
Citation: Jung, M.; Jung, J. A Scalable

Method to Improve Large-Scale Lidar

Topographic Differencing Results.

Remote Sens. 2023, 15, 4289. https://

doi.org/10.3390/rs15174289

Academic Editors: Mohammad

Awrangjeb, Min Zhang, Ming Hao

and Rui Zhu

Received: 5 July 2023

Revised: 19 August 2023

Accepted: 28 August 2023

Published: 31 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Scalable Method to Improve Large-Scale Lidar Topographic
Differencing Results
Minyoung Jung and Jinha Jung *

Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA; jung411@purdue.edu
* Correspondence: jinha@purdue.edu

Abstract: Differencing digital terrain models (DTMs) generated from multitemporal airborne light
detection and ranging (lidar) data provide accurate and detailed information about three-dimensional
(3D) changes on the Earth. However, noticeable spurious errors along flight paths are often included
in the differencing results, hindering the accurate analysis of the topographic changes. This paper
proposes a new scalable method to alleviate the problematic systematic errors with a high degree of
automation in consideration of the practical limitations raised when processing the rapidly increasing
amount of large-scale lidar datasets. The proposed method focused on estimating the displacements
caused by vertical positioning errors, which are the most critical error source, and adjusting the DTMs
already produced as basic lidar products without access to the point cloud and raw data from the laser
scanner. The feasibility and effectiveness of the proposed method were evaluated with experiments
with county-level multitemporal airborne lidar datasets in Indiana, USA. The experimental results
demonstrated that the proposed method could estimate the vertical displacement reasonably along
the flight paths and improve the county-level lidar differencing results by reducing the problematic
errors and increasing consistency across the flight paths. The improved differencing results presented
in this paper are expected to provide more consistent information about topographic changes in
Indiana. In addition, the proposed method can be a feasible solution to upcoming problems induced
by rapidly increasing large-scale multitemporal lidar given recent active government-driven lidar
data acquisition programs, such as the U.S. Geological Survey (USGS) 3D Elevation Program (3DEP).

Keywords: digital terrain model (DTM) differencing; lidar; USGS 3D Elevation Program (3DEP);
big data

1. Introduction

Differencing multitemporal topographic data is a fundamental technique with many
valuable applications requiring three-dimensional (3D) Earth surface changes as prerequi-
site information [1–9]. Various platforms with different sensors from space (e.g., synthetic
aperture radar (SAR) [2,3]) to the ground (e.g., terrestrial light detection and ranging (li-
dar) [4,5]) have been used to collect precise topographic information during the last several
decades. Airborne lidar is superior to other tools, as it enables efficient and high-quality
topography mapping [10,11]. Airborne lidar data have been widely used to monitor 3D
changes, providing high accuracy and a high level of detail [12–16].

In order to compute accurate 3D changes between multitemporal airborne lidar data,
numerous approaches have been developed [17–19]. One of the most frequently used lidar
differencing methods is a digital elevation model (DEM) of difference (DoD) process [18]
that subtracts a rasterized old elevation product from the corresponding current elevation
product or vice versa. Generating rasterized elevation products, such as a digital terrain
model (DTM), is a fundamental application of airborne lidar data [20]. A DTM is a basic
elevation product derived from airborne lidar data. Therefore, DoD implementation
for DTMs is straightforward, and a number of previous studies have demonstrated the
DoD technique’s usefulness for landscape monitoring over a coastal area [21], a fluvial
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area [22], and a volcanic area [13] or for response analysis (e.g., landslide) of extreme
precipitation [16,23] and earthquakes [7].

However, despite its prominent advantages, the differencing of airborne lidar data has
multiple limitations usually caused by the different data quality between individual data
collections [18]. Hence, various sophisticated approaches have been developed to solve
the limitations and fully exploit the advantages of airborne lidar. One critical limitation is
that inherent errors of airborne lidar data become considerably apparent when differencing
multitemporal data [14,16,24]. The inherent errors raise abnormal elevation changes in
the differencing results, severely hindering accurate 3D change monitoring. Therefore,
previous studies corrected lidar data from the low level to thoroughly solve numerous
potential error sources [14,16,25], such as inadequate system calibration, internal flight
path misalignments, and the effects of land covers. A standard solution to decrease the
error sources is the recalibration of lidar point clouds using flight trajectory files [16].
Some previous studies have used ground control features to calibrate lidar products [23].
However, such supplementary data were often absent, especially from national-scale
lidar collection efforts, like the U.S. Geological Survey (USGS) 3D Elevation Program
(3DEP) [26], as the program only requires derived 3D point clouds and DTMs. Therefore,
an iterative closest point (ICP; [27]) method has frequently been employed to reduce
abnormal elevation changes without additional data [28]. These previous approaches
enabled us to precisely differentiate the actual elevation changes from the spurious changes.
Nevertheless, they were implementable for limited lidar products with supplementary data
or where conjugated features for ICP-based algorithms were readily extracted.

Meanwhile, many countries have been actively collecting nationwide 3D elevation
data using airborne lidar to address the growing demand for high-quality height informa-
tion [29–31]. As a result, the amount of airborne lidar data has reached an unprecedented
level in terms of spatial and temporal coverage. It posed challenges in developing new
scalable processing techniques to handle these ‘big data’ efficiently [31–33]. Differencing
multitemporal topographic data also confronts such challenges such that the previous
solutions against the remarkable artificial elevation changes are unscalable and often be-
come impractical at larger spatial scales. The iterative process of large-scale data consumes
tremendous computational time, and high-performance computing resources may be re-
quired to cover large areas. In addition, the appropriate supplementary data rarely exist
for a large area, and the large area may include various land covers where the desirable
conjugate features may not exist, which makes it challenging to utilize previously proposed
approaches for large-area applications.

Considering the practical difficulties of the previous methods, this paper aims to
develop a simple but computationally effective way to alleviate inherent error-induced
abnormal topographic changes in large-scale lidar differencing results (i.e., DoD results).
Instead of processing the low-level point cloud data, the proposed method estimates and
adjusts the abnormal displacements mainly using DTMs, which are usually pre-generated
as a primary elevation product derived from airborne lidar data. The proposed method’s
effectiveness was assessed using county-level multitemporal airborne lidar datasets of
Indiana, USA, where artificial elevation changes were manifested in their differencing
results, which were performed using original DTMs from USGS 3DEP. The contributions
of this paper can be summarized as (1) proposing a new scalable solution against the
erroneous displacements frequently observed in DoD results without raw observation and
(2) providing improved DoD results of Indiana 3DEP lidar datasets where the problem-
atic displacements were reported but unsolved [24] with more reasonable terrain change
information. This paper is organized as follows: First, Indiana statewide lidar datasets
are introduced in Section 2. Then, Section 3 details the developed scalable method. The
experimental results using Indiana lidar datasets and discussions are presented in Section 4,
and this paper finally concludes with a summary in Section 5.
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2. Indiana Statewide Multitemporal Lidar Datasets

Indiana statewide topographic information has been acquired twice using an air-
borne lidar system from 2011 to 2013 and 2016 to 2020. The statewide lidar data provide
broad insights into the challenges in processing and analyzing high-quality and large-scale
multitemporal lidar data. They were collected as parts of the 3DEP, a nationwide height
information collection project managed by the USGS. The 3DEP aroused expectations
to facilitate many valuable downstream applications using elevation data. Several stud-
ies have derived meaningful information from 3DEP products [24,30,34] by developing
and implementing appropriate approaches to overcome the difficulties of handling these
large-scale datasets.

The Indiana statewide multitemporal datasets were collected over the entirety of Indi-
ana (94,324 km2) with an average point density of 1.6 pts/m2 for the 2011–2013 dataset [24]
and at least 2 pts/m2 for the 2016–2020 dataset [35]. Through a complicated and time-
intensive data processing workflow, two source products, the lidar point cloud (or LASer
file format, LAS) and DTM, were generated from each data collection and became available
to the public in 2021 [35]. The DTM provides essential terrain heights (bare-earth, hydro-
flattened, gravity-related heights) with spatial resolutions of 1.524 m (5 ft) for the 2011–2013
dataset and 0.762 m (2.5 ft) for the 2016–2020 dataset. The LAS file includes detailed
information about all recorded points, such as their exact 3D position, class (e.g., ground
or noise), intensity, flight path ID, and global navigation satellite system (GNSS) time.
The approximate total data sizes of the LAS and DTM products are 4.9 and 0.5 terabytes
for the 2011–2013 data and 13.0 and 0.7 terabytes for the 2016–2020 data. To efficiently
handle these voluminous bi-temporal Indiana lidar datasets, entire areas of the individual
92 Indiana counties were divided into square grids (tiles) with a size of 1524 m by 1524 m,
and the lidar products (LAS and DTM) were separately archived according to these tiles for
both periods [36]. Although the geometric accuracy of each dataset has not been reported
publicly in detail, the 2016–2020 dataset should meet USGS quality level 2 [37]. This implies
that the absolute vertical accuracy of the root mean square error (RMSEz) is 0.1 m for
non-vegetated areas, which has been announced as twice as accurate as the 2011–2013
dataset by the Indiana Geographic Information Council (IGIC) [35].

Scott et al. [24] first presented Indiana’s statewide elevation changes by designing and
implementing an automatic DoD process for these big Indiana datasets. The significant
topographic changes over the states, such as river fluvial changes, coastal erosion, and
newly constructed roads, were effectively detected based on the DoD results. However,
simultaneously, the spurious stripes along north-to-south (NS) and west-to-east (WE)
directions were observed in the differenced DTM [38], making analysis of the DoD results
challenging. These abnormal elevation changes were concrete evidence of the inherent
errors included in Indiana datasets but have not been resolved due to a time- and labor-
intensive process using flight trajectory files that have not been distributed to the public.

The striped elevation changes throughout Indiana’s statewide differencing results
were likely incurred primarily by inconsistent positioning errors of the flight paths, partic-
ularly those of the 2011–2013 dataset [24]. Therefore, correcting the dissimilar 2011–2013
positioning errors can significantly reduce the problematic elevation changes in the DoD
result. An ICP-based method has been applied to mitigate relative positioning errors
between adjacent flight paths [39]. However, due to its iterative process, the ICP method
is inefficient for the massive Indiana dataset. In addition, the ground points within the
overlap areas of the 2011–2013 flight paths have not been defined in the provided LAS files.
Ground point classification in the overlap areas is thus required prior to implementing the
ICP-based method, which is also time-consuming.

The positioning errors can be divided into vertical and horizontal errors, which are
assuredly included in the dataset. However, the vertical errors are likely more severe than
the horizontal errors throughout Indiana’s DoD results. Unlike vertical errors, horizontal
errors do not induce errors in the height values over plains. Contrarily, they bring out the
remarkable artificial errors in slopes. Figure 1 shows examples of the county-level DoD
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results between the 2011–2013 and the 2016–2020 DTMs provided publicly as basic lidar
products. Most of the remarkable artificial elevation changes in Figure 1 appear as long,
broad stripes irrespective of the terrain slopes. Consequentially, it can be inferred that
the vertical errors mainly pose difficulties in accurately analyzing the DoD results. In this
respect, this paper developed a novel and practical solution for the vertical positioning
errors of the 2011–2013 datasets to improve the quality of their differencing results.
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Figure 1. Examples of the county-level digital elevation model (DEM) of difference (DoD) results
by subtracting the 2011–2013 digital terrain models (DTMs) from the resampled 2016–2020 DTMs.
DTMs provided by data vendors were used in the DoD process. The exact location of each county
is presented in Figure 5. The black lines and the black areas indicate the counties’ boundaries and
the water bodies, respectively. The red lines in Brown, Carroll, and Tippecanoe Counties represent
the traces for the profiles in Figure 8. The red boxes in Brown and Monroe Counties represent the
locations of the example tiles in Figure 9.

3. Methodology

The proposed scalable method estimates the erroneous displacements mainly induced
by dissimilar vertical positioning errors along the flight paths by comparing bi-temporal
DTMs provided as source products of Indiana lidar datasets rather than time-intensive
point cloud adjustment. The estimated displacement values were then utilized to adjust
the 2011–2013 flight paths. Using the existing DTMs only, we developed a simple but
efficient and practical method to alleviate the problematic errors in large-scale Indiana DoD
results with a high degree of automation. The proposed method consists of three main
steps: (1) extracting additional information for effective comparison of bi-temporal DTMs,
(2) estimating the erroneous displacements between the 2011–2013 and the 2016–2020



Remote Sens. 2023, 15, 4289 6 of 23

DTMs, and (3) generating improved differencing results by adjusting the 2011–2013 DTMs,
as shown in Figure 2.
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This paper used the 2016–2020 DTMs as references, and the 2011–2013 DTMs were
aligned with them. The advances in lidar systems have increased lidar position accu-
racy [40], and it was reported that the 3DEP products’ vertical accuracy have consistently
increased [30]. As a result, the 2011–2013 dataset has lower vertical accuracy than the
2016–2020 dataset, and its vertical positioning errors can be reduced once aligned with the
2016–2020 dataset. Furthermore, the height values of the bi-temporal DTMs are mostly
identical if there is no vertical positioning error. The Earth’s surface rarely changes evenly
over a specific and broad area, especially like the striped areas of the individual 2011–2013
flight paths. Accordingly, the proposed method in this paper compared the height values
of the bi-temporal DTMs using pairs of the 2011–2013 flight paths and their corresponding
2016–2020 paths, which were spatially overlapped, to examine whether they have certain
artificial displacements. If the displacements were detected, they were regarded as induced
by the vertical errors of the 2011–2013 flight path, and the proposed algorithm described in
the following section alleviated them from the 2011–2013 DTMs. For brevity, the ‘target’
and the ‘reference’ datasets refer to the 2011–2013 and the 2016–2020 datasets for the rest of
this paper. The entire process described in the following sections, except data download,
was implemented using various packages with Python programming languages, such as
the Geospatial Data Abstraction Library (GDAL), laspy, OpenCV, pyproj, and SciPy.

3.1. Extracting Additional Information

Because we observed a systematic striping pattern from the original DTM differenc-
ing results, we hypothesized that the striping pattern originated from issues within the
individual flying strips. For this reason, we extracted additional information to effectively
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compare the height values from the target (2011–2013) and the reference (2016–2020) DTMs
in this paper. Two different types of information were extracted from other data except for
the DTMs prior to the following comparison step. One was water masks to mask out the
water bodies, as lidar measurements are less reliable than ones over the ground. Hence,
DTM values over the water body might show significant elevation differences between the
two DTMs. The other was the boundary information of each flight path composing Indiana
statewide datasets. The flight path boundary information would help independently adjust
the vertical displacements of flight strips.

3.1.1. Water Mask

By the nature of the Earth’s surface, the values of the bi-temporal DTMs should be
similar on a macroscale throughout the individual counties. However, some regions, like
water bodies, unavoidably show significant and distinct differences between the target and
the reference DTMs. As the area of the water bodies accounted for a considerable proportion
of the entirety of Indiana, the water bodies could severely disrupt the comparison of the
bi-temporal DTMs. Therefore, the water bodies, such as lakes, ponds, streams, and rivers,
needed to be masked out during the comparison.

The water mask in each county was generated using National Hydrography Dataset
Plus High Resolution (NHDPlus HR) available to the public [41]. NHDPlus HR provides
valuable information on the U.S. inland waters with diverse feature classes [42]. Two
classes related to the water surface, NHDArea and NHDWaterbody, were used to determine
the water surface. Most NHDPlus HR products have been published on different dates
according to hydrologic second-level units (or Hydrologic Unit (HU)-4 Subregion) with a
scale of 1:24,000 or better. Entirety of Indiana comprised eight different HU-4 Subregions, of
which the products were published in 2019 and 2020. The eight products were downloaded
via USGS national map download v2.0 [41]. Indiana statewide water masks were generated
by merging the two feature classes of the eight downloaded NHDPlus HR products and
dividing them into the same tiles of the DTMs.

3.1.2. Flight Path Boundary Information

Because the bi-temporal datasets were compared using the flight path pairs, the
spatial boundaries of the individual flight paths needed to be defined. Unfortunately, the
flight path boundary has not been published as a separate product. However, instead,
information about the flight paths was obtainable from the LAS files because the flight paths
of both datasets were indexed by number, and the numbers were stored as point_source_id
in the LAS files. The LAS files provide various information on individual points with their
precise 3D coordinates, unlike the DTMs based on two-dimensional (2D) image coordinates.
Therefore, the following procedure was required to define the flight path boundary by
aggregating the individual multiple points’ point_source_ids of the LAS file with the DTM’s
pixels.

A tiled LAS file was first imported as input data. While the imported LAS file contained
numerous points from various objects, only points reflected from the ground were used
to define flight path boundaries in this paper. The ground points were thus extracted
based on the class information in the LAS file produced by data vendors before 3DEP data
publishing. Then, an empty flight boundary data file was created as an output raster file
with the same coordinate system of the tiled target DTM (1.524 m spatial resolution and
1000 pixels by 1000 pixels size), which corresponded to the imported LAS file. The output
file’s pixel values were determined using the point_source_id (index flight path number) of
the LAS file’s ground points located within individual pixels. The corresponding ground
points for each pixel were identified by converting their horizontal 2D coordinates, x and y,
into the 2D image coordinates (i.e., pixel locations), m and n, of the output file.

During this procedure, the pixels on the water bodies were assigned an invalid value
using the water masks generated in the previous step. When two different flight paths
occupied one pixel because of the side overlap, the most frequent index number of the
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existing points was assigned as the index number. Contrarily, when there was a pixel with
no assigned point_source_id, the nearest neighboring pixel’s ID was assigned as the index
number.

3.2. Estimating Erroneous Displacements of Target (2011–2013) DTMs
3.2.1. Gathering Height Values

Indiana’s lidar data were collected with numerous flight paths during both periods,
and a single flight path covered large areas across multiple separate tiles. Therefore, the
height values according to each flight path pair had to be gathered first from the multiple
different tiles and then compared. Figure 3 depicts the gathering process used in this paper.
Once a tiled input dataset (DTMs and flight path boundaries of two periods) was imported,
the flight path pairs within the tile were defined using the flight path boundary data. For
example, as illustrated in Figure 3, if there were two paths in the target data (#8–9) and
three paths in the reference data (#20–22) in a tile, the four flight pairs, of which flight paths
were overlapping, could be defined within the tile. These pairs were indexed as Pair (Target
id, Reference id), like Pairs (#8, #20), (#8, #21), (#9, #21), and (#9, #22). According to each
indexed pair, the height values of the valid pixels (i.e., non-water pixels) in target DTM and
a resampled reference DTM were individually extracted and reshaped as a two-row matrix
like the right of Figure 3. During the gathering process, the reference DTM was resampled
using bilinear interpolation because its spatial resolution was half that of the target DTM.
All the tiled DTMs in each Indiana county were sequentially processed in the same manner,
and the rearranged height values from the different tiles were accumulated according to
their flight path pair.
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3.2.2. Histogram-Based Comparison

The long and wide spurious stripes in the original DoD results, as shown in Figure 1,
revealed constant offsets between the target and the reference DTMs caused by vertical
positioning errors. The offsets between the bi-temporal DTM values were estimated using
the gathered height values according to the flight path pairs indexed in the previous
process. In this paper, the target and the reference values were compared through their
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histograms to estimate offsets rather than compared pixel-by-pixel considering inevitable
noises in the DTMs [43–45]. A histogram is a simple and effective way to describe data and
has been used for many applications, including comparing multiple data, like in change
detection [46] or image registration [47,48].

Figure 4 illustrates the histogram-based comparison implemented in this paper. As
the area of the single flight path pair is extensive, the area where the terrain has changed
generally is not broad enough to affect a histogram at a macroscale. Thus, the two his-
tograms from the bi-temporal height values within one flight path pair are expected to be
similar but have a displacement in the elevation domain induced by a constant offset due
to vertical errors, as depicted with a red solid line and a black solid line in Figure 4a. To
estimate this offset, the target histogram was gradually shifted by adding increasing values
from −1 m to 1 m with a fixed interval of about 0.015 m (0.05 ft) to their height values, like
the red histogram’s movement from left to right in Figure 4a. The similarity between the
shifted target histogram and the reference histogram was calculated at every movement.
When the target histograms shifted as the same offset amount, the two histograms would
almost correspond, and their similarity would become the maximum value. Hence, the
offset between the bi-temporal histograms could finally be determined as the shift with the
maximum similarity (Figure 4b).
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Figure 4. Histogram-based comparison of the height values to estimate offsets between the target
(2011–2013) and the reference (2016–2020) DTMs according to flight path pairs: (a) their two his-
tograms, (b) an example of calculated similarity as the target values shift. The histograms with a red
and a black solid line in (a) represent the histograms of the height values gathered from the target
DTMs and the reference DTMs, respectively. The histogram with red dotted lines in (a) indicates the
shifts of the target histogram as gradually increasing its height values.

Numerous similarity measures exist between two histograms [49], each with ad-
vantages or disadvantages. Choosing the most appropriate measures for the compared
histograms’ properties is thus essential; however, the properties of the histograms (such as
their shapes) from the numerous flight path pairs over a large area are diverse depending
on land covers or terrain slopes. Accordingly, we utilized five representative similarity
measures between two histograms and aggregated the offsets individually determined
with the five measures. The selected five measures were correlation d1, intersection d2 [50],
Bhattacharyya distance d3 [51], chi-squared distance d4, and Kolmogorov–Smirnov (KS)-test
d5 as follows:

d1 =
n[∑n

i=1 h1(i)h2(i)]−∑n
i=1 h1(i)∑n

i=1 h2(i)√[
n∑n

i=1 h2
1(i)− (∑n

i=1 h1(i))
2
][

n∑n
i=1 h2

2(i)− (∑n
i=1 h2(i))

2
] , (1)
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d2 =
∑n−1

i=0 min[h1(i), h2(i)]

∑n−1
i=0 h2(i)

, (2)

(d3)
2 = 1−∑n

i=1

√
h1(i) h2(i), (3)

(d4)
2 =

1
2∑n

i=1
[h1(i)− h2(i)]

2

h1(i) + h2(i)
, (4)

d5 = max|g1(i)− g2(i)| (5)

where h1 and h2 indicate the two relative frequencies in bin i of the target and the reference
elevation values, respectively. g1 and g2 are the cumulative relative frequencies of the two
values. The number of bins for the histograms is n. In this paper, the two histograms were
generated using the common bins, of which the entire range was between the minimum
and the maximum of all the compared values, and the width was 0.15 m (0.5 ft), which was
ten times the interval used for shifting the target values.

Correlation d1 presents a linear relationship between two data and ranges from −1
to 1. Intersection d2 calculates an overlapped rate between two histograms and ranges
between 0 and 1. Since both methods quantify the similarity between two histograms,
the two histograms correspond most when the calculated intersection value is closest
to 1. On the contrary, the other three methods (Bhattacharyya distance d3, chi-squared
distance d4, and KS test d5) measure the dissimilarity between two histograms, and the low
calculated values indicate that the two histograms are similar. Bhattacharyya distance d3
ranging from 0 to 1 is related to the amount of overlap between two data, like intersection.
Chi-square distance d4 and KS test d5 come from the statistics comparing the observed and
the expected distributions. Chi-square distance ranges from 0 to infinity and considers
the differences between small bins more important than large bins [52], as the differences
are divided by the summed frequencies according to Equation (4). KS test distance is a
standard nonparametric statistical test [53], ranging from 0 to 1. Accordingly, we first
extracted five individual shifts with the maximum values for correlation and intersection
then with the minimum values for the other measures as the offset candidates of each flight
path pair. Afterward, the final offset for each pair was determined as the majority (i.e.,
mode) of the extracted five shifts.

3.3. Generating Improved Differencing Results

The estimated offsets for the flight path pairs were regarded as induced by the vertical
errors of the target (2011–2013) flight paths and adjusted in this paper. All target DTMs
with their corresponding flight path boundary data were subsequently loaded, and the
adjusted target DTMs were generated by subtracting the estimated offsets from the loaded
DTMs according to each flight path pair boundary.

DoD is a straightforward method compared to other lidar differencing methods once
rasterized elevation products are generated from the lidar [54]. Since Indiana’s target
and reference DTMs were divided into common tiles, DoD was simply implemented by
subtracting the heights of the adjusted target DTMs, zadj

tar , from the corresponding reference
DTMs, zres

re f , which were resampled as conducted in the previous comparison step:

zdi f = zres
re f − zadj

tar (6)

The elevation difference zdi f presents the terrain changes between the two periods
with reduced erroneous displacements according to vertical positioning errors. The final
differencing results were generated by merging all the tiled DoD results within each Indiana
county.
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4. Experimental Results
4.1. Study Sites

As Indiana’s statewide lidar products were collected and provided by counties, the
proposed method was implemented on a county scale, and we assessed its feasibility and
effectiveness based on the generated DoD results. A total of 8 out of 92 Indiana counties
were selected as the experimental sites, representing different levels and appearances
of the errors in the original DoD results (which were generated using the as-provided
DTMs), as shown in Figure 1: Boone, Brown, Carroll, Decatur, Kosciusko, Monroe, Starke,
and Tippecanoe. The lidar products of the eight counties were downloaded through
the Integrated Digital Forestry Initiative at Purdue website [36]. The constant abnormal
changes in the original DoD results clearly appear along the 2011–2013 flight paths over
the selected counties. Most errors seem within the expected range of ±0.3 m based on
the RMSEz values announced by the IGIC [7]. Regardless of the severity of the errors, the
existence of inherent errors is manifested over the counties, which disrupts a macroscale
topographic change analysis. The selected counties’ detailed specifications and locations
are presented in Table 1 and Figure 5, respectively. The proposed method processed 4076
tiled datasets (bi-temporal DTMs and flight boundary data with water masks), and the
height values from 6178 flight path pairs were gathered and compared throughout the
8377 km2 study sites, which are sufficient for evaluating the proposed method’s scalability
(i.e., feasibility and effectiveness) for a large-scale 3DEP dataset.

Table 1. Specification of selected counties.

County
The Number

of Tiles
Area
(km2)

The Number of
Flight Path Pairs

Acquisition Months

2011–2013 2016–2020

Boone 520 808.1 1057 2011/03, 2011/04, 2011/09 2018/03, 2018/04
Brown 414 1147.1 183 2011/03 2017/03, 2017/04, 2018/03
Carroll 450 964.0 799 2011/03, 2011/04 2018/03, 2018/04
Decatur 469 965.0 956 2012/03, 2012/04, 2012/12 2017/03, 2017/04, 2018/03

Kosciusko 651 1376.3 342 2011/03, 2011/04, 2012/03 2017/03, 2017/04

Monroe 525 1021.8 2241 2011/03, 2011/09 2017/04, 2018/03,
2018/04, 2018/12, 2019/03

Starke 399 800.6 316 2011/03, 2011/04 2018/03, 2018/04
Tippecanoe 648 1294.5 284 2013/03, 2013/04 2018/03, 2018/04

Total 4076 8377.4 6178 - -
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4.2. Effectiveness of Proposed Method

This paper developed a new method to reduce the artificial displacements along
the flight paths observed throughout the differencing results. However, the appropriate
reference data, which enabled quantifying the individual flight path’s accuracy over Indi-
ana, was absent. As an alternative, the proposed method’s results, (1) the displacements
estimated with the histogram-based comparison and (2) the adjusted DoD results, were
compared with the original DoD results in Figure 1.

4.2.1. Estimated Displacements by Vertical Positioning Errors

The original DoD results in Figure 1 revealed the existence of the inherent vertical
errors in the Indiana datasets, but the severity of the errors could not be quantitatively
measured. In this respect, we investigated whether the estimated displacements from the
proposed histogram-based comparison could quantitively represent the errors displayed in
Figure 1. Table 2 summarizes the range of each county’s estimated displacements based on
its 5 and 95 percentile values. The county-level estimated displacements range between
−0.345 m and 0.147 m. Specifically, 39.0% of the eight counties’ total flight path pairs were
determined to include minimal displacements with absolute values of less than 0.025 m
according to Figure 6a, which is the relative frequency histogram of the entire flight path
pairs’ estimated displacements. The additional 57.8% of pairs contained absolute vertical
displacements less than 0.15 m. These estimated values agreed with the expected range
based on the RMSEz announced by the IGIC [35] as well as the visually observed ranges
based on the original DoD results in Figure 1.

Table 2. The estimated displacement ranges based on the 5 and 95 percentiles. The minimum and
maximum values are bold (unit: meter).

County Boone Brown Carroll Decatur

5th −0.131 −0.345 −0.101 −0.131

95th 0.006 0.052 0.143 0.021

County Kosciusko Monroe Starke Tippecanoe

5th −0.070 −0.162 −0.040 −0.147

95th 0.143 0.006 0.147 0.021
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The estimated errors of each county are also demonstrated to be consistent with
the problematic elevation changes found in the original DoD results (Figure 1). The
relative frequency histograms of each county’s estimated displacements are presented
in Figure 6b,c. For instance, according to Boone County’s histogram in Figure 6b, over
70% of the displacements were estimated between −0.10 and −0.05 m. These estimations
were considered reasonable compared to Boone County’s original DoD results, doubtfully
indicating that the terrain commonly increased throughout the county. Similarly, the
displacements of the other counties, where the elevations appeared generally and evenly
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increasing or decreasing in their DoD results, seemed as adequately estimated by the
proposed method according to their histograms.

One noteworthy county is Brown County, which had the most severe errors in the
original differencing results among the eight counties, as demonstrated in Figure 1. The
more significant number of Brown County’s flight path pairs had displacements around
−0.3 m (Figure 6b), which appeared as the distinct blue regions in Figure 1, compared
to those of other counties. Furthermore, its histogram is demonstrated to consist of two
distinguished distributions concentrated around −0.3 m and 0 m, which could also be
visually identified in the original DoD results. In contrast, Tippecanoe County was pre-
sented to have the least errors according to the DoD results (Figure 1) and the estimated
displacements by the proposed method. Figure 6c exhibits that a large number (72.9%) of
Tippecanoe County’s flight path pairs have minimal displacements with absolute values of
less than 0.025 m. Such consistency in the estimated displacements’ ranges (Table 1) and dis-
tributions (Figure 6) with the visual inspection results of the original DoD results (Figure 1)
demonstrates that the proposed histogram-based comparison could quantitatively measure
the vertical-error-induced displacements in the DoD results. Consequentially, it can be
expected that the problematic striped errors will be reduced significantly in the differencing
results presented in the following section by adjusting these properly estimated erroneous
displacements.

4.2.2. Improved County-Level DoD Results

• Comparison on a county-level scale

The target (2011–2013) DTMs were adjusted using the estimated displacements, and
the adjusted DoD results were finally generated. Figure 7 presents the thumbnail images
of the adjusted county-level DoD results. The results demonstrate a higher consistency
throughout the counties with fewer abnormal striped changes than the original DoD results
in Figure 1. Even though the vertical error within each flight path pair was modeled as
one constant value (i.e., offset) in this paper, the DoD results in Figure 7 reveal that the
proposed method is effective overall in the eight counties regardless of the errors’ severities
or patterns.

To quantitatively compare the original and the adjusted county-level DoD results,
we calculated and compared the median values of the individual 2011–2013 flight paths
for both DoD results. A common 2011–2013 flight path area is a stripe of several tens of
kilometers by more than 1 km, including up to twenty million pixels of the DoD results.
Even though the terrain heights changed within several regions during the data collection
periods, the changes likely randomly occurred over small areas, and thus the terrain
height could be regarded as stable overall in this massive flight path area. As a result, the
calculated medians of the DoD values within each 2011–2013 flight path should be near
zero unless there are systematic vertical errors within the paths, and we can measure the
level of abnormal elevation changes in the DoD results by analyzing the median values.
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Figure 8. The red boxes in Brown and Monroe Counties represent the locations of the example tiles in
Figure 9.

The calculated medians within each county were analyzed using their absolute mean
and standard deviations, as summarized in Table 3. It is noticed that the absolute means
and the level of the abnormal elevation changes are related by comparing the absolute
means in Table 3 and the county-level DoD results in Figures 1 and 7; as the absolute
mean value increased, the more abnormal changes were observed in the DoD results. For
example, Carroll County, with the lowest absolute mean (0.0023 m) among the values in
Table 3, appeared as the adjusted DoD result with the least abnormal elevation changes
in Figure 7. Boone and Decatur Counties, which have similar absolute mean values to
that of Carroll County, also present comparably fewer abnormal elevation changes in their
adjusted DoD results. In contrast, the counties with high levels of systematic errors in their
adjusted DoD results (Figure 7), such as Brown and Monroe Counties, show about ten times
higher absolute mean values of 0.0240 m and 0.0210 m (Table 3), respectively, than that of
Carroll County. As a result, based on this relationship, we can quantitatively assess the
proposed method’s effectiveness by calculating a relative decrease in the absolute means
between the original and adjusted DoD results. Equation (7) shows an improvement ratio
R used to measure the relative decrease in this paper.

R = (m1 −m2)
/

m1
× 100 (7)

where m1 and m2 are the absolute means of the original and the adjusted DoD medians,
respectively.
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Table 3. Statistical comparison of the original and improved DoD medians of individual 2011–2013
flight paths: the absolute means (Mean), the standard deviations (STD), and the improvement ratios
(R). Original and adjusted mean of the original and the adjusted DoD results, respectively.

County Boone Brown Carroll Decatur

DoD Original Adjusted Original Adjusted Original Adjusted Original Adjusted

Mean m 0.0629 0.0025 0.1701 0.0200 0.0546 0.0023 0.0562 0.0026

R % - 96.0 - 88.3 - 95.9 - 95.5

STD m 0.0336 0.0030 0.1462 0.0240 0.0680 0.0031 0.0424 0.0037

County Kosciusko Monroe Starke Tippecanoe

DoD Original Adjusted Original Adjusted Original Adjusted Original Adjusted

Mean m 0.0441 0.0195 0.0740 0.0210 0.0624 0.0084 0.0175 0.0065

R % - 55.7 - 71.6 - 86.5 - 62.8

STD m 0.0618 0.0223 0.0545 0.0343 0.0499 0.0117 0.0170 0.0108

The R values in Table 3 illustrate the effectiveness of the proposed method in this paper
to reduce the abnormal elevation changes in the original DoD results. The high R values of
more than 50% in Table 3 illustrate that the medians of the DoD values within the individual
flight paths became close to zero as the proposed method mitigated the possible abnormal
elevation changes. In addition, the decrease in the standard deviation of the median values
in the adjusted DoD results for each county (Table 3) can be interpreted as the consistency
between the adjacent flight paths increasing, as visually identified in Figure 7. Meanwhile,
the different R values of the eight counties imply that the proposed method was inevitably
affected by inherent problems in the large datasets, such as irregularly overlapped areas
of the 2011–2013 and the 2016–2020 flight paths, errors in the water masks induced by the
temporal differences between the NHDPlus HR datasets and bi-temporal Indiana datasets,
and errors in the point_source_id of the provided LAS files. Nevertheless, the decreases in
their absolute means and standard deviations in Table 3 quantitatively present the proposed
method’s effects in reducing the errors along the flight paths observed in the original DoD
results, as shown in Figure 7.

• Detailed comparison with examples

For further investigation of the improvements due to the proposed method, the original
and the adjusted DoD results were compared based on their profiles (or cross-sections).
The profiles of the representative three counties’ DoD results were extracted, as shown in
Figure 8. Brown, Carroll, and Tippecanoe Counties were selected as the representatives
for the large errors, the moderate errors, and the small errors, respectively, considering
the diversity of the error levels and patterns. The locations of the profiles were randomly
selected, and their directions were determined perpendicular to the 2011–2013 flight paths.
Due to the inherent random noises of the DTMs, the profile values were extracted by
averaging 10 pixels by 10 pixels (i.e., 15.24 m or 50 ft).
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(c) Tippecanoe County in the WE direction. The trace for each profile is presented as red lines in
Figures 1 and 7. The profiles were extracted based on the average values of every 10 pixels by
10 pixels (i.e., 15.24 m or 50 ft) area. The black and red lines indicate the values of the original and
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adjacent 2011–2013 flight paths, and the grey lines present theoretically ideal elevation changes at the
macroscale (i.e., where the DoD value is 0). Some conspicuous values were actual elevation changes
or the water bodies, which are not removed with NHDPlus HR.

The profiles again revealed that the proposed method reduced the abnormal elevation
changes due to the inherent vertical errors along the flight paths. The original DoD results’
profiles (the black lines in Figure 8) illustrate the two typical problematic elevation changes
visually identified in Figure 1. One is the consistently positive or negative average DoD
values throughout the multiple flight paths presented over several kilometers across the
flight paths in Brown and Carroll Counties’ profiles (Figure 8a,b). The most obvious
identified erroneous changes are observed in the western and eastern regions of Brown
County, and their widths are about 8 km. The other problematic change is a discontinuity
between adjacent flight paths, such as sudden dramatic rises or falls between the adjacent
flight paths, as seen in Figure 8a. Such problems possibly result in misinterpretation of the
actual county-level topography changes.

These problems were mitigated in the adjusted DoD results, as demonstrated with
the red profiles in Figure 8. As the vertical erroneous displacements decreased with the
proposed method, the profiles along several tens of kilometers were aligned to 0 m, which
were considered reasonable elevation changes on a macroscale. In addition, the profiles
became more consistent along the WE or NS directions across the flight paths. Simultane-
ously, it was found that the variations of the elevation changes within the individual flight
paths were unaffected by the proposed method. This indicates that meaningful elevation
changes can still be easily observed in the adjusted DoD results.

The findings from the profiles are also observed in the tile-size DoD results (1524 m
by 1524 m), as shown in the examples in Figure 9. Figure 9a shows the unrealistic ele-
vation changes, as the entire area had evenly risen over 0.3 m between 2011–2013 and
2016–2020. Figure 9c illustrates a distinct artificial line in the middle of the tile induced by
the discontinuity between the adjacent flight paths. Through the examples, it is predictable
that such problematic changes in the original DoD results will bring an inaccurate terrain
change analysis. The proposed method alleviated these abnormal changes, and thus more
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reasonable DoD results were created, as shown in Figure 9b,d. Furthermore, the detailed
elevation changes in the overall areas are maintained in the adjusted DoD results. Therefore,
the meaningful elevation changes in Figure 9d are expected to be analyzed more accurately
as having less discrepancy between the adjacent flight paths.
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Figure 9. Examples of the tile-size DoD results. (a,c): the original tiled DoD results. (b,d): the
adjusted tiled DoD results. (a,b) are mountainous areas in Brown County, and (c,d) are near a quarry
in Monroe County. The exact locations are marked as red boxes in Figures 1 and 7.

To complement the missing appropriate reference data for assessment, we comprehen-
sively compared the original and our adjusted DoD results using the flight path median
values, the county-level profiles, and the tile-level examples. Through three different as-
sessments, it was consistently demonstrated that the proposed method could considerably
reduce the apparent problems in the original lidar differencing results, and the adjusted
differencing results generated in this paper could provide more reasonable information
about the elevation changes in eight county-level study sites. Given that its effectiveness
was validated over large 8377 km2 study sites composed of 6178 flight path pairs (Table 1),
the proposed method is expected to be scalable as well as universally applicable for various
levels and patterns of errors over different land covers. Furthermore, the proposed method
can be implemented automatically once additional data regarding the water bodies is pre-
pared, which is often available to the public [55,56], including the NHDPlus HR. Although
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few parameters were required for histogram-based comparison, the advanced quality
differencing results were generated without changing them throughout the experiments
in this study. Consequentially, we expect the proposed method to be a feasible solution to
mitigate the apparent errors in multitemporal lidar datasets expectedly collected given the
recent active government-driven lidar data acquisition without a time-intensive process.

4.3. Remaining Horizontal Positioning Errors

Although the proposed method was effective against critical vertical positioning errors,
minor abnormal changes caused by the other error sources inevitably remained. One
representative remaining error source is the horizontal positioning error. The horizontal
error does not cause an apparent problem in plains. Still, it may become a problem in slopes
because terrain aspects and slopes determine the sign and magnitude of the abnormal
changes caused by horizontal errors. Figure 9b demonstrates the inherent horizontal errors
over a mountainous area of Brown County. The opposite elevation differences in the
opposite aspect, as shown in Figure 9b, are the visual evidence of the horizontal positioning
errors in the dataset. In this respect, the counties with steep hills or mountains, such as
Brown and Monroe Counties, have prominent remaining abnormal elevation changes in
the adjusted DoD results (Figure 7) compared to the other relatively plain counties.

It would be ideal that the horizontal errors could also be reduced with simple imple-
mentation. However, it seems nearly impossible to adjust the horizontal errors using the
provided DTM, like the proposed method in this paper, because the horizontal errors in
Indiana datasets are predicted to be less than the provided DTM’s spatial resolution of
1.524 m (5 ft). Precise processing of low-level point cloud data, like a conventional method
appropriate for a microscale, is inevitably required to achieve an accurate terrain change
analysis over the mountain areas. Therefore, solving the horizontal errors is out of the
scope of this study, which was developing a feasible method for a massive lidar dataset,
and we would like to handle this problem in a future study.

5. Conclusions

Considering the previous methods’ practical limitations, this paper has presented a
scalable method to mitigate the spurious elevation changes in large-scale multitemporal
lidar differencing results. The proposed method focused on resolving critical vertical posi-
tioning errors by comparing bi-temporal DTMs readily provided as basic lidar products. By
using the existing DTMs, implementing the proposed method became simple and feasible
for a massive lidar dataset. The proposed method was applied to reduce the reported but
unsolved abnormal changes in the DoD results of massive Indiana multitemporal 3DEP
datasets [24]. The improved county-level DoD results from the proposed method were
comprehensively compared with the original DoD results on macro- and microscales to
complement the absent reference data. The proposed method’s effectiveness was demon-
strated as (1) significantly reducing the vertical-error-induced abnormal elevation changes,
(2) improving the consistency across the flight paths, and (3) simultaneously preserving
details of the actual elevation changes within the individual flight paths. The remaining
horizontal-induced displacements in the DoD results, which are out of the scope of this
study, will be handled in a future study. The proposed method can be automatically imple-
mented and universally applied with easily accessible water body information. Moreover,
the improved Indiana lidar topographic differencing results produced in this paper are
expected to facilitate more accurate and efficient downstream applications. Given the
continuously increasing amount of high-quality lidar data, the proposed method can be a
practical solution against the apparent errors in lidar differencing results that disturb the
accurate and systematic analysis of macroscale elevation changes.
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