points in the TPE
optimization process have an aggregation trend, and there is a region with the densest
distribution of sampling points in each hyperparameter iteration process. For example,
some hyperparameters (min_impuity_decrease of the GBDT model and min_child_weight
of the XGB model) increase with the increase in the value, and the distribution of sampling
points change from sparse to dense. Other hyperparameters (n_estimators of the RF model
and colsample_bynode of the XGB model) show the trend of sampling points from dense
to sparse (that is, it is difficult to reach the optimal value, even if the hyperparameter value
is increased). These sampling-intensive areas are significantly different from the sparse
sampling areas, and the optimal parameters often appear near the sampling-intensive areas.
The lowest RMSE values obtained by the RF, GBDT, and XGB models in the TPE optimiza-
tion process are relatively close, which are 11.96 kg N ha−1 d−1, 11.77 kg N ha−1 d−1, and
11.70 kg N ha−1 d−1, respectively, indicating that the TPE algorithm has strong general-
ization in the hyperparameter optimization of different models. TPE always selects the
next set of sampling points according to the results of previous sampling points [60]. After
multiple iterations, the probability that the optimal hyperparameters appear in the dense
sampling area is much higher than in the sparse area.
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3.2.2. Prediction Accuracy of TPE–ML Model for Soil NH3

The scatter and residual distribution of the measured and predicted values of soil NH3
concentration and the regression accuracy of the model are shown in Figure 8 and Table 5, re-
spectively. The spatial prediction accuracies of the TPE-optimized machine learning model
for soil NH3 fluxes are TPE–XGB (RMSE = 8.13 kg N ha−1 d−1 and R2 = 74.22%) > TPE-RF
(RMSE = 8.85 kg N ha−1 d−1 and R2 = 71.78%) > TPE–GBDT (RMSE = 10.40 kg N ha−1 d−1

and R2 = 65.90%) (Table 5). The TPE–XGB model had the strongest ability to fit the nonlinear
relationship between soil NH3 flux and environmental variables in comparison with the
other models. The residuals of the training sets of the three models satisfy the normal distri-
bution, indicating a better-fitting performance of the models. The scatter distribution of the
test set of the TPE–GBDT model is dispersive, and the prediction accuracy is significantly
affected by the anomalous samples. In addition, the fitting curves of the residuals of the test
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sets of the three models show left skewness (i.e., the predicted residuals are concentrated
in the negative region), indicating that the model predictions are underestimated.
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Figure 8. Scatter error plot of soil NH3 flux measured value vs. predicted value using (a) TPE–GBDT–OK,
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Table 5. The accuracy evaluation of prediction models for soil NH3 flux.

Model RMSE
(kg N ha−1 d−1) R2 (%) Model RMSE

(kg N ha−1 d−1) R2 (%)

TPE–GBDT 10.40 65.90% TPE–GBDT–OK 8.28 75.48%
TPE–RF 8.85 71.78% TPE–RF–OK 7.11 80.92%

TPE–XGB 8.13 74.22% TPE–XGB–OK 6.42 85.97%

3.2.3. The Semi-Variation Analysis of Residual Values from TPE–GBDT, TPE–RF, and
TPE–XGB Models

Furthermore, the spatial semi-variation characteristics of the predicted residuals of
the three models were analyzed in ArcGIS 10.7 software. The nugget effect is an im-
portant indicator used for measuring the spatial variability of the sample points, usu-



Remote Sens. 2023, 15, 4268 14 of 21

ally divided into low spatial dependence (NE ≤ 25%) and moderate spatial dependence
(25% ≤ NE ≤ 75%) [61]. The NE of the soil NH3 flux of residual sample points for OK
exhibited moderate spatial dependence, making it appropriate for kriging interpolation
(Table 6). In the process of semivariogram analysis, the residual sampling points showed
a nonuniform distribution, and the semivariogram value (γ) tended to be stable as the
step size increased. The residual sample points have the highest density (i.e., the strongest
spatial autocorrelation) between the distance (h) from 0.1 to 0.6 (Figure 9).

Table 6. The semi-variation analysis of residuals of soil NH3 using TPE–GBDT, TPE–RF, and
TPE–XGB models.

Variogram Function Nugget (Co) Sill (Co + C) Nugget/Sill
[Co/(Co + C)] (%)

Residuals of TPE–GBDT Exponential 120.57 163.07 73.94
Residuals of TPE–RF K-Bessed 122.10 178.82 68.28

Residuals of TPE–XGB Exponential 119.80 161.17 74.33
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3.2.4. Spatial Prediction and Mapping Using the TPE–ML–OK Method

As shown in Table 5, the combined prediction accuracy of the TPE–ML–OK method
was higher than that of the monotonic machine learning model, and the three integration
models characterized more than 75% of the spatial variability (R2) of soil NH3 fluxes.
Moreover, the test set scattering points of the three integration models were more compactly
distributed near the diagonal, and their residuals were closer to normal distribution and
concentrated in the low-value region (Figure 8). The TPE–XGB–OK model exhibited
the highest prediction accuracy (i.e., RMSE = 6.42 kg N ha−1 d−1, and R2 = 85.97%)
in comparison with the other models, which indicated that the TPE–XGB–OK model
could explain the linear and nonlinear relationships between soil NH3 and environmental
variables. The above results exhibited that the ML models assisted by the TPE algorithm
have a more uniform distribution of residuals with fewer extremes, and the smoothing
effect of residual kriging interpolation promotes the higher prediction accuracy of the
TPE–ML–OK method.

Figure 10 shows soil NH3 fluxes spatially mapped using three integration prediction
models. The predicted range of the TPE–XGB–OK model (0.7–82.36 kg N ha−1 d−1) was
closest to the range of the true values (1.31–81.89 kg N ha−1 d−1), whereas the mapping
results of the TPE-GBDT-OK model appeared to feature a significant underestimation. The
spatial mapping results of the three hybrid models were similar, with the TPE–XGB–OK
model predicting a more natural spatial excess of soil NH3 fluxes. Soil NH3 fluxes in the
study area were smaller in the south as a whole, and the areas with larger concentrations
were mainly distributed in the central and northeastern of the study area. Especially near
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the Yellow River estuary, the high soil NH3 fluxes may be influenced by river transport
effects or soil moisture.
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4. Discussion
4.1. Importance Analysis of Environmental Variables on Soil NH3

SHAP analysis is used to explore the contribution trajectory of environmental variables
in the prediction process based on the TPE–XGB model. As shown in Figure 11, among
the three types of variables of vegetation, air quality, and soil texture, the most significant
impact on the spatial variability of soil NH3 flux is air quality (i.e., cumulative contribution
ratio is 60.52%), followed by vegetation (i.e., cumulative contribution ratio is 30.79%)
(Figure 11a). Among all the environmental variables, O3 had the highest contribution to the
prediction accuracy of soil NH3 (26.29%), and the cumulative importance contribution rate
of the first five environmental variables exceeded 70%. The mean SHAP values of other
environmental variables such as VARI, PC3, SAVIred, PC1, and PM2.5 were all below 1,
which had a low importance on the prediction accuracy of soil NH3. The characterization of
the driving force of environmental variables on soil NH3 flux at each sample point is shown
in Figure 11b. The SHAP value of the samples with low O3 value is negative (i.e., the closer
the color is to blue, the smaller the feature value is), and the samples with high O3 value
have positive SHAP values (i.e., the closer the color is to red, the larger the feature value is).
That is, O3 shows a significant positive driving effect on soil NH3 (i.e., an increase in O3
content in the air will promote the emission of soil NH3). Similarly, NDWI is also positively
correlated with soil NH3. Inversely, the SHAP values corresponding to the samples with
higher SO2, PM10, and PSRI values are negative. This result indicates that these variables
had a negative driving effect on soil NH3.
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Figure 11. The SHAP analysis: (a) a standard bar chart obtained using the absolute value of the
mean SHAP values of each variable, and (b) the SHAP values of the environmental variable in each
sampling point using the TPE–XGB model. The SHAP value is higher than 0, which means that the
variable responds to a positive influence on the soil NH3; otherwise, it has a negative influence.

4.2. The Mechanism of Influence of Environmental Variables on Soil NH3

Air quality is an important driving factor affecting NH3 fluxes from farmland soil in
the study area. According to the SHAP analysis, the positive driving effect of O3 is the most
significant. The mechanism of the response of O3 on soil N emissions is that it changes soil
microbial activity through plant-mediated processes, which may have an important impact
on net gas fluxes, because it does not penetrate the soil and has a direct impact on the
components of the soil ecosystem [62]. For example, elevated O3 concentrations reduce net
photosynthesis [63,64] and dry matter accumulation [65] by oxidatively damaging plant
cell membranes and chloroplasts [63,64,66–69], which in turn alters the soil subsurface
processes of plant root respiration and microbial activity [41,70–73], ultimately affecting the
nitrogen (N) and carbon (C) cycles in soil [74,75] and greenhouse gas emissions (CO2, CH4,
N2O, etc.) [76]. Recio et al. (2020) found that the high O3 concentration significantly reduced
the absorption of NH3 and other emissions from soil by plants [9], thereby increasing the
emission of some nitrogen gases. For example, the increase in O3 concentration will
significantly increase the peak CH4 flux of wheat and rice [77], and even under the highest
O3 concentration treatment, the cumulative emission of soil N2O will double [78]. With the
increase in O3 concentration, the emission of N element gas also increased, which proved
that O3 was a positive driving force for soil NH3 in this study.

In addition to air quality variables, soil moisture (NDWI) also had a significant effect
on the spatial variability of soil NH3 flux in this study. On the one hand, soil moisture
has a significant positive effect and sensitivity on soil NH3 emission [79,80]. For example,
since soil NH3 flux is a physical process affected by the concentration of NH+

4 -N in soil
solution [81], the increase in soil moisture will promote the diffusion of NH3 in soil, resulting
in the increase of soil NH3 emission [79,82–84]. On the other hand, soil moisture controls
the loss of NH3 by affecting urea-hydrolyzing microorganisms and urease activity [84–86].
The increase in the liquid diffusion rate in moist soil is beneficial to the absorption of
matrix by microorganisms and promotes the diffusion of NH3 in soil (and the emission
of soil NH3) [87]. This is similar to the results of this study. In the estuary area of the
Yellow River in the northeast of the study area, due to the dense river network and the
high moisture of the farmland soil, the soil NH3 concentration is high. In addition, other
variables such as soil salinity, soil pH, temperature, and wind speed may also affect soil
NH3 emissions [88–91].

4.3. Limitations

We developed a TPE–ML–OK method with Sentinel-2 remote sensing image and air
quality data to predict the spatial distribution of NH3 in farmland soil. However, this study
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has some limitations that should be considered in the future. First, the environmental
variables that dominate soil NH3 emissions under different land use types are significantly
different. For example, differences in land cover and land management methods can
significantly affect soil NH3 emissions. The highest total environmental NHx concentration
in rural areas may be related to intensive agricultural activities (such as fertilization and
irrigation) [92], while soil pH, mineral nitrogen content, soil temperature, and humidity in
the agro-pastoral ecotone play a key role in regulating NH3 emissions [93].

Second, the high fertilization rate was a significant environmental variable that pro-
moted soil NH3 emission. The accumulation of chemical fertilizers and organic fertilizers
in the soil leads to an increase in the transfer of NH3 from the liquid phase to the gas phase
and promotes the volatilization of NH3 [94,95]. For example, the high nitrogen fertilizer
input will lead to an increase in NH3 volatilization, and the more nitrogen fertilizer applied,
the more nitrogen loss caused by NH3 volatilization [96], which becomes the main source
of ammonia emission increasing in the atmosphere [97]. On the contrary, the volatilization
of NH3 is limited by washing the fertilizer into the deep soil so that it is adsorbed [98].

Third, the influence of meteorological conditions on soil NH3 emission should be
considered. NH3 volatilization loss is affected by many factors, such as temperature,
precipitation, and precipitation [88–91,99]. Cold weather is not conducive to the emission
of NH3, and strong precipitation may also lead to the removal of ammonia in the soil,
resulting in a low concentration of ammonia discharged from the soil [97]. With the increase
in temperature, the initial emission of NH3 will increase. When the temperature exceeds
the optimum level, NH3 volatilization may not be significantly affected by temperature
changes. [95] Other soil properties also have positive or negative effects on NH3 emissions.
For example, acidic loam is also not conducive to the emission of NH3 [97]; that is, soil pH
is positively correlated with NH3 emission, and soil pH will affect the content of NH+

4 -N
in the ammonia conversion reaction system, thus affecting the emission process of soil
NH3 [93]. The higher the soil pH, the more NH3 volatilization [96]. The increase in clay
content leads to decreased electrical conductivity, which limits the vertical transfer of
nitrogen [95].

In addition, spatial interpolation is used to obtain the spatial continuity distribution of
air quality stations, which is a stable and effective method in small-scale areas. However,
in future studies, improving the spatial accuracy of air quality data should be considered
in order to further improve its response to the spatial prediction of soil NH3 and reduce the
uncertainty of prediction. For example, in large-scale areas, the use of aerosol images (such
as MODIS and Himawari) and a large number of monitoring station data, combined with
machine learning models, can effectively improve the spatial prediction accuracy of air
quality, thereby reducing the uncertainty of air quality variables in predicting soil NH3 flux.

5. Conclusions

In this study, we developed an integration method to predict the spatial distribution of
NH3 flux in farmland soil. The GBDT, RF, and XGB models assisted by the TPE algorithm
found the optimal hyperparameters, and the probability that the optimal hyperparameters
appear in the dense sampling area of TPE iterations. Compared with a single ML model, the
three integration models exhibited higher predicted performance for the spatial variability
of soil NH3 fluxes. Moreover, the TPE–XGB–OK model effectively explained the linear and
nonlinear relationships between environmental variables and soil NH3. The areas with
high flux of NH3 in farmland soil were concentrated centrally and in the northeast. Further
importance analysis of environmental variables exhibited that air quality and soil moisture
have a significant positive driving effect on soil NH3. That is, O3 promotes soil NH3 flux
by altering the soil subsurface processes of plant root respiration and microbial activity,
and soil moisture also has a direct promotion effect on soil NH3 emission. In the future, the
integration method can be generalized to spatio–temporal fusion prediction, supporting
global warming alleviation and high-quality agriculture development in coastal areas.
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