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Abstract: Accurate and robust localization using multi-modal sensors is crucial for autonomous
driving applications. Although wheel encoder measurements can provide additional velocity infor-
mation for visual-inertial odometry (VIO), the existing visual-inertial-wheel odometry (VIWO) still
cannot avoid long-term drift caused by the low-precision attitude acquired by the gyroscope of a
low-cost inertial measurement unit (IMU), especially in visually restricted scenes where the visual
information cannot accurately correct for the IMU bias. In this work, leveraging the powerful data
processing capability of deep learning, we propose a novel tightly coupled monocular visual-inertial-
wheel odometry with neural gyroscope calibration (NGC) to obtain accurate, robust, and long-term
localization for autonomous vehicles. First, to cure the drift of the gyroscope, we design a robust
neural gyroscope calibration network for low-cost IMU gyroscope measurements (called NGC-Net).
Following a carefully deduced mathematical calibration model, NGC-Net leverages the temporal
convolutional network to extract different scale features from raw IMU measurements in the past
and regress the gyroscope corrections to output the de-noised gyroscope. A series of experiments
on public datasets show that our NGC-Net has better performance on gyroscope de-noising than
learning methods and competes with state-of-the-art VIO methods. Moreover, based on the more
accurate de-noised gyroscope, an effective strategy for combining the advantages of VIWO and
NGC-Net outputs is proposed in a tightly coupled framework, which significantly improves the
accuracy of the state-of-the-art VIO/VIWO methods. In long-term and large-scale urban environ-
ments, our RNGC-VIWO tracking system performs robustly, and experimental results demonstrate
the superiority of our method in terms of robustness and accuracy.

Keywords: gyroscope calibration; yaw attitude correction; deep learning; multi-sensor fusion; vehicle
localization; visual-inertial-wheel odometry

1. Introduction

Using low-cost multi-sensors for high accuracy and robust positioning is a challenging
task for ground vehicles in GPS-denied urban environments [1]. Approaches fusing visual,
inertial, and wheel encoder measurements called visual-inertial-wheel odometry (VIWO)
have received a lot of attention in recent years. Compared with traditional visual odometry
(VO) [2–6] and visual-inertial odometry (VIO) [7–14], the additional wheel measurements
can provide true-scale velocities to render the scale of VO/VIO observable, especially when
the vehicle is in plane motion with constant acceleration, which is the common motion
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situation of the ground vehicle [15]. Therefore, integrating the wheel measurements with
VIO can further improve the accuracy and robustness of vehicle localization.

However, similar to VIO, VIWO still cannot avoid the pose drift caused by the low-
precision attitude acquired by the gyroscope of a low-cost IMU in complex environments.
When VIO or VIWO experiences visual degradation scenes, such as weak or repetitive
textures, shimmering lighting, or dynamic change, the visual information cannot accurately
correct for the IMU bias [16]. Limited by the accuracy of an IMU based on a micro-
electro-mechanical system (MEMS), the attitude integrated from the original gyroscope
measurements suffers from large drift for a long time, especially due to the bias instability
(BI) and angular random walk (ARW) resulting from the noise and thermal effect [17]. The
errors in attitude will further lead to the rapid accumulation of positional errors solved by
systems that conduct motion estimation through past state recursion, such as an inertial
navigation system (INS), VIO, VIWO, etc. In particular, for the INS, the positional errors
of the system grow cubically in time caused by the gyroscope bias [18]. In VIO/VIWO
systems [7,19–21], inaccurate positions will be added to the joint optimization framework
as important residual constraints. Even though the existing methods have applied the
pre-integration technique, it will inevitably decrease the pose accuracy calculated by the
solver and further lead to long-term pose drift.

Therefore, the accuracy of IMU measurements, especially the quality of gyroscope
data, is one of the important factors affecting the overall orientation and position accuracy
of the VIO/VIWO system over a longer period. Thus, correcting and compensating for the
errors of the MEMS IMU gyroscope is crucial to obtain long-term attitude stability, which
further helps to improve the overall accuracy of the VIO/VIWO system. Currently, for
VIO/VIWO systems, to limit the long-term drift as much as possible, one approach is to
introduce the global navigation satellite system (GNSS) [13,22,23]. The GNSS can provide
global positioning information, helping to eliminate cumulative errors. Nevertheless,
satellite signals are susceptible to multipath fading and shadow effects, which affect the
accuracy of the GNSS, especially in the city canyon, tunnel, or underground parking lot
environments. Another method is to employ loop closing, which can effectively reduce the
positioning drift but is hard to apply in large-scale outdoor environments [24,25]. Among
the commonly proposed methods, some other researchers also employ a pre-built map
to bound the long-term errors by matching the map features with the on-the-fly sensor
readings [26]. In contrast to these works, de-noising the gyroscope measurements to
improve long-term positioning accuracy does not need to rely on the additional sensors,
specific motion patterns, and prior maps.

In recent years, deep-learning-based methods have been introduced into inertial
navigation systems, where motion can be inferred from the IMU, such as pedestrian motion
state estimation [27,28]. These studies show that human motion priors can be learned from
IMU measurements through networks. Meanwhile, the results show that the accuracy
based on deep learning is comparable to that of the VIO algorithm. At present, inertial
learning is rarely used in robots. Reference [29] uses a CNN to correct IMU noise and
bias and directly integrates the de-noised IMU to obtain the orientation. The de-noised
gyroscope is also applied to the VIO methods. Similar efforts directly replace the original
measurements in the VIO approach with network outputs [30–32]. The way of fusing
network outputs with VIO is very simple and cannot significantly improve the accuracy of
the traditional VIO methods.

In this paper, aiming at reducing the long-term drift of VIWO deployed for au-
tonomous vehicles, we present a tight-coupled nonlinear optimization method, which
effectively integrates the robust neural gyroscope data with the traditional visual-inertial-
wheel odometry to perform long-term pose estimation in complex driving environments.
Our approach is motivated by the observation that calibrating the errors of MEMS gy-
roscope measurements based on neural networks can provide more accurate attitude
estimation, which can further provide better directional constraints for the VIWO method
to cure long-term drift. The main contributions of this work include:
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(1) A robust neural calibration network for low-cost IMU gyroscopes called NGC-Net is
proposed, which leverages the temporal convolutional network to extract the error
features from the raw IMU. By effective data enhancement strategy, well-designed net-
work structure, and multiple losses considered, our experiments show the proposed
NGC-Net can achieve better de-noising performance.

(2) We design an effective fusion strategy to combine the advantages of network outputs
and VIWO methods and further propose a novel multi-sensor fusion tracking method
to reduce the long-term drift using the heading obtained by our NGC-Net outputs.

(3) Through a series of experiments on public datasets, our NGC-Net has better perfor-
mance than both learning methods and competes with VIO methods. We implement
the RNGC-VIWO system and validate the proposed method in complex urban driv-
ing datasets. Compared with state-of-the-art methods, our method can significantly
improve the accuracy and robustness of vehicle localization in long-term and large-
scale areas.

The structure of this paper is as follows. Section 1 is the introduction. Section 2 presents
the related work. Section 3 elaborates on the details of our method. The experimental
results are presented in Section 4. Finally, a brief conclusion and outlook are given in
Section 5.

2. Related Work

Over the past decades, localization methods by fusing multi-model sensors have
become popular research. Autonomous driving system (ADS) vehicles equipped with
multi-modal sensors (such as cameras, GNSS, LiDAR) provide multi-source sensor data
to perceive the surrounding traffic environment and obtain vehicle position, speed, and
attitude information [33]. We mainly review related work on vision-based methods and
IMU correction approaches.

2.1. Vision-Aided or -Based Methods

Over the past few decades, great progress has been made in the research of monocular
visual odometry/SLAM. The typical studies include PTAM [2], SVO [3], and ORB-SLAM [5].
While visual odometry can achieve high precision in ideal environments, it often fails when
dealing with untextured areas, motion blur, and severe lighting variations. In addition, it
cannot estimate the true scale of the scene, resulting in scale drift.

To reduce the dependence on visual information and obtain high-precision and robust
localization, researchers have proposed visual-inertial odometry (VIO) that combines visual
information with IMU measurements. According to the VIO algorithm framework, it can
be divided into filter-based and optimization-based approaches. Popular filtering methods
include MSCKF [34] and Open-VINS [7], which achieve great estimation performance. The
typical optimization method is OKVIS [8], which infers a probabilistic cost function that
minimizes visual reprojection errors and pre-integrated IMU errors. VINS-Mono [11] is
another robust visual-inertial SLAM system. Compared to OKVIS, it has robust initial-
ization, relocalization, and pose graph optimization. VINS-Fusion [12,13] is an extension
of VINS-Mono that supports multiple sensor combinations, including fusing VINS with
GPS. Under the constraints of IMU pre-integration, ORB-SLAM3 optimizes camera poses
in a covisibility graph [14]. Although these VIO systems achieve impressive accuracy and
robustness, they will suffer from large drift if running in complex environments for a long
time, which is insufficient for autonomous vehicle applications [35].

Recent research has incorporated wheel encoder measurements into VIO to improve
positioning accuracy and robustness. Reference [15] demonstrates that the VIO system
could not estimate the correct scale with constant acceleration motion, nor could it estimate
good roll and pitch without rotational motion. To address these issues, wheel encoder
readings with the VIO are integrated in a tightly coupled framework to make the scale ob-
servable. Reference [19] proposes a multi-sensor fusion SLAM algorithm using monocular
vision, IMU, and wheel encoder measurements. Reference [20] presents a tightly coupled
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monocular visual SLAM using wheels and a MEMS gyroscope and introduces the wheel
odometer error term into the optimization process, which is a complete SLAM framework
and can increase the accuracy and robustness of localization. However, the use of wheel
odometers for positioning is mainly focused on “planar” applications, which are usually
only suitable for indoor environments. In [21], IMU-odometer pre-integration is introduced
into the initialization and optimization of VIO systems, and an online extrinsic calibration
is designed to improve the accuracy dramatically. Reference [36] propagates the system
state by angular from a gyroscope and linear velocity obtained from a wheel odometer and
also adds GPS directly to make position observable. In [37], an effective MSCKF-based
VIWO method is developed to fuse IMU, camera, and pre-integrated wheel measurements,
which calibrates the intrinsic and spatiotemporal extrinsic parameters between sensors
online to further improve the overall accuracy of the system. Although incorporating wheel
encoder measurements can improve the accuracy of the VIO system, it still cannot avoid
long-term drift caused by the limitations of vision and the low accuracy of MEMS IMUs in
complex driving environments.

2.2. IMU Correction Methods

The IMU measurement output is often modeled as a linear polynomial equation for
systematic errors, such as constant bias, scale factor, and axis misalignment error. The
coefficient parameters are determined using high-precision external equipment, such as a
three-axis turntable. Reference [38] presents a calibration approach for low-precision MEMS
IMUs using a nonlinear model and the transformed unscented Kalman filter (TUKF) with
a turntable. Reference [39] proposes a self-calibrated visual-inertial odometry to estimate
the IMU scale factor and axis misalignment error using an extended Kalman filter-based
pose estimator. In addition, the vehicle chassis sensors and vehicle kinematics/dynamics
reflect the vehicle’s own characteristic information such as wheel speed, steering wheel
angle, and sideslip angle estimation, which provide the longitudinal and lateral vehicle
velocities to correct IMU errors [40–42]. For example, according to the error dynamics and
observation equations, the degree of the observability of the yaw misalignment is analyzed,
and the yaw misalignment of the IMU is estimated by using a Kalman filter [43].

Many researchers have introduced deep learning techniques into the visual-inertial
navigation field to improve navigation and positioning accuracy. VI-Net uses the LSTM
network to extract motion features from the raw IMU data and fuses these features directly
with image features for pose estimation [44]. IONet uses a two-layer LSTM network to
learn the IMU measurements of smartphones and to track user movement over time [28].
A tight learned inertial odometry (TLIO) is proposed to extract original IMU features using
ResNet and estimate 3D displacement and its uncertainty, allowing them to be fused tightly
in an extended Kalman filter (EKF) to estimate pose, speed, and biases for pedestrian
dead reckoning [27]. RNIN-VIO also uses an LSTM-style IMU neural network to learn
pedestrian movement priors from raw IMU data and fuses network outputs and visual-
inertial information into the EKF to improve the robustness of VIO [45]. To sum up, these
position estimation algorithms based on deep learning achieve good results compared
with traditional methods in different scenarios. With the increasing complexity of scenes,
accurate position estimation alone can no longer meet the existing task requirements.
Recently, the use of deep learning technology to calibrate IMU errors has begun to attract
the attention of researchers, and existing studies have shown that MEMS IMU calibration
based on deep learning is feasible. Reference [46] proposes a convolutional neural network
(CNN) to reduce accelerometer error. Reference [47] uses a neural structure based on an
LSTM to estimate the attitude and introduces an efficient algorithm to calibrate the bias of
the gyroscope. In [30], the depthwise separable convolution is used to compensate for IMU
errors, which can improve the localization accuracy of inertial navigation. Reference [32]
uses dilation convolution for raw IMU feature extraction and outputs the gyroscope error
compensation. These network estimation results in gyroscopes are also applied to VIO
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methods [29–32], but the fused accuracy gains over traditional VIO are very limited, which
does not fully reflect the advantages of the network calibration and VIO methods.

3. Method
3.1. Overview
3.1.1. System Overview

Based on VINS-Mono [11], the proposed approach applies a new IMU learning net-
work and fusing strategy to achieve more efficient and accurate pose estimation. The
framework is shown in Figure 1. Unlike previous methods [29–32], the de-noised gyroscope
outputs are simply directly input into the mature process of the existing VIO method. Our
method effectively fuses the de-noised gyroscope outputs with the existing VIO method in
different modules, better combining the advantages of deep learning with traditional VIO
methods. Our system consists of four modules: measurements preprocessing, initialization,
nonlinear optimization, and yaw attitude correction.
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Figure 1. The overall framework of our proposed RNGC-VIWO method. The highlighted modules
demonstrate the special contributions of our work.

In the data preprocessing phase, for IMU inputs, a robust neural calibration net-
work for low-cost IMU gyroscope called NGC-Net is first proposed. Then, the IMU
pre-integrations between two consecutive frames are calculated using the de-noised gyro-
scope outputs and raw accelerometer measurements. The wheel odometer pre-integrations
between two consecutive frames are also calculated using the de-noised gyroscope outputs
and the velocities transformed by wheel encoder readings. To maintain the best orientation
accuracy, the z-axis bias of the gyroscope obtained from the nonlinear optimization is not
used, which is set to zero.

In the initialization phase, thanks to our NGC-Net, we only solve the gravity direction
in the first frame and the optimized velocity for each frame and no longer solve the
gyroscope bias, which can help to improve the speed of initialization.

In the nonlinear optimization stage, combining the advantages of VIO and NGC-Net,
we do not use the z-axis bias of the gyroscope calibrated online and only update the pre-
integration of IMU and odometer according to the calibrated x-axis and y-axis biases of
the gyroscope.
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In the phase of yaw attitude correction, the horizontal attitude obtained by integrating
the de-noised gyroscope angular velocity is used to correct the yaw attitude of each opti-
mized frame, and the corrected poses are further fed back into the sliding window for the
following keyframe optimization and output as the final pose.

3.1.2. Notation

We now define notations and coordinate systems throughout the paper. The coordinate
systems of the sensors are illustrated in Figure 2. The camera, IMU, and wheel encoder are
mounted on a vehicle, and the wheel encoder is installed on the left rear wheel.
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Figure 2 shows the top view of the coordinate systems, in which � denotes the axis
perpendicular to the paper plane outward, and ⊗ denotes the axis perpendicular to the
paper plane inward. Each sensor has its individual local coordinate system, and we use
(·)W , (·)C, (·)I , and (·)O to denote the world coordinate system, the camera coordinate
system, the IMU coordinate system, and the odometer coordinate system, respectively. The
world coordinate system (·)W is the coordinate system of the first IMU frame after gravity
rotation correction when the system is initialized, and it is fixed once initialized. GW = [0; 0; g]T

is the prior gravity vector in the world coordinate system, and here g = 9.81007. We use
(·)Ck , (·)Ik , and (·)Ok to represent measurements or estimations in the camera frame, IMU
frame, and odometer frame corresponding to the time of the kth image frame, respectively.
Finally, we denote (·̂) as the estimated states or the original measurements of a certain
quantity with some noise, and (

∼· ) as the de-noised measurements of a certain quantity.

3.2. Gyroscope Error Calibration Based on Deep Learning
3.2.1. Gyroscope Correction Model

A typical low-cost inertial measurement unit (IMU) usually consists of a three-axis
gyroscope and a three-axis accelerometer. The gyroscope measures angular velocity ω̂i ,
the accelerometer measures acceleration âi in the IMU coordinate system, and the output
model of the IMU sensor can be represented as seen below [48,49]:[

ω̂i
âi

]
= C

[
ωi
ai

]
+

[
bωi

bai

]
+

[
nωi

nai

]
(1)

where ωi and ai are the actual values of the gyroscope angular velocity and accelerometer
linear acceleration, which are affected by the gyroscope bias bωi , the accelerometer bias
bai , and the corresponding additive noises nωi and nai . The additive noises are zero-mean
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white Gaussian noises. C is the intrinsic calibration matrix (C ≈ I6) for the IMU model,
which can be given by

C =

[
Lω Mω C∗
03×3 La Ma

]
≈ I6 (2)

where Lω and Mω and La and Ma represent the scale factor and axis misalignment matrix
of the gyroscope and the accelerometer, respectively, all of which are approximately equal
to the identity matrix. C* denotes the linear accelerations on the gyroscope measurements,
i.e., g-sensitivity [29], and it is approximately equal to 03×3. The gyroscope angular velocity
after error calibration can be shown as (3)

∼
ωi = C−1

ω (ω̂i − C∗ai − bωi − nωi )= C−1
ω ω̂i − δωi (3)

where
∼
ωi is the de-noised gyroscope angular velocity, and ω̂i is the original angular

velocity of the gyroscope. Both C−1
ω and δωi affect gyroscope calibration and attitude

estimation. C−1
ω contains scale factor and axis misalignment errors of the gyroscope,

i.e., C−1
ω = (Sω Mω)

−1. We define δωi = C−1
ω (bωi + nωi + C∗ai) as the main gyroscope

error correction term, which is a time-varying error. In addition, the acceleration ai can also
provide information for the angular velocity correction, since it has a certain influence on
the error δωi and should be included as part of the input of the neural network to reduce
the impact on the error.

We now need to estimate δωi and C−1
ω . The neural network described in Section 3.2.3

predicts δωi by leveraging the gyroscope and accelerometer measurements in a past local
window of size N. In most cases, C−1

ω can be taken as an identity matrix, so we set it as the
static parameter initialized at I3 and then set it as the trainable variable optimized in the
training process. Here, the form of network can be expressed as

δωi = f ((âi−N , ω̂i−N), · · · , (âi, ω̂i)) (4)

where f (·) represents the nonlinear function defined by the proposed NGC-Net. âi−N and
ω̂i−N respectively represent the raw IMU at the time corresponding to the (i-N)th inertial
frame.âi and ω̂i are the IMU at the time corresponding to the ith inertial frame, and N is the
size of the local window.

After modeling the gyroscope correction using the deep neural network, the NGC-Net
parameters are updated by calculating the loss function between the ground truth and the
predicted attitude during the training process. By using iterative training, a well-trained
network model can be obtained to compute the de-noised gyroscope angular velocity

∼
ωi

by subtracting δωi from C−1
ω ω̂i, and further, more accurate attitude can also be obtained

using integration of the de-noised gyroscope outputs.

3.2.2. Data Preprocessing

To improve the performance of our network, we also adopt data enhancement strategy,
which can get diverse data and help avoid overfitting. Firstly, considering different types of
IMUs may have different white Gaussian noise and biases. In order to reduce the sensitivity
to different IMU noises in the training phase, Gaussian white noise and biases are added
randomly to the raw IMU data. Secondly, as the network has only access to the IMU
measurements, it suffers from the same observability problem that yaw is not observable.
To deal with this unobservability problem, a yaw angle rotation is randomly added to each
sample data to learn the invariance characteristics of yaw. Thirdly, in order to strengthen
training, referring to [50], we also integrate 20%, 40%, 60%, 80%, and 100% measurements
to get multiple losses. This is because for multi-sensor fusion algorithm, IMU integration
may be required in different durations. It is worth noting that only the enhanced data are
fed into the network.
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3.2.3. Network Structure

Previous work has shown that temporal convolutional network (TCN) convincingly
outperforms baseline recurrent architectures to solve time-series data modeling problems.
Compared with canonical networks such as LSTMs and GRUs, TCN has the advantages of
stable gradient and flexible acceptance field, requiring less computing resources, and its
structure is simpler and clearer [51].

As shown in Figure 3, we design the NGC-Net based on the architecture of TCN, which
is composed of six residual blocks with 32, 64, 128, 256, 72, and 36 channels, respectively,
and an output layer with a 1D convolutional layer. We set the same kernel size k = 5 for
each residual block and dilation factors d = 1, 2, 4, 8, 16, 32, which increase exponentially
with the depth of the network (i.e., d = O(bm), b = 2) at level m of the network [52]). The
kernel size k and the dilation factors d determine the receptive field N of NGC-Net, which
is 505 in Equation (4).
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As shown in Figure 3, each residual block contains two layers of dilated causal convo-
lution. Gaussian error linear unit (GELU) [53] function is adopted to extract hidden features
from the data, and weight normalization is performed for each residual block [54]. In order
to avoid overfitting, a spatial dropout [55] is added after each dilated convolution for
regularization. Furthermore, a residual connection is introduced into each residual block
to maintain the stabilization of deeper and larger TCN [51]. We note that our NGC-Net is
relatively preliminary and can be further optimized in the future. However, our results
show that the current network is already superior to competing methods, so the improved
accuracy of the de-noised gyroscope readings provides a more robust justification for the
proposed multi-sensor fusion strategy.
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3.2.4. Loss Function

We use the Log-cosh loss for gyroscope correction in the proposed NGC-Net. Theoreti-
cally, the loss function should be defined as the error between the real angular velocity and
the estimated value. However, on the one hand, the corrected angular velocity is generally
consistent with the IMU frequency, in hundreds of Hz, much higher than the frequency
of the current best tracking systems, which are generally accurate at 20–120 Hz [29]. On
the other hand, supervised learning methods require ground truth references for training,
but many datasets usually provide attitude information rather than true gyroscope mea-
surements. Thus, in order to conveniently calculate the loss and achieve better calibration
performance, similar to [29], we also use the integrated orientation increment errors rather
than the angular velocity errors to construct the loss function. The integral orientation
increments can be expressed as (5):

δ
∼
Ri,i+l =

∼
R

T

i
∼
Ri+l =

i+l−1

∏
j=i

exp
(∼

ω jδt
)

(5)

where exp(·) is the exponential map in the SO(3).
∼
ω j is the corrected gyroscope angular

velocity. δt is the time interval between two consecutive gyroscope measurements. l is the
integral increment length.

The Log-cosh loss for a given l can be computed as follows:

Ls = ∑
i

Log− cosh
(

log
(

δRi,i+lδ
∼
Ri,i+l

))
(6)

where log(·) is the SO(3) logarithm map, and the loss approximately equals

(log(δRi,i+lδ
∼
Ri,i+l))

2/2 for the small loss and |log(δRi,i+lδ
∼
Ri,i+l)| − log(2) for the large

loss.δRi,i+l and δ
∼
Ri,i+l are the real orientation increments and the estimated orientation

increments, respectively. Additionally, we also use a regularization loss as follows:

Lλ = Max
(∣∣∣∼ωi − ω̂i

∣∣∣, λ
)

(7)

where ω̂i is the raw gyroscope measurement,
∼
ωi is the de-noised gyroscope data, λ is a

controllable parameter, only when the de-noised data deviates from the original measured
value by more than a threshold value, it will punish the de-noised data to ensure the fast
convergence of the network.

3.2.5. Implementation Details

For the training of our NGC-Net, we use a desktop environment equipped with Intel
(R) Core(TM) i7-6700HQ 2.60 GHz CPU and NVIDIA GRID RTX8000-12Q 11 GB RAM. The
framework of NGC-Net is implemented using PyTorch 1.5. The Adam optimizer [56] is
used during training. We set the initial learning rate at 0.001 and adjust the learning rate
adaptively. To prevent overfitting, the weight decay is set to 0.1 and the dropout parameter
to 0.2. The model with the best validation loss is chosen as the best model for testing.

3.3. Muti-Sensor Fusion State Estimation
3.3.1. Image Processing

Similar to [11], we also use FAST [57] to detect feature points from each new image and
track them between consecutive frames using the KLT sparse optical flow algorithm [58].
However, since the optical flow tracking method may result in lots of mismatches in
complex environments, we conduct a reverse optical flow tracking method to reject the
outliers, similar to VINS-fusion [13].
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3.3.2. De-Noised IMU and Odometer Pre-Integration

In the pre-integration step, both the de-noised IMU pre-integration and odometer
pre-integration need to be calculated at the same time to provide more constraints for
system initialization and back-end nonlinear optimization. The pre-integration of IMU and
odometer in discrete time is shown in (8):

α̂
Ik
i+1 = α̂

Ik
i + β̂

Ik
i δti +

1
2 R
(

γ̂
Ik
i

)
(âi − bai )δt2

i

β̂
Ik
i+1 = β̂

Ik
i + R

(
γ̂

Ik
i

)
(âi − bai )δti

γ̂
Ik
i+1 = γ̂

Ik
i ⊗

[
1

1
2

(∼
ωi − bωi

)
δti

]
η̂

Ik
i+1 = η̂

Ik
i + R

(
γ̂

Ik
i

)
RI

o v̂iδti

bai+1 = bai

bωi+1 = bωi

(bωi )z = 0

(8)

where i is the discrete moment corresponding to an IMU measurement within [Tk, Tk+1],
and Tk and Tk+1 represent the corresponding time of the kth and (k + 1)th image keyframes,
respectively. δti is the time interval between two IMU measurements of i and i + 1. α̂I , β̂I ,
and γ̂I denote the IMU position, velocity, and attitude pre-integration in the IMU coordinate
system, respectively. η̂ I represents the position pre-integration of the odometer in the IMU
coordinate system. At time i = Tk, α̂

Ik
i , β̂

Ik
i , γ̂

Ik
i , η̂

Ik
i are all zero. RI

o is the extrinsic rotation
matrix between the IMU sensor and the odometer. In this paper, the external parameters of
the IMU and odometer are not corrected online; instead, we use the values calibrated offline
directly. âi,

∼
ωi, and v̂i represent the accelerometer measurement, the de-noised gyroscope

measurement, and the speed provided by wheel encoder reading at the time i. bai and bωi

represent the bias of accelerometer and gyroscope at the time i.
Since our NGC-Net described in Section 3.2 can effectively reduce the noises of the

gyroscope’s original measurements, we use the de-noised gyroscope outputs instead of the
raw gyroscope measurements to calculate these pre-integrations to achieve more accurate
attitude, thus further improving the state estimation accuracy during the initialization and
back-end nonlinear optimization.

It should be noted that to accurately calculate the IMU pre-integration and odometer
pre-integration between the kth and (k + 1)th image keyframes, we need to align the times-
tamps between image frames and IMU and odometer measurements. As implemented
in [11], we interpolate the IMU measurements and wheel measurements based on the
timestamps of the image frames and obtain all the IMU measurements and wheel measure-
ments between the two image frames for calculating the IMU pre-integration and odometer
pre-integration, respectively.

In the original VIO algorithm framework, to improve the accuracy of IMU input, IMU
bias (including gyroscope bias) is calibrated online during the optimization stage. However,
as demonstrated by [29–32] and our experiments in Section 4.3, we note that the horizontal
direction integrated directly from the de-noised gyroscope can be more accurate than the
results obtained by the state-of-the-art VIO methods. Thus, we always set (bωi )z = 0
when calculating the IMU and odometer pre-integration using the de-noised gyroscope
measurements to maintain the best orientation accuracy.
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The error state propagation equation of (8) at the discrete time is shown in Equation (9):



δα̂
Ik
i+1

δβ̂
Ik
i+1

δθ̂
Ik
i+1

δη̂
Ik
i+1

δbai+1
δbωi+1


=



I Iδti O O O O
O I −R

(
γ̂

Ik
i

)⌊
âi − bai

⌋
×δti O −R

(
γ̂

Ik
i

)
δti O

O O I−
⌊∼

ωi − bωi

⌋
×

δti O O −Iδti

O O −R
(

γ̂
Ik
i

)⌊
RI

o v̂i
⌋
×δti I O O

O O O O I O
O O O O O I





δα̂
Ik
i

δβ̂
Ik
i

δθ̂
Ik
i

δη̂
Ik
i

δbai
δbωi




O O O O O
−R
(

γ̂
Ik
i

)
δti O O O O

O −Iδti O O O
O O −R

(
γ̂

Ik
i

)
RI

oδti O O
O O O Iδti O
O O O O Iδti




na
nω

nv
nba
nbω

 = FIk
i δzIk

i + GIk
i n

(9)

where δθ̂
Ik
i is the perturbation of rotation error, and its relationship with the rotation

attitude is γ
Ik
i ≈ γ̂

Ik
i ⊗

[
1

1
2 δθ̂

Ik
i

]
. b·c× means the skew-symmetric matrix corresponding

to a vector. R
(

γ̂
Ik
i

)
is the rotation matrix of attitude γ̂

Ik
i . na,nω, and nv represent the

noises in accelerometer, gyroscope, and odometer measurements, respectively, which are
commonly Gaussian white noises. nba and nbω

denote the derivatives of accelerometer bias
and gyroscope bias that are also white noises.

According to Equation (9), we can get the Jacobian matrix of α̂I , β̂I , γ̂I , and η̂ I with
respect to the IMU biases. The covariance matrix of each pre-integration term can also
be obtained by forward propagation of the covariance. The calculation process is similar
to [21], which is not explained in detail here.

3.3.3. System Initialization

During the initialization stage, the traditional monocular vision-inertial VIO system
aims to recover the true scale of the visual map, the true scale velocity of each frame, the
direction of gravity in the first IMU body frame, and the gyroscope biases. Thanks to our
NGC-Net, we no longer need to solve the gyroscope bias in the initialization phase. In
addition, the odometer can obtain real-scale speeds and positions combined with de-noised
gyroscope measurements, helping to recover the real scale of monocular visual maps, i.e.,
obtaining the real-scale depth of map points. Therefore, in this initialization stage, our
system only needs to solve the gravity direction and optimization velocity for each frame
at the same time, which improves the speed of initialization.

For the consecutive kth frame and (k + 1)th frame, we align the IMU pre-integration
with the odometer pre-integration to construct the joint equation, as shown in
Equations (10) and (11):

α̂
Ik
Ik+1

= η̂
Ik
Ik+1
− vIk

Ik
δTk + PI

o − R
(

γ̂
Ik
Ik+1

)
PI

o +
1
2

R
(

γ̂
Ik
I0

)
gI0 δT2

k (10)

β̂
Ik
Ik+1

= R
(

γ̂
Ik
Ik+1

)
vIk+1

Ik+1
− vIk

Ik
+ R

(
γ̂

Ik
I0

)
gI0 δTk (11)

where δTk means the time interval between image frames k and k + 1, namely,
δTk = Tk+1 − Tk. vIk

Ik
and vIk+1

Ik+1
represent the velocity of k and k + 1 frames in the IMU

body to be solved. gI0 denotes the value of gravity in the first IMU body frame to be
computed. PI

o denotes the value of the extrinsic translation between the IMU and odometer,
which is known because we directly use the values calibrated offline.

The equations constructed using every pair of consecutive frames in the sliding
window are concatenated to establish linear simultaneous equations. By solving the linear
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least-squares problem, the velocity of each frame and the gravity vector gI0 in the first IMU
frame can be solved.

Since the magnitude of gravity is usually a known quantity, the value used in this
paper is g = 9.81007. To facilitate the iterative optimization of the gravity vector, we reset

gI0 = g ĝ
I0
i∥∥∥ĝ
I0
i

∥∥∥ + ϕ1b1 + ϕ2b2 and put it into (10) and (11). By resolving the new least-squares

problem, the optimized gravity vector and the velocity of each frame are computed. Here,
b1 and b2 are a pair of orthogonal bases in the tangent space of the gravity vector ĝI0

i . ĝI0
i is

the ith iteration solution of gI0 . ϕ1 and ϕ2 represent the values adjusted for the gravity vector
ĝI0

i along the b1 and b2 directions, which are solved from the new least-squares problem.
We repeat the iterative steps until ĝI0 convergence. In this way, we need not assume

the vehicle moves on an approximately flat surface at this stage because we use the first
solution computed from Equations (10) and (11) as the initial value for the subsequent
optimization iterations.

Then, the first IMU frame is rotated to the world coordinate system. Finally, the
optimized velocities and the IMU measurements are integrated to calculate the initial poses
of all keyframes in the sliding window, and the feature points tracked between these frames
are triangulated.

3.3.4. Nonlinear Optimization

The purpose of back-end nonlinear optimization is to combine a variety of measure-
ments, such as camera, IMU and odometer, for high precision and robust estimation of
vehicle states. To balance the requirements of computational load and real-time perfor-
mance, similar to [11,12], we also use the sliding window with partial marginalization for
nonlinear optimization.

The state vector to be estimated in the sliding window is defined as (12):
χ =

[
x0, x1, . . . xn, xI

C, λ0, λ1 . . . λm
]

xk =
[

pw
Ik

, vw
Ik

, qw
Ik

, bak , bωk

]
, k ∈ [0, n]

xI
C =

[
pI

C, qI
C
](

bωk

)
z = 0 , k ∈ [0, n]

(12)

where xk represents the vehicle state at the time that the kth image is captured, including
the position pw

Ik
, velocity vw

Ik
, orientation qw

Ik
in the world frame, acceleration bias bak , and

gyroscope bias bωk in the IMU body frame. n is the total number of keyframes in the sliding
window. λl is the inverse depth of the lth feature from its first observation. xI

C is the
extrinsic parameters between the camera and IMU, including the relative position pI

C and
orientation qI

C. We do not correct the extrinsic parameters between IMU and odometer but
directly use the parameters calibrated offline.

At this stage, since the bias-corrected acceleration may provide more precise con-
straints for solving the pitch angle and roll angle, we further use the calibrated x-axis and
y-axis biases of the gyroscope to update the pre-integration of IMU and odometer accord-
ingly. However, as described in Section 3.3.2, since the learned horizontal direction can be
more accurate than the result obtained by the state-of-the-art VIO methods (demonstrated
by [29–32] and our experiments in Section 4.3), we do not update these pre-integrations
using the z-axis bias of the gyroscope calibrated online; that is, we set

(
bωk

)
z to 0.

The objective function is composed of three residual terms, which are the visual re-
projection residual, the IMU-odometer pre-integration residual, and the marginalization
residual. The objective function is defined as follows:

min
χ

∥∥rp − Hpχ
∥∥2

+ ∑
k∈[0,n−1]

∥∥∥rΩ

(
ẑIk

Ik+1
,χ
)∥∥∥2

P
Ik
Ik+1

+ ∑
(l,j)∈Ψ

ρ

(∥∥∥rΨ

(
ẑ

cj
l ,χ

)∥∥∥2

P
cj
l

) (13)
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In Equation (13), the first term represents the marginalization residual, and
{

rp, Hp
}

is the prior information from marginalization. rΩ

(
ẑIk

Ik+1
,χ
)

is the IMU-odometer pre-
integration residual, and Ω represents the set of IMU-odometer pre-integration in the
sliding window. PIk

Ik+1
is the covariance matrix of IMU-odometer pre-integration from frame

k to frame k + 1. rΨ

(
ẑ

cj
l ,χ

)
is the visual reprojection residual. Ψ is the set of features and

the corresponding frames in the current sliding window. l means the lth feature in Ψ, and
cj is the jth image frame. P

cj
l is the uniform covariance matrix used for visual reprojection,

and ρ is the robust kernel function.
Here, we give the combined residual function of IMU-odometer pre-integration, as

shown in Equation (14):

rΩ

(
ẑIk

Ik+1
,χ
)
=



δα
Ik
Ik+1

δβ
Ik
Ik+1

δθ
Ik
Ik+1

δη
Ik
Ik+1

δba
δbω


=



RIk
w

(
Pw

Ik+1
− Pw

Ik
+ 1

2 gwδT2
k − vw

Ik
δT
)
− α̂

Ik
Ik+1

RIk
w

(
vw

Ik+1
+ gwδT − vw

Ik

)
− β̂

Ik
Ik+1

2
[

qw
Ik

−1 ⊗ qw
Ik+1

⊗(
γ̂

Ik
Ik+1

)−1
]

xyz

RIk
w

(
Pw

Ik+1
− Pw

Ik

)
− PI

o + RIk
w Rw

Ik+1
PI

o − η̂
Ik
Ik+1

bak+1 − bak

bωk+1 − bωk


(14)

Similar to [21], α̂
Ik
Ik+1

, β̂
Ik
Ik+1

, γ̂
Ik
Ik+1

, and η̂
Ik
Ik+1

are updated with IMU biases bak and bωk .

Since we set
(
bωk

)
z = 0, the z-axis bias of the gyroscope produces no updates to α̂

Ik
Ik+1

, β̂
Ik
Ik+1

,

γ̂
Ik
Ik+1

, and η̂
Ik
Ik+1

.
In this paper, Ceres Solver [59] is also used for solving this nonlinear problem.

3.3.5. Yaw Attitude Correction

The VINS system has 4 unobservable degrees of freedom (DOF) corresponding to
3 DOF of global translation and 1 DOF of rotation around the gravity vector (namely
the yaw angle) [15]. Although the pre-integrations in Section 3.3.2 can provide relatively
accurate residual constraints for the nonlinear optimization in Section 3.3.4, the yaw angle
accuracy of the pose after optimization may still not be ideal.

In this stage, we further correct the yaw angle of each keyframe in the sliding window
after nonlinear optimization to obtain the best attitude accuracy. Since the accuracy of
attitude plays an important role in estimating the long-term trajectory, the corrected yaw
angles are beneficial to improve the accuracy of our VIWO system. As shown in Section 4.4,
we finally obtain more accurate trajectory results based on the accurate yaw attitude
obtained by our NGC-Net.

For the correction steps, we first obtain the yaw angle of each keyframe in the sliding
window by directly integrating the de-noised gyroscope measurements. Then, these yaw
angles are substituted into the optimized poses of all keyframes in the sliding window.
Finally, on the one hand, the corrected pose of the current keyframe is output as the final
result. On the other hand, the corrected poses (besides the marginalized keyframe) in the
sliding window are further used for the following keyframe optimization.

It is worth noting that we only substitute the yaw angle for the pose of each optimized
keyframe during this stage, not including the pitch and roll angle.

4. Experiments

In this part, a series of experiments are carried out to verify the de-noising performance
of our proposed NGC-Net and the accuracy and robustness of the multi-sensor fusion
localization method assisted by the neural gyroscope calibration proposed in this paper.
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4.1. Baselines

We compare our method with existing methods, including the following:

(1) Raw IMU: Orientation computed using the original IMU readings.
(2) OriNet: A 3D orientation estimation method based on an LSTM network [47].
(3) DIG-Net: Attitude estimation based on a dilated convolution network [29].
(4) Our proposed NGC-Net: Our learning-based method described in Section 3.2.
(5) VINS-Mono: Representative of state-of-the-art visual-inertial odometry with an open-

source code [11].
(6) Open-VINS: A state-of-the-art filter-based visual-inertial estimator for which we

choose the stereo and IMU configuration [7].
(7) Proposed VIWO: An optimization-based monocular visual-inertial-wheel odometry

developed based on VINS-Mono without the aid of NGC-Net, which is similar to
the work proposed by [11] without the online IMU-odometer extrinsic parameter
calibration module.

(8) Proposed VIWO+NGC: A method that is the same as method (7), but the gyroscope
inputs are the NGC-Net outputs rather than the raw gyroscope measurements.

(9) Proposed RNGC-VIWO: The method described in Section 3.3, in which the de-noised
gyroscope measurements are effectively fused into the overall framework.

We divide the baseline methods into two categories corresponding to the two purposes
of our experiments:

• 3D orientation estimates based on the learning method and VIO method. We compare
these deep learning methods to demonstrate the de-noising performance of our NGC-
Net. For a fair comparison, we use the same training sequence and test sequence. Since
the OriNet has not been published and only provides test results on the EuRoC MAV
Dataset [60], we do not compare our method with the OriNet on the KAIST Urban
Dataset [61]. The DIG-Net is not tested on the KAIST Urban Dataset, although it is
open-sourced, and we use the default network parameters and take the best training
results as the network output. We also compare the VIO methods (VINS-Mono, Open-
VINS) to demonstrate that our NGC-Net can accurately estimate the orientation and
compete with VIO methods.

• 6DOF pose estimates based on multi-sensor fusion. We further evaluate the localization
performance of our proposed RNGC-VIWO on the KAIST dataset, which is equipped
with the stereo camera, IMU, and wheel odometer for vehicle localization. However,
an open-source algorithm with the same sensor configuration cannot be found at
present. Thus, we compare our RNGC-VIWO with the proposed VIWO, proposed
VIWO+NGC, and the state-of-the-art VIO methods (VINS-Mono, Open-VINS). In
addition, reference [37] proposes an excellent VIWO algorithm and tests it on KAIST
urban39; we directly include the test results of urban39 in Section 4.4 for comparison
since it is not open-source.

4.2. Metrics Definitions

We evaluate the method in terms of 3D orientation/yaw and 3D translation estimates,
which are defined as follows:

(1) Absolute Yaw Error (AYE): The AYE computes the root mean square error between
the ground truth and estimated heading as the following equation:

AYE =

√√√√ 1
n

n

∑
i=1

∥∥∥∥θi −
∼
θ i

∥∥∥∥2
(15)

where n is the sequence length, and θi and
∼
θ i are the ground truth and estimated yaw

angle at the instant i.
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(2) Absolute Orientation Error (AOE): The AOE calculates the root mean square error
between the ground truth and estimated orientation as

AOE =

√√√√ 1
n

n

∑
i=1

∥∥∥∥log(RT
i

∼
Ri

)∥∥∥∥2

2
(16)

where log(·) is the SO(3) logarithm map, n is the sequence length, and Ri and
∼
Ri are

the ground truth and estimated orientation at the instant i.
(3) Absolute Translation Error (ATE): The ATE calculates the root mean square error

between the ground truth and estimated position as

ATE =

√√√√ 1
n

n

∑
i=1

∥∥∥∥Pi −
∼
Pi

∥∥∥∥2
(17)

where Pi and
∼
Pi are the ground truth and estimated position at the instant i.

4.3. Neural Gyroscope Calibration Network Performance

(1) Evaluation of the EuRoC MAV Dataset: The dataset provides stereo image and
IMU data from a micro aerial vehicle including 11 sequences [60]. The IMU measurements
are measured using the ADIS16448 at 200 Hz, and 6DOF pose ground truth is provided. As
noticed in [7], the ground truth of the V1_01 easy sequence has incorrect orientation values,
and we refer to the corrected ground truth provided by reference [7].

The same training and test sequences are used with the corresponding baseline meth-
ods [29,47] to make a fair comparison. The training set is defined as the first one and
a half minutes of six sequences, namely V1_02_medium, V2_01_easy, V2_03_difficult
MH_01_easy, MH_03_medium, and MH_05_difficult, and the validation set is the rest of
these sequences. The test set contains five sequences of MH_02_easy, MH_04_difficult,
V1_01_easy, V1_03_difficult, and V2_02_medium.

As shown in Table 1, our proposed NGC-Net is superior to the original IMU data
in direction and yaw angle estimation. Compared with the other two learning methods,
our proposed NGC-Net achieves the best performance on most test sequences, the AOEs
and AYEs of which are 1.53/0.85 degrees. When comparing with VIO methods, we find
that our NGC-Net is even comparable to the VIO method in orientation estimation. In
addition, the mean yaw error of our NGC-Net is 0.85 degrees, which is better than all VIO
methods such as Open-VINS with 1.37 degrees and VINS-Mono with 2.14 degrees. The
orientation estimates and errors of the different methods on the test sequence of V1_01_easy
and V1_03_difficult are also shown in Figure 4 and Figure 5, respectively.

Table 1. Absolute orientation error (AOE) and absolute yaw error (AYE) in terms of 3D orienta-
tion/yaw, in degrees. Results of VINS are the reported ones in [32]. The best results are in bold.

Sequence Raw IMU VINS-Mono [11] Open-VINS [7] OriNet [47] DIG-Net [29] NGC-Net

MH_02_easy 146/130 1.34/1.32 1.11/1.05 5.75/0.51 1.39/0.85 1.70/1.20
MH_04_difficult 130/77.9 1.44/1.40 1.60/1.16 8.85/7.27 1.40/0.25 0.93/0.23

V1_01_easy 71.3/71.2 0.97/0.90 0.80/0.67 6.36/2.09 1.13/0.49 0.78/0.48
V1_03_difficult 119/84.9 4.72/4.68 2.32/2.27 14.7/11.5 2.70/0.96 1.05/0.75
V2_02_medium 117/86.0 2.58/2.41 1.85/1.61 11.7/6.03 3.85/2.25 3.19/1.57

mean 125/89.0 2.21/2.14 1.55/1.37 9.46/5.48 2.10/0.96 1.53/0.85

In addition, the IMU of the EuRoc MAV Dataset runs at 200 Hz, the number of network
model parameters is about 856,013, and the size of the network model is only 3.5 MB. The
1200 epochs of training take about 7 min.

(2) Evaluation of the KAIST Urban Dataset: This dataset contains a variety of sensor
measurements, such as stereo camera images, IMU measurements, wheel encoder readings,
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etc., which can provide the required inputs for our multi-sensor fusion localization system
and is the main target dataset for our study. It also provides the ground truth generated
by high-precision gyroscope, VRS-GPlS, and LiDAR sensors. The commercial-grade IMU
measurements are obtained with Xsens MTi-300, and the frequency is 100 Hz. More details
of the dataset are in [61].

In this experiment, we define the training set as 11 sequences, namely urban18, ur-
ban20, urban22, urban23, urban24, urban28, urban30, urban32, urban35, urban36, and
urban38, and the validation set as the sequences of urban19, urban21, urban25, urban26,
and urban27. The test set is urban29, urban31, urban33, urban34, urban37, and urban39.

The results of DIG-Net in Table 2 are the best results of dozens of training experiments
using the default network parameters provided by [29], except for some parameters that
must be adjusted to train on the KAIST Urban Dataset, such as IMU frequency, training
sequences, etc.

Table 2. Absolute orientation error (AOE) and absolute yaw error (AYE) in terms of 3D orienta-
tion/yaw, in degrees. The best results are in bold, and the symbol -- fails to run on these test sequences.

Sequence Raw IMU VINS-Mono [11] Open-VINS [7] DIG-Net [29] NGC-Net

urban29 37.64/26.47 3.15/2.82 1.36/0.81 3.33/0.54 2.91/0.69
urban31 93.68/60.74 16.02/15.72 -- 8.39/6.98 5.91/2.07
urban33 84.98/75.94 10.25/9.93 3.61/3.37 6.12/3.69 3.43/0.65
urban34 43.95/40.75 24.38/24.08 -- 2.57/2.16 1.98/0.48
urban37 48.23/29.99 67.27/5.57 7.34/6.29 3.24/2.22 3.12/0.98
urban39 122.34/120.48 19.97/19.94 3.18/2.95 7.46/5.60 5.11/0.89

mean 71.80/59.06 23.51/13.01 -- 4.85/3.31 3.74/0.96
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As shown in Table 2, in terms of 3D orientation and yaw angle estimation, our pro-
posed NGC-Net outperforms the raw IMU data. Compared with DIG-Net, our NGC-Net
maintains higher accuracy on most sequences except urban29. When comparing the esti-
mated orientation of NGC-Net with VIO methods, the conclusion is similar to that of the Eu-
RoC MAV Dataset. Compared with VINS-Mono, our proposed NGC-Net achieves the best
performance on most test sequences, the AOEs and AYEs of which are 3.74/0.96 degrees.
Compared with Open-VINS, which shows the excellent performance of its system, it still
fails to run through the other two sequences since it still suffers from some initialization
problems in complex dynamic environments. NGC-Net can provide more accurate 3D
orientation estimation, especially accurate yaw angle estimation.

The orientation estimation and error of urban33 and urban39 by different methods are
also shown in Figures 6 and 7, respectively. As shown in the figures, Our NGC-Net, the red
line, is closest to ground truth and achieves the best performance among these methods.
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In addition, the training time for 1200 epochs is approximately 24 min, and the size of
the network model is about 3.5 MB. Moreover, the prediction time of the network model is
about 10 s for the test sequence of more than 30 min and has real-time computing ability.

4.4. Muti-Sensor Fusion System Performance

To verify the performance of our approach in more realistic traffic scenarios, we use
the KAIST Urban Dataset [61] to further evaluate the accuracy of our proposed multi-
sensor fusion algorithm. The length of the dataset (3–12 km), the significant changes
in illumination, and the complexity of the environment (including many pedestrians,
oncoming traffic, high-rise buildings, etc.) lift it to another level of difficulty. We use the left
of the stereo camera, the mounted commercial-grade IMU, and the left wheel encoder for
pose estimation. Our proposed approaches are compared with the state-of-the-art methods
such as Open-VINS [7], VINS-Mono [11], and VIWO [37] mentioned in Section 4.1. Since
the purpose of our experiments is to evaluate the performance of these methods in complex
long-term driving environments, we do not enable the loop-closing module for all these
methods. Note that approaches [7,11] do not provide the test results on the KAIST Urban
Dataset; we evaluate them ourselves by running each method five times on each testing
sequence and taking the average values as the results. For reference [37], we only cite the
results because it is not open-source.

Table 3 shows the root mean squared error (RMSE) of the 3D position (in units of
meters) and 3D orientation (in units of degrees) of each algorithm. Figures 8 and 9 show
the qualitative comparison of experimental results among different approaches. Figure 8
shows the comparison of estimated 2D trajectories of each tasting sequence among different
approaches, and Figure 9 shows the detailed 6DOF trajectories of each test sequence among
different approaches.
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Table 3. Comparison of absolute translation error (ATE) and absolute orientation error (AOE) in
terms of 3D translation/orientation in units of meters/degrees, of resulting trajectories from different
approaches. The best results are in bold.

Sequence Length VINS-Mono [11] Open-VINS [7] VIWO [37] Proposed VIWO Proposed
VIWO+NGC

Proposed
RNGC-VIWO

urban29 3.6 km 256.73/3.15 5.68/1.36 - 17.33/1.92 17.08/1.87 4.06/0.84
urban31 11.4 km 291.81/16.02 -- - 255.15/16.97 238.06/15.99 49.83/2.99
urban33 7.6 km 106.16/10.25 25.34/3.61 - 72.31/10.75 70.35/10.81 11.74/1.55
urban34 7.8 km 340.29/24.38 -- - 171.58/17.60 149.00/15.21 17.60/2.37
urban37 11.77 km 1282.76/67.27 182.51/7.34 - 463.97/40.50 463.84/40.25 27.47/1.43

urban39 11.06 km 153.70/19.97 24.12/3.18 52.65/2.87 *
42.74/1.71 ** 99.02/18.60 98.82/18.77 20.11/1.79

mean 8.87 km 380.80/23.51 -- - 179.89/17.72 172.86/17.15 21.80/1.83

It should be noted that the symbol * in Table 3 represents the result provided by [37] without online IMU-odometer
spatiotemporal extrinsic calibration, and the symbol ** represents the result provided by [37] with online IMU-
odometer spatiotemporal extrinsic calibration. The symbol - means the result is not provided by the method
in [37], and the method is not open-source. The symbol -- in Table 3 means Open-VINS failed to run on these test
sequences. In addition, we use the evo tools [62] to evaluate the 3D translation and orientation errors of these
methods, using SE(3) Umeyama alignment in the calculation.
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From Table 3 and Figures 8 and 9, we can see that our proposed RNGC-VIWO approach
outperforms the state-of-the-art approaches in terms of both translation and orientation.
From the above results, we can draw the following conclusions:

First, the pure VINS-Mono suffers from very large errors, up to hundreds of meters to
about one kilometer, due to the scale drift affected by restricted motion (mostly constant
speed, on straight lines) and complex environments. However, as more information
becomes available, such as the addition of the right camera or the wheel encoder readings,
which are methods of Open-VINS and our proposed VIWO, the positioning accuracy is
significantly improved. Surprisingly, the 3D orientation accuracy of our proposed VIWO
method is slightly improved compared with VINS-Mono, as the odometer pre-integration
may provide some additional constraints for orientation estimation.

Second, by comparing our proposed VIWO and Open-VINS, the accuracy of Open-
VINS in the four successfully initialized sequences is better than our proposed VIWO, but
it still fails to run through the other two sequences in complex environments. Moreover, it
should be noted that we choose the stereo-IMU configuration instead of the mono-IMU
configuration of Open-VINS to test on the KAIST Urban Dataset.
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Third, in comparison with our proposed VIWO, our proposed VIWO+NGC approach
just slightly improves the estimated position and orientation accuracy on the six test se-
quences, since it directly uses the de-noised gyroscope outputs as input. Comparing these
two methods with our proposed RNGC-VIWO approach, our RNGC-VIWO can signifi-
cantly improve the estimated position and orientation accuracy on the six test sequences,
which proves the effectiveness of our proposed overall framework, which effectively fuses
the de-noised gyroscope outputs into the traditional VIWO.

Fourth, our RNGC-VIWO approach also outperforms Open-VINS in terms of accuracy
and robustness. Compared with the results on Urban39 provided by the VIWO method in
reference [37], the position accuracy of our proposed RNGC-VIWO method still outper-
forms [37], even though [37] uses the stereo camera, IMU, and two wheel odometers along
with online IMU-odometer spatiotemporal extrinsic calibration. The orientation accuracy
of our proposed RNGC-VIWO on urban39 is comparable to the best result obtained by [37]
with online IMU-odometer spatiotemporal extrinsic calibration and outperforms the result
obtained by [37] without online IMU-odometer spatiotemporal extrinsic calibration. These
results further prove the effectiveness of our proposed overall framework.

In conclusion, our proposed RNGC-VIWO approach can achieve only 21.80 m and
1.83-degree average errors over the long-term complex test sequences and a total length of
53.23 km for six sequences in the dataset, and the average distance of the six test sequences
is 8.87 km, only using one camera, one wheel odometer, and a vehicle-mounted IMU
de-noised by our NGC-Net.

We test these methods in the same Ubuntu 16.04 environment, using a desktop
equipped with Intel (R) Core(TM) i7-6700HQ 2.60 GHz CPU and 16 GB RAM. Our proposed
RNGC-VIWO method can achieve real-time performance similar to VINS-Mono [11], since
the average time needed for visual feature detection and tracking is about 20 ms, and the
maximum time of nonlinear optimization is an adjustable parameter (80 ms used in our
experiments).

5. Conclusions

In this paper, to reduce the long-term drift of VIWOs deployed for ground vehicles
without relying on additional GNSS sensors, prior maps, or specific motion patterns,
we propose a tightly coupled nonlinear optimization method combining robust neural
gyroscope observations with traditional visual-inertial-wheel odometry for pose estimation.
The learning-based gyroscope calibration method can provide more powerful observations,
and the de-noised gyroscope outputs can provide more accurate attitude estimation and
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better directional constraints for the multi-sensor fusion method by effectively fusing
them together.

We evaluate the proposed NGC-Net by comparing the orientation estimation per-
formance with other learning-based methods on two public datasets, namely, the EuRoC
MAV Dataset and the KAIST Urban Dataset. The results show that our NGC-Net achieves
better de-noising performance compared with the existing learning-based methods and
VIO methods and obtains excellent accurate attitude estimates with only a low-cost IMU.
To verify the performance of our RNGC-VIWO in more realistic driving scenarios, we
further use the KAIST Urban Dataset to evaluate the accuracy of our proposed method.
The positioning accuracy of our RNGC-VIWO algorithm outperforms the state-of-the-art
monocular and stereo visual-inertial methods, such as VINS-Mono and Open-VINS, and
is even better than the stereo VIWO methods in [37]. The experimental results show our
method has reliable performance in complex long-term environments.

In the future, we will further investigate how deep learning algorithms can be used
to learn more sensor characteristics, such as accelerometers and odometers, and how to
better integrate them with multi-sensor fusion algorithms to further improve localization
accuracy. Moreover, deep learning for object detection has been the focus of much research
and has been successful in many applications, including autonomous driving [63]. We
also plan to incorporate object detection into our localization system to address dynamic
interference and improve the robustness of vehicle localization in dynamic environments.
Finally, inspired by [37], since online IMU-odometer spatiotemporal extrinsic calibration
can improve the overall accuracy of the system, especially correcting the time offset between
the IMU and odometer (0.027 s of the KAIST Dataset reported in [37]), we will add this
online calibration module into our proposed framework to further improve the performance
of vehicle localization.
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