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Abstract: Due to the lower canopy height at the maximum crown width at the bottom of young Picea
crassifolia trees, they are mixed with undergrowth. This makes it challenging to accurately determine
crown size using CHM data or point cloud data. UAV imagery, on the other hand, incorporates rich
color information and, after processing, can effectively distinguish between spruce trees and ground
vegetation. In this study, the experimental site was an artificial young forest of Picea crassifolia in
Shangshan Village, Qinghai Province, China. UAV images were used to obtain normalized saturation
data for the sample plots. A marker-controlled watershed segmentation algorithm was employed to
extract tree parameters, and the results were compared with those obtained via point cloud clustering
segmentation and the marker-controlled watershed segmentation algorithm based on Canopy Height
Model (CHM) images. The research results showed that the single tree recognition capabilities of the
three types of data were similar, with F-measures of 0.96, 0.95, and 0.987 for the CHM image, UAV
imagery, and point cloud data, respectively. The mean square errors of crown width information
extracted from the UAV imagery using the marker-controlled watershed segmentation algorithm were
0.043, 0.125, and 0.046 for the three sample plots, which were better than the values of 0.103, 0.182, and
0.074 obtained from CHM data, as well as the values of 0.36, 0.461, and 0.4 obtained from the point
cloud data. The point cloud data exhibited better fitting results for tree height extraction compared
to the CHM images. This result indicates that UAV-acquired optical imagery has applicability in
extracting individual tree feature parameters and can compensate for the deficiencies of CHM and
point cloud data.

Keywords: UAV image; LiDAR; CHM; tree feature parameters; artificial young forests

1. Introduction

Forest ecosystems have a prominent position in the global carbon cycle, and artificial
young forests, as a type of forest ecosystem, are important terrestrial carbon sinks in
carbon-neutral systems [1–4]. By measuring individual tree feature parameters, forest
biomass and carbon content can be estimated [5]. These parameters also serve as the
foundation for forestry carbon sinks and can be used to determine carbon offset quotas
in forest carbon trading. Typically, measurement methods for forest carbon sink projects
include biomass estimation [6], forest stock estimation [7], and carbon emission estimation
algorithms [8]. Among these methods, biomass estimation algorithms provide the most
accurate forest carbon estimates due to their use of precise data [9,10]. Additionally, remote
sensing techniques, with their timeliness and large-scale synchronous observations, can
periodically obtain individual tree feature parameters, replacing inefficient manual surveys,
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reflecting the cumulative carbon storage in artificial forests over long periods. Thus, these
methods are well-suited for forestry carbon accounting and trading [11–13].

Mao Chunyan [2] and Zheng Xueting [4] determined the allometric growth equation
of juvenile Qinghai spruce by drying and weighing various parts of the juvenile trees.
Based on their derived equation, it is possible to estimate the biomass of a single tree by
inputting parameters such as crown width, tree height, and ground diameter. Notably,
Zheng Xueting and colleagues proposed an allometric growth equation that only requires
crown width and tree height. This equation effectively addresses the challenge of remote
sensing techniques in obtaining tree ground diameters.

Currently, there are two commonly used approaches for individual tree segmentation
based on LiDAR point cloud data containing forest tree information [14,15]. The first
approach involves generating a CHM from the LiDAR point cloud data. This approach is
based on the fact that tree tops are represented as local maxima, forming local high values
in the point cloud data. By using a fixed or variable window, local maxima can be searched
in the image to determine the positions of individual trees. Then, tree outlines can be
delineated based on tree image features to obtain tree feature information [16–18]. The
second approach directly performs clustering analysis on the point cloud data, segmenting
individual trees based on their spatial distribution characteristics to extract tree feature
information. Both of these approaches are widely used in tree feature extraction [19].
Previous research has analyzed the applicability of different segmentation algorithms for
these two types of data. Li Pinghao et al. found that in most sample plots, the results
of point cloud clustering segmentation and the watershed segmentation algorithm were
superior to those of the fourth-degree polynomial fitting segmentation method [5]. Yan
et al. proposed an automatic hierarchical individual tree segmentation method based on
point cloud data that clusters the point cloud using the mean shift algorithm and iteratively
segments the point cloud using the NCUT algorithm, achieving an average correctness
of 0.90 [17]. Geng Lin et al. used a marker-controlled watershed segmentation algorithm
to extract the three-dimensional structure of tree crowns and then extracted the effective
crown of the forest stand based on the results [20]. In existing research, it can be observed
that the distance clustering segmentation algorithm based on point cloud data and the
marker-controlled watershed algorithm have robust applicability in forest stands with
different characteristics [21–24]. Ana et al. presented a method for automatically detecting
the positions and broad crown information of individual Eucalyptus trees from point
clouds acquired by a portable LiDAR system. This approach can be widely applied in
mature Eucalyptus stands, enabling accurate estimation of individual tree metrics [25].
Additionally, machine learning has also been applied to individual tree extraction [26].
Given the significance of urban trees for city management, Schmohl et al. [27] introduced
a 3D neural network leveraging airborne laser scanning point clouds to achieve accurate
individual tree detection, outperforming traditional methods and achieving an average
precision of 83% in an urban setting. Windrim et al. focused on isolating single trees,
identifying stem points, and constructing a segmented model of the primary tree trunk that
encompasses both tree height and diameter. Their methodology involved a sequence of
deep learning stages, beginning with ground characterization and removal, followed by
individual tree delineation, and concluding with the segmentation of tree points into stem
and foliage components [28]. A comprehensive approach combining airborne LiDAR and
hyperspectral data was proposed by Man et al. for accurate urban vegetation extraction
at both two-dimensional and three-dimensional levels, demonstrating high accuracy in
classification and individual tree delineation, offering valuable insights for urban vegetation
management and spatial planning [29]. However, most previous studies focused on tall and
wide-crowned mature forests, and the proposed methods were mostly specific to certain
tree species, lacking research applicability in artificial young forests with low average
heights and small crown widths. Artificial young forests have low carbon storage per unit
area but a large distribution area and great potential for carbon storage. Such forests are
important terrestrial carbon sinks in carbon-neutral systems, and accurately calculating
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the carbon storage of artificial young forests is of great significance for achieving carbon
neutrality goals.

Picea crassifolia crowns have a conical shape, and in young Picea crassifolia forests,
the height of branches beneath the crown is lower than that of the surrounding ground
vegetation. In the point cloud data, the maximum crown widths of the branches and leaves
are mixed with the undergrowth, making them difficult to distinguish. Extracting tree
crown width information using point cloud data and CHM data generated from point
clouds will, therefore, result in significant errors. Consequently, traditional segmentation
methods can struggle to meet the requirements for extracting crown width parameters in
young Picea crassifolia forests in practical applications.

Based on this, the present study attempts to use new data for extracting canopy width
parameters of young Picea crassifolia trees, aiming to address the issue of branch and ground
vegetation mixing at the maximum canopy width of young Picea crassifolia. To achieve this,
the UAV imagery undergoes a normalization saturation processing, followed by single tree
segmentation using the marker-controlled watershed segmentation algorithm to extract
canopy width parameters. To validate the accuracy of this method, both the commonly
used marker-controlled watershed segmentation algorithm for segmenting CHM data and
the point cloud distance clustering-based segmentation algorithm for extracting single tree
feature parameters from point clouds are employed. This comparison aims to assess the
performance of using UAV imagery for canopy width extraction under the influence of
undergrowth. The remaining sections of this paper are structured as follows. Section 2
introduces the study area and the processing workflow of UAV imagery and point cloud
data. In Section 3, a comparison is made between the differences in extracted individual tree
crown width and elevation parameters from different data sources and the measured data.
Section 4 discusses the impact of plot and tree species characteristics on the extraction of
individual tree feature parameters. Finally, Section 5 provides a summary of the conclusions
drawn in this paper and work that could be conducted in the future.

2. Materials and Methods

The present study takes artificial young Picea crassifolia forests around Xining City in
Qinghai Province as the sample. Leveraging the characteristics of UAV imagery, which
provides rich color and texture information and is easy to obtain, this study analyzes the
applicability of UAV imagery in extracting tree parameters in young forests and addresses
the challenges arising from a mixture of tree crowns and undergrowth. To achieve these
goals, this research utilizes UAV optical imagery and applies a marker-controlled watershed
algorithm to segment and extract tree feature parameters from visible light images. The
results are compared with traditional CHM watershed segmentation and point cloud
segmentation results to verify the feasibility of this method in extracting crown width
information in artificial young forests. However, since UAV imagery does not include
vegetation height information, tree height information is extracted and analyzed from
CHM data and LiDAR data.

2.1. Study Area Overview and Data Collection

This study selected artificial young Picea crassifolia forests in the vicinity of Shangshan
Village, Qinghai Province, China (101◦36′~101◦37′E, 37◦05′~37◦06′N), as the experimental
area. The vegetation in the study area is mainly composed of artificially planted Picea
crassifolia. Most of these trees were planted in 2004, but due to natural disasters such as
hail and frost, some young trees died. Replanting was conducted in 2014, and currently,
the average stand density is approximately 2000 trees per hectare. Three sample plots
measuring 30 × 30 m were selected within the study area based on planting time, average
stand density, and the complexity of vegetation within the plots. Sample Plot 1 has more
replanted trees, and its average tree height is the lowest among the three plots. In Sample
Plot 2, both average height and crown width are relatively higher. Some individual tree
crowns at the northeast and southwest corners of the plot are entangled, which may pose
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challenges for extracting tree feature parameters. In Sample Plot 3, there are fewer replanted
trees, resulting in better uniformity. However, in the southwest corner of the plot, there is
an area of approximately 5 × 5 m covered with shrubs, and these shrubs are mixed with
the artificially planted Picea crassifolia. Figure 1 shows the location schematic and overhead
view of the sample plots.
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Figure 1. The location of the research area: (a) The location of the forest used in the study in China;
(b) the location of the three study areas in the forest; (c) top view of Sample Plot 1; (d) top view of
Sample Plot 2; (e) top view of Sample Plot 3.

The data used in this study include field measurements collected from the study area’s
sample plots, LiDAR data used for extracting single tree feature parameters, and UAV
imagery data. To validate the accuracy of the extracted individual tree feature parameters
based on different data sources, this study referred to the primary content, methods, and
technical specifications of plant community inventory proposed by Fang Jingyun [30] and
established field-measured sample plots. The field measurements were conducted in July
2022. Each sample plot within the experimental area was set as a square with an area
of 900 m2. The dominant tree species in the plots was Picea crassifolia, with a few plots
containing wild sea buckthorn and other shrubs. In each plot, the following measurements
were taken: slope and aspect data, measured using a compass. The slope of the sample plots
is used to plan the size of the plots. The length of each side of the sample plots is calculated
based on the cosine values corresponding to different slopes, ensuring that the projected
shape of the plots in the imagery remains a 30× 30 m square. Additionally, the aspect of the
sample plots is used to assist in calibrating the compass level, ensuring the accuracy of the
positioning of the plot vertices. Tree height was measured using a clinometer, crown width
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in the east–west and north–south directions was measured using a steel tape measure,
and tree Diameter at Breast Height (DBH) was measured using a caliper. During the
measurements, the sequence of tree measurements within each plot was recorded, and an
aerial view map was drawn to aid in later data matching. Handheld Real-Time Kinematic
(RTK) [31] measurements were used to record the latitude and longitude information of
the four corners of each plot for geometric correction of the image [32]. Compared to
mature spruce, young Picea crassifolia displays significant differences in various parameters.
To more intuitively reflect this distinction and the planting characteristics of young Picea
crassifolia in artificial forests, statistical data for each feature parameter were calculated. A
statistical summary of the field-measured single tree structural data is shown in Table 1.
The parameters in the table correspond to tree components, as illustrated in Figure 2.

Table 1. Measured data statistics.

Plots Parameters Minimum Maximum Mean Median Standard
Deviation Number

1

DBH/cm * 0.84 3.50 1.74 1.64 0.60

216
DGH/cm ** 1.08 7.95 5.24 5.33 1.14

Tree height/m 0.41 2.85 1.47 1.51 0.48
Crown width/m 0.19 1.92 1.22 1.24 0.30

2

DBH/cm * 1.13 8.27 3.19 3.19 1.08

175
DGH/cm ** 1.48 9.96 6.55 7.08 1.86

Tree height/m 0.48 3.93 2.44 2.62 0.70
Crown width/m 0.36 2.54 1.63 1.71 0.46

3

DBH/cm * 1.26 5.07 2.84 2.75 0.69

232
DGH/cm ** 3.03 10.07 6.64 6.66 1.14

Tree height/m 1.47 3.35 2.42 2.44 0.33
Crown width/m 1.21 2.60 1.66 1.66 0.19

* The diameter of the trunk of a tree at 1.3 m. ** The diameter of the trunk of a tree at the ground.
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Figure 2. Schematic Diagram of Measurement Locations for Picea crassifolia-specific parameters.

The LiDAR data were acquired on 8 August 2022 using a DJI M300 RTK unmanned
aerial vehicle equipped with a DJI L1 LiDAR sensor. Detailed parameters of the L1 LiDAR
sensor are shown in Table 2. The young Picea crassifolia trees are generally small in size,
and to obtain high-precision extraction results, it was necessary to acquire high-density
point cloud data. Additionally, to minimize errors, the data for the three sample plots
were collected in a single aerial survey mission. The data collection took place under
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favorable weather conditions, with a relative flight altitude of 70 m and a flight speed of
approximately 4 m/s. The LiDAR sensor recorded three echoes per pulse, resulting in an
average point density of 1300 points per square meter. Subsequently, the acquired data
were clipped to extract the point cloud data within the study area.

Table 2. Main specifications of L1 LiDAR sensor.

LiDAR

Point Cloud Data Rate Single Return: Up to 240,000 points/s
Multiple Returns: Up to 480,000 points/s

System Accuracy Planar Accuracy: 10 cm @ 50 m
Vertical Accuracy: 5 cm @ 50 m

Range Accuracy 3cm@100m
Maximum Returns 3

FOV * Non-repetitive Scan: 70.4◦ (horizontal) × 77.2◦ (vertical)
Repetitive Scan: 70.4◦ (horizontal) × 4.5◦ (vertical)

Laser Power Repetitive Scan: 9 W
Non-repetitive Scan: 8 W

* Field of view. The UAV imagery data comprising optical images containing three RGB channels were acquired
from 22–29 July 2022 using a DJI Phantom 4 UAV. The flights were conducted at a relative altitude of 60 m. The
imagery sensor had an effective pixel count of 20.48 million, with an image resolution of 5472 × 3648 pixels,
corresponding to a ground resolution of 3 cm.

2.2. Methods

This study utilized LiDAR data and UAV imagery. From the LiDAR data, a Canopy
Height Model (CHM) was extracted. The Marker-controlled Watershed Segmentation
algorithm was then employed to extract tree feature parameters from both the CHM
data and the UAV imagery [5,33]. The point cloud after noise point removal, ground
point separation, and normalization was segmented using the point cloud clustering
segmentation algorithm, and parameters were extracted [34]. The specific workflow is
illustrated in Figure 3. In addition, this study utilized the LiDAR 360 V5.2 software
platform for point cloud data preprocessing, generating CHM data, and segmenting point
cloud and raster data. The UAV imagery was processed using Pix4D and ENVI 5.2. The
visualization of point cloud segmentation results was implemented using the lidR package
in R programming language, and the validation of individual tree feature parameters
extraction results was also performed in R.

2.2.1. Removing Noise Points, Normalization, and CHM Generation of Point Cloud Data

When the LiDAR sensor emits laser pulses and receives echo signals from the target
objects on the ground, the reflections from low-flying objects, such as birds or insects, can
be mistakenly recorded as reflections from the target objects being measured. Additionally,
data points can deviate from the target objects due to flight errors and sensor inaccuracies.
These data points can have an impact on the research results and accuracy. Therefore,
it is necessary to select appropriate parameters and remove noise points to improve the
data quality before conducting experiments. In this study, a spatial distribution-based
algorithm was used to remove noise points from the data. This algorithm calculates the
average distance from each point to its K nearest neighbors by using K nearest neighbor
statistics for each point. Points with an average distance outside the threshold range are
removed. Through multiple experiments, it was determined that the optimal noise removal
in this study was achieved by setting the K nearest neighbor count to 50 and the standard
deviation multiple to 15.
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Figure 3. Flowchart of the methods used in this study. In the figure, RGB represents red, green, and
blue, which is a model that combines colors using three channels of red, green, and blue. HSV is a
model that represents colors using hue, saturation, and value as three components. DSM stands for
Digital Surface Model, which reflects elevation data of objects on the earth’s surface. DTM stands for
Digital Terrain Model and is a vector dataset composed of 3D breaklines and irregularly spaced 3D
mass points.

In this study, the Cloth Simulation Filter (CSF) algorithm [35] was used to filter the
LiDAR data. This algorithm, proposed by Zhang et al., uses a spring-mass model to
simulate a cloth covering the flipped point cloud surface. By adjusting the forces between
the mass points, this algorithm adapts to the varying roughness of the ground surface,
separating the point cloud into ground points and non-ground points. The ground points
are interpolated using Kriging to generate the DTM data, while the non-ground points,
representing objects, retain the first return echoes and are interpolated using Kriging to
obtain the DSM data. The CHM is a surface model that represents the distance from the
vegetation canopy top to the ground surface, capturing the variations in the vegetation
canopy. The calculation formula for CHM is as follows [36]:

CHM = DSM−DTM (1)

where CHM represents the Canopy Height Model, DTM stands for the Digital Terrain
Model, and DSM represents the Digital Surface Model. DTM is a vector dataset composed
of irregularly spaced 3D mass points. In contrast, DSM includes the heights of objects such
as buildings and trees on the ground surface. To mitigate the influence of pseudo-canopy
vertices and ground noise points in the Canopy Height Model, Gaussian filtering was
applied to remove noise and enhance data quality.

Additionally, preprocessed point cloud data contain height information for the under-
lying surface beneath the trees, preventing accurate tree height information from being
obtained during segmentation. Normalization can remove the influence of terrain varia-
tions on the elevation of point cloud data. The principle of this method is to subtract the
elevation of the nearest ground point from the elevation value of each point. This operation
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involves subtracting the point cloud data from the Digital Terrain Model (DTM), resulting
in the extraction of tree height information.

2.2.2. UAV Imagery Processing

After geometric correction and preprocessing to eliminate distortions, the UAV im-
ageries were converted from the RGB color space to the HSV color space [37,38]. In this
process, the R, G, and B attributes first need to be normalized. Then, the values of H (hue),
S (saturation), and V (value) are calculated separately as follows:

V = max
(

R′, G′, B′
)

(2)

S =

{
V−min(R′ ,G′ ,B′)

V , if V 6= 0
0 , else

(3)

H =


60× (G′ − B′)/(V −min(R′, G′, B′)) , if V = R′

120 + 60× (B′ − R′)/(V −min(R′, G′, B′)) , if V = G′

240 + 60× (R′ − G′)/(V −min(R′, G′, B′)) , if V = B′
(4)

where R′, G′, and B′ represent the transformed red, green, and blue channels, while H,
S, and V represent hue, saturation, and value, respectively. Afterward, the obtained
HSV image is processed to obtain the normalized saturation, calculated according to the
following formula:

S′ = S/H (5)

where S′ represents the normalized saturation, S represents saturation, and H represents
hue. In the color space, saturation refers to the purity or intensity of a color, representing
the degree of color intensity relative to gray. Normalized saturation is achieved by mapping
the original color data to the range [0, 1], which standardizes the saturation of different
colors, facilitating comparison and analysis to better understand and describe the intensity
of colors. With the use of normalized saturation, higher values indicate higher purity
and intensity, while lower values indicate lower purity and intensity, allowing for a more
reliable comparison of color purity and intensity between different colors. This process
helps reduce the influence of hue and facilitates a comparison of color purity and intensity.
In this study, due to the significant color differences between spruce trees and undergrowth
in the image, calculating the normalized saturation was able to effectively extract the
outline of spruce tree crowns for individual tree parameter extraction. Finally, the image
was subjected to mean filtering to eliminate the impact of image noise.

2.2.3. Marker-Controlled Watershed Segmentation Algorithm

To explore the accuracy of different data in single tree recognition and the extraction
of tree parameters, this study employed the marker-controlled watershed segmentation
algorithm to process the CHM data and UAV imagery and extract single tree features [39].
The watershed segmentation algorithm is a terrain-based image segmentation algorithm.
The basic concept of this algorithm is to treat the grayscale values of an image as height
values. The connected lines of pixels with higher grayscale values can be considered as
ridges or watershed lines. The local minima and the surrounding regions influenced by
these lines are referred to as catchment basins. The algorithm starts by injecting water
from the local minima and gradually raises the water level. When the water level reaches
a neighboring pixel, the algorithm determines whether to submerge the pixel based on
whether the distance between the pixel and the local minimum is less than a set threshold.
To prevent water from overflowing and merging with neighboring catchment basins,
“dams” can be constructed on the watershed lines. This process continues until the water
level reaches the maximum grayscale value. The resulting dams and original watershed
lines divide the entire image into different regions, achieving image segmentation. An
illustration of the watershed algorithm is shown in Figure 4 [40].
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During the segmentation process using the watershed algorithm, excessive local min-
ima can appear in the image due to noise or interference from other objects on the ground.
This leads to the formation of independent regions, resulting in over-segmentation of the
image. To address this issue, in this study, the image was subjected to Gaussian smoothing
to remove redundant local minima and merge the regions generated by these minima. By
adjusting the Gaussian smoothing factor and the window radius, the optimal segmentation
result was obtained, minimizing the impact of over-segmentation in the image.

2.2.4. Point Cloud Clustering Segmentation Algorithm

The tree structure of Picea crassifolia resembles a cone lying flat on the ground, as
illustrated in Figure 5. Li et al. proposed a distance-based discriminant clustering algorithm
using point cloud data, which is well-suited for this type of data. The algorithm works as
follows (Figure 6). Firstly, the global maximum value A is identified in the data, which
serves as the vertex of the first tree. According to the critical spacing value and the principle
of minimum spacing, data points below A are classified one by one. For example, in
Figure 6, point B is assigned as the vertex of the second tree because the distance between
AB exceeds the pre-set critical spacing value. Next, we compare the height of point C,
which is lower than B. Additionally, the distance between C and A is smaller than the
distance between C and B, and the distance between C and A is within the critical spacing
value. Therefore, C is classified into the tree cluster of A. Further, point D is closer to B
than to C, so D is classified into the tree cluster of B. In this way, the point cloud data are
segmented. The critical spacing value used for segmentation should be similar to the crown
radius of the trees in the sample plot to avoid under-segmentation or over-segmentation
situations [34].

2.2.5. Segmentation Result Accuracy Verification

To verify the accuracy of the identification results for different datasets, this study
compares the identification results with field measurements. Here, the accuracy of the
identification results is evaluated using Precision (p), Recall (r), and F-measure (F) [41].
Precision refers to the proportion of correctly identified individual trees to the total number
of identified trees. Recall represents the proportion of correctly identified individual trees
to the total number of trees in the sample area. The F-measure is a metric used to evaluate
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the classification results and can reflect the effectiveness of the segmentation method. The
formulas for calculating the evaluation metrics are as follows:

p =
DT

DT + DF
(6)

r =
DT

DT + DM
(7)

F = 2
r× p
r + p

(8)

where p represents precision, r represents recall, and F represents the F-measure. DT
denotes the number of individual trees correctly identified by the segmentation algorithm,
DF represents the number of individual trees erroneously segmented, and DM represents
the number of individual trees not identified in the sample area.
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For the accuracy evaluation of extracting tree feature parameters, this study uses
least squares linear regression to fit the relationship between the crown width, tree height
parameters extracted using different algorithms and data, and measured data. The Mean
Squared Error (MSE) is then calculated to assess the quality of the extraction results:

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (9)

where MSE represents the mean squared error, Yi represents the true value, Ŷi represents
the predicted value, and n represents the total number of individual trees involved in the
accuracy evaluation within the sample area.

3. Results
3.1. Analysis of Individual Tree Identification Accuracy Based on Multiple Data Sources in the
Sample Plots

Table 3 presents the evaluation results of individual tree segmentation accuracy using
different methods in the three sample plots. As shown in the table, all three methods
provide good overall identification results, with F-values ranging from 0.950 to 0.997 and
an overall F-value of 0.969. The individual tree segmentation p ranges from 0.929 to 1, with
an overall precision of 0.969. The individual tree segmentation recall varies from 0.903 to 1,
with an overall recall of 0.963. The identification results are shown in Figure 7. However,
due to issues such as over-segmentation and under-segmentation, some individual tree
segmentation results do not match the measured data in certain sample trees.

Table 3. Accuracy evaluation results of single tree identification.

Plots Data Number
of Trees

Number of
Measurements p r F

1
CHM 216 198 0.991 0.986 0.988
UAV image 216 199 0.9567 0.943 0.950
Point Cloud 216 211 0.991 0.977 0.984

2
CHM 175 168 1.000 0.960 0.980
UAV image 175 184 0.929 0.977 0.953
Point Cloud 175 168 1.000 0.960 0.980

3
CHM 232 245 0.945 1.000 0.972
UAV image 232 241 0.930 1.000 0.964
Point Cloud 232 232 0.994 1.000 0.997

The identification results of individual trees were influenced by the characteristics of
the data and the features of the sample plots. CHM images and point cloud data contain
elevation information, allowing the utilization of dynamic window searches for local
maxima as tree top points, which enhances the accuracy of tree identification compared
to UAV imagery. However, smaller spruces are more likely to be overlooked due to
obscuration with low-lying vegetation on the ground, resulting in lower recall rates. The
precision may vary slightly among different sample plots due to variations in vegetation
complexity. In Sample Plot 1, for example, herbaceous plants near spruce crowns and some
surface vegetation had similar colors to the crowns, leading to incorrect identification in the
UAV imagery. In the southwest corner of Sample Plot 3, there were significant numbers of
wild sea buckthorn plants interspersed with spruces. Both CHM images and UAV imagery
mistakenly identified different quantities of sea buckthorn as target objects, resulting in
lower segmentation accuracy. Sea buckthorn and other shrubs have distinct differences in
height and crown shape compared to spruces, making them easier to distinguish in point
cloud segmentation algorithms.
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Figure 7. The results of different algorithms: (a) The result of using the marker-controlled watershed
algorithm to divide the CHM of Sample Plot 1; (b) the result of using the marker-controlled water-
shed algorithm to divide the UAV image of Sample Plot 1; (c) the result of point cloud clustering
segmentation in Sample Plot 1; (d) the result of using the marker-controlled watershed algorithm to
divide the CHM of Sample Plot 2; (e) the result of using the marker-controlled watershed algorithm
to divide the UAV image of Sample Plot 2; (f) the result of point cloud clustering segmentation in
Sample Plot 2; (g) the result of using the marker-controlled watershed algorithm to divide the CHM
of Sample Plot 3; (h) the result of using the marker-controlled watershed algorithm to divide the UAV
image of Sample Plot 3; (i) the result of point cloud clustering segmentation in Sample Plot 3.

3.2. Evaluation of Single Tree Width Extraction Accuracy Based on Multiple Data Sources

To evaluate the accuracy of the single tree parameters extracted by the algorithms, the
measured data were matched with the algorithmically extracted data. Based on an aerial
view of the sample plot and through manual matching, the measured data were associated
with the corresponding single tree parameters obtained by the algorithm while discarding
the results of incorrect identification, over-segmentation, and under-segmentation.

3.2.1. Verification of Crown Width Extraction Accuracy Using Different Data Sources

Figure 8 shows the regression relationship and MSE between the crown width informa-
tion extracted from CHM, UAV imagery, and point cloud data using the marker-controlled
watershed algorithm and point cloud clustering segmentation algorithm. The comparisons
were made with field-measured crown widths. In the figure, the MSE of the crown width
extracted from UAV imagery is superior to that of the CHM and point cloud data in all three
study sites. Here, the MSE values for UAV imagery are 0.043, 0.125, and 0.046, respectively,
while the MSE for CHM imagery is slightly higher, and the point cloud segmentation results
exhibit the largest discrepancy from the measured data. Additionally, the coefficients of
determination (R2) for the crown width extracted from drone imagery were also found to
be reliable, with values of 0.703, 0.817, and 0.353 in the three study sites. However, because
the relatively small variations in crown width among the trees in Sample Plot 3 resulted in
clustered data distribution, the R2 values were comparatively lower.
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Figure 8. Regression relationships between the tree width extracted by algorithms and measured in
the sample areas: (a) Linear regression test of using the marker-controlled watershed algorithm to
divide the crown width in the CHM of Sample Plot 1; (b) linear regression test of using the marker-
controlled watershed algorithm to divide the crown width in the CHM of Sample Plot 2; (c) linear
regression test of using the marker-controlled watershed algorithm to divide the crown width in the
CHM of Sample Plot 3; (d) linear regression test of using the marker-controlled watershed algorithm
to divide the crown width in the UAV image of Sample Plot 1; (e) linear regression test of using the
marker-controlled watershed algorithm to divide the crown width in the UAV image of Sample Plot
2; (f) linear regression test of using the marker-controlled watershed algorithm to divide the crown
width in the UAV image of Sample Plot 3; (g) linear regression test of the crown width divided by the
point cloud-based cluster segmentation in Sample Plot 1; (h) linear regression test of the crown width
divided by point cloud-based cluster segmentation in Sample Plot 2; (i) linear regression test of the
crown width divided by point cloud-based cluster segmentation in Sample Plot 3.

The MSE results indicate that UAV imagery can provide more reliable results in
all three sample plots. The extraction of single tree feature parameters from CHM data
and point cloud data presents varying degrees of errors influenced by the characteristics
of the data. The marker-controlled watershed algorithm was found to underestimate
crown widths in CHM images compared to the actual values. This result is mainly due
to the mixing of the maximum crown width of spruce with ground vegetation points in
the acquired LiDAR data, making it difficult to accurately extract the maximum crown
width contours in the CHM image, resulting in crown widths smaller than the actual
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tree crowns. On the other hand, the point cloud clustering segmentation algorithm was
found to overestimate crown widths compared to the actual values. This result is primarily
because the points representing spruce crowns and ground vegetation are mixed, making
it challenging for the algorithm to precisely locate the boundaries of tree crowns, leading to
some ground vegetation being identified as part of the crown and resulting in extracted
crown widths larger than the actual values.

3.2.2. Verification of Crown Height Extraction Accuracy Using Different Data Sources

Figure 9 shows the regression relationship between the single tree height extracted
by the algorithms from different data sources and field-measured tree heights. The results
indicate a good fitting relationship for both algorithms, with R-squared values ranging from
0.7625 to 0.9147. Analyzing the data in the graph, it can be observed that the linear fitting
relationship between the tree height extracted by the point cloud clustering segmentation
algorithm was generally better than that of the watershed segmentation algorithm. The
mean square error for the former was smaller than that of the latter, with values of 0.116,
0.155, and 0.112 for the three sites, compared to 0.251, 1.125, and 0.865 for the watershed
segmentation algorithm. Due to the conical shape of the spruce crowns, the bottom features
of the crowns were occluded in the data acquired by LiDAR, making it impossible to obtain
relevant echo information. After filtering the point cloud data and separating the ground
points, different-sized holes were formed. When generating the CHM, the DTM data
were obtained by fitting the heights of the surrounding point clouds, resulting in varying
degrees of errors between the CHM tree height and actual tree height, leading to poorer
fitting performance.
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Figure 9. Regression relationships between the tree heights extracted by algorithms and measured in the
field: (a) Linear regression test of the marker-controlled watershed algorithm to divide the tree height in
the CHM of Sample Plot 1; (b) linear regression test of the marker-controlled watershed algorithm to
divide the tree height in the CHM of Sample Plot 2; (c) linear regression test of the marker-controlled
watershed algorithm to divide the tree height in the CHM of Sample Plot 3; (d) linear regression test of
the tree height divided by point cloud clustering segmentation in Sample Plot 1; (e) linear regression test
of the tree height divided by point cloud clustering segmentation in Sample Plot 2; (f) linear regression
test of the tree height divided by point cloud clustering segmentation in Sample Plot 3.
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4. Discussion

This study employs UAV imagery to extract crown width parameters of young artificial
Picea crassifolia forests, aiming to address the issue of significant errors in conventional
data extraction results due to the mixing of surface vegetation with the maximum crown
width of spruce trees. The research reveals that factors such as sample plots, tree crown
structures, and data types contribute to variations in the extraction results of individual
tree feature parameters.

4.1. The Influence of Plot Characteristics on Tree Identification Using Different Data Sources

The three data sources all yielded good results in tree recognition, surpassing previous
research. Guo Yushan et al. [33] used the marker-controlled watershed segmentation
algorithm to segment willows and black locusts, achieving F-values of 0.878 and 0.655,
respectively. Wang Xinyun et al. [42] used a 0.1 m resolution CHM image to segment
Chinese pine and larch, with F-values of 0.862 and 0.916, respectively. However, the
corresponding accuracy values were lower than those achieved in this study. The main
reason for this difference is that the selected sample plots in this study are artificial forests,
which have regular planting patterns and larger inter-tree gaps, making them easier to
recognize. Additionally, there is less interference from shrubs and other vegetation in
artificial forests. However, slight variations in performance among the three algorithms
were observed in the different sample plots. The marker-controlled watershed algorithm
performed well in identifying spruces and distinguishing shrubs in the sample plots.
However, some spruces with smaller crown sizes could be overlooked in the CHM images,
resulting in lower recall rates compared to the other two algorithms. When using the
marker-controlled watershed algorithm to segment the UAV images, some low-growing
shrubs in Sample Plot 1 were mistakenly identified as spruce crowns due to their similar
colors to the ground vegetation, affecting the recognition accuracy. Additionally, it is
challenging to distinguish the vegetation surrounding some spruces, leading to under-
segmentation. In Sample Plot 3, some shrubs were also identified as spruce crowns,
impacting the recognition accuracy.

However, the study area selected in this paper is a Picea crassifolia artificial young forest,
which is composed of a single species, making the situation relatively simple for individual
tree segmentation and feature parameter extraction. It is not possible to determine the
applicability of these data in other forests. Nevertheless, Qinghai spruce is extensively
planted in the northern Gansu region, Qilian Mountains, and eastern Qinghai, accounting
for 44% of the coniferous forest area [43]. Due to its vast carbon storage, accurate estimation
of its carbon storage is of significant importance for China’s carbon neutrality efforts.

4.2. The Influence of Tree Characteristics on the Extraction of Individual Tree Feature Parameters
from Different Data Sources

As shown in Figure 10, the young Picea crassifolia exhibited a unique shape in LiDAR
data, resembling an inverted ice cream cone placed on the ground. This distinctive shape
caused this species’ point cloud to mix with the undergrowth point clouds, making it
difficult to distinguish the boundaries. When extracting tree crown widths using the three
data sources, different features were obtained due to the influence of ground vegetation.
When using the marker-controlled watershed algorithm to extract crown widths from
the CHM image, the crown contours in the CHM image were obtained based on tree
crown heights. However, some crowns that were close to the ground or covered by
undergrowth resulted in smaller crown contours in the CHM image compared to their
actual sizes. As a result, the extracted crown widths were generally underestimated
compared to the measured data. UAV imagery performed well in identifying crown
boundaries when there was a significant contrast between ground vegetation and tree
crowns. This method accurately extracted single tree information. As shown in Figure 8,
the crown width information extracted from UAV imagery offered a lower mean square
error than the CHM images and point cloud data in different sample plots. The point
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cloud clustering segmentation algorithm faced challenges in separating trees from ground
vegetation during filtering. Therefore, the algorithm tended to identify ground vegetation
as tree crowns, leading to an overall overestimation of the extracted crown widths compared
to the measured data. As shown in Figure 11, the point cloud segmentation algorithm
based on point cloud data included some spruce point clouds along with the surrounding
ground vegetation point clouds and shrub point clouds. These ground vegetation point
clouds have varying degrees of impact on the extracted crown width information.

Since UAV imagery does not contain tree height information, the tree height informa-
tion must be obtained from the CHM data and LiDAR data. The results show that using
the marker-controlled watershed segmentation algorithm to extract tree height informa-
tion from CHM data yields R2 values ranging from 0.7625 to 0.8441. The distance-based
clustering segmentation method using point cloud data achieved R2 values ranging from
0.8249 to 0.9147. For different sample plots, the extraction results from point cloud data
were superior to those obtained from the CHM data. The main reason for this result is that
the CHM data obtained elevated values from the point cloud data. However, due to the
unique crown structure of the spruce trees, it was difficult for the point cloud to penetrate
the crown and acquire information about the ground beneath. When obtaining CHM data,
the DTM beneath the crown was derived by fitting the elevation of surrounding point
clouds, resulting in some errors in the extracted elevation information from the CHM data.
Cao et al. [44] used the marker-controlled watershed segmentation algorithm to extract
tree height with an R2 value of 0.8568. Geng et al. [20] used the same method to extract
tree height in a deciduous mixed forest with an R2 value of 0.8862. Therefore, both the
marker-controlled watershed segmentation algorithm and the distance-based clustering
segmentation method based on point cloud data exhibited good performance in extracting
tree height information in different sample plots.

4.3. The Differences in the Accuracy of Extracting Individual Tree Information Based on
Different Data

This paper mainly focuses on two aspects of individual tree information acquisition
from the data. Firstly, individual tree recognition is achieved by segmenting the data using
algorithms, and then individual specific tree feature parameters are extracted from the
segmented trees. Due to the unique crown shape of spruce trees, extracting individual
tree feature parameters, especially crown width, from commonly used CHM data and
point cloud data can result in significant errors. As shown in Figure 8, the crown width
feature parameters extracted from the CHM image are generally underestimated compared
to the actual crown width, and there are many outliers. This may be due to the fact that
the DSM data generated from the point cloud cannot identify the crown area covered by
undergrowth during CHM generation. Additionally, the missing data on the lower part
of the spruce in the DTM image causes the elevation of the lower part of the spruce to
be fitted based on the surrounding elevation, leading to errors. Although UAV imagery
processed with normalized saturation can effectively identify undergrowth and spruce, its
recognition capability for shrubs in Plot 3 is relatively poor. Furthermore, in other plots,
some herbaceous plants with colors similar to spruce can also affect the identification of
individual trees in UAV data, resulting in a slightly lower F-measure compared to CHM
data and point cloud data. However, the crown width extraction results from correctly
identified individual trees are more accurate and well-fitted to the measured data in UAV
imagery. The crown width extracted from the point cloud data tends to be overestimated
due to the influence of ground vegetation, and this causes most of the outliers spreading to
the right side of the plot. Additionally, both point cloud data and CHM data can provide
good accuracy for individual tree recognition as they reflect the elevation information of
the trees.
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5. Conclusions

This study took a young Picea crassifolia plantation in Shangshan Village, Qinghai
Province, China, as the experimental site. A marker-controlled watershed segmentation
algorithm and point cloud clustering segmentation algorithm were used to extract single
tree parameters from CHM data, UAV imagery, and point cloud data from the site, and the
extraction accuracy was evaluated. The conclusions are as follows.

(1) All three types of data achieved good results in single tree recognition, with F-values
ranging from 0.95 to 0.997, the precision (p) of single tree segmentation ranging from
0.929 to 1, and the recall of single tree segmentation ranging from 0.903 to 1. Since the
CHM data and point cloud data contained tree height information, the local maxima
obtained through dynamic window searching were used as treetops for single tree
recognition. Therefore, the accuracy of single tree recognition was higher for CHM
data and point cloud data than for UAV imagery, and the single tree recognition based
on point cloud data yielded the best results.

(2) The crown width extraction results based on UAV imagery were superior to the CHM
and point cloud data. The MSE values for the three sample plots were 0.043, 0.125,
and 0.046, respectively, which are better than the values obtained for the CHM data
(0.103, 0.128, and 0.4) and point cloud data (0.36, 0.461, and 0.4). Additionally, linear
regression fitting performed better than the CHM and point cloud data.

(3) The fitting effect of extracting the single tree height using the point cloud clustering
segmentation algorithm was overall better than that of the watershed segmentation
on CHM images, with mean squared errors of 0.116, 0.155, and 0.112 for the three
sample plots. The overall fitting effect was good, while the CHM data, due to ground
holes, were found to result in potentially larger errors during generation, leading to a
worse fitting effect.

This study attempts to use UAV imagery to extract individual tree crown widths,
aiming to address the issue of significant errors in conventional methods caused by the
mixing of surface vegetation and the maximum crown width of young Picea crassifolia
trees. UAV imagery was employed to generate normalized saturation data for the study
plots, with the objective of enhancing the differentiation between Picea crassifolia trees
and surrounding vegetation. This differentiation facilitates the use of the watershed
segmentation algorithm for tree crown segmentation. Therefore, acquiring UAV imagery
during the autumn season, when most surface vegetation has withered, could potentially
lead to improved extraction of Picea crassifolia crown width. Additionally, the impact of
UAV imagery resolution on the extraction results is also worthy of exploration.
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