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Abstract: With the exploration of outer space, the number of space targets has increased dramatically,
while the pressures of space situational awareness have also increased. Among them, spacecraft
recognition is the foundation and a critical step in space situational awareness. However, unlike
natural images that can be easily captured using low-cost devices, space targets can suffer from
motion blurring, overexposure, and excessive dragging at the time of capture, which greatly affects
the quality of the images and reduces the number of effective images. To this end, specialized or
sufficiently versatile techniques are required, with dataset diversity playing a key role in enabling
algorithms to categorize previously unseen spacecraft and perform multiple tasks. In this paper,
we propose a joint dataset formulation to increase diversity. Our approach involves reformulating
two local processes to condition the Conditional Neural Adaptive Processes, which results in global
feature resampling schemes to adapt a pre-trained embedding function to be task-specific. Specifically,
we employ variational resampling to category-wise auxiliary features, adding a generative constraint
to amortize task-specific parameters. We also develop a neural process variational inference to
encode representation, using grid density for conditioning. Our evaluation of the BUAA dataset
shows promising results, with no-training performance close to a specifically designed learner and an
accuracy rate of 98.2% on unseen categories during the joint training session. Further experiments on
the Meta-dataset benchmark demonstrate at least a 4.6% out-of-distribution improvement compared
to the baseline conditional models. Both dataset evaluations indicate the effectiveness of exploiting
dataset diversity in few-shot feature adaptation. Our proposal offers a versatile solution for tasks
across domains.

Keywords: spacecraft recognition; few-shot feature adaptation; generative family; neural processes

1. Introduction

The growing tension over resource constraints has directly accelerated the need to
explore space beyond Earth. However, the large number of space targets with different
shapes and forms increases the difficulty of space situational awareness, and misjudgment
of space targets will directly affect the space order and delay the popularization of space
knowledge, which requires the recognition of spacecraft. Still, space target images suffer
from distortion and blurring due to target attitude instability, sensor performance and
image channel transmission [1], which results in a limited number of available space
target images.

Traditional spacecraft recognition methods extract features from images by manual
design. The construction of these methods requires the knowledge and experience of
domain experts to ensure that appropriate features and algorithms are selected. For ex-
ample, SIFT methods focus on detecting key points at different scales and rotation angles,
while HOG methods focus on the edge and texture information of the image. However,
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traditional methods are greatly limited by the problems of complex scene modeling and
limited data samples for space targets. A realistic scenario like this presents challenges in
few-shot formulation. Deep learning methods [2], especially Convolutional Neural Net-
works (CNNs), have achieved significant advantages in image classification tasks for space
targets by automatically learning abstract features through multilevel neural networks.
Among them, DCNN [3] achieves space target recognition through an end-to-end approach
and copes with the few-shot problem by means of data augmentation and data simula-
tion. Discriminative Deep Nearest Neighbor Neural Network (D2N4) [4] overcomes the
significant intra-class differences of space targets by introducing center loss. On the other
hand, global pooling information is introduced for each depth-local descriptor to reduce
the interference of local background noise and thus enhance the robustness of the model.

However, as can be seen from the rise of the cross-domain few-shot learning field, poor
performance outside the target task domain (which we call out-of-distribution data) is a
crucial constraint on few-sample tasks. Furthermore, the design of D2N4 on discriminating
spacecraft is an approximate overfitting problem, which contradicts further generalization
to the unseen category. Each of these data domains is distributed differently, maintains
large domain gaps between each of them, and shows significant deviations from the target
data domain (which we call in-distribution data). Solutions dedicated to one area tend to
fail the corner or generally less common observations. Thus, they better have long-term
support [5]. The alternative can choose to be multi-functional and sufficiently capable of
current concerns, meaning a successful algorithm should address its majors well and easily
generalize to the rare rest [6]. Human exploration of the planet still suffices as a good
example. Compared with natural images, space target images have a single background
and are greatly affected by illumination; in addition, space target images have the problem
of sizable intra-class gaps and small inter-class gaps. The introduction of multi-domain
natural images covers the target domain’s data features by increasing the data’s diversity.
Therefore, it is more reasonable to take the different domains of natural images as the main
task of adapting the features of space target images while placing the space target images
precisely in the “rest of the domain”.

Similar to the paradigm that learns the major features and evaluates the rest, the few-
shot learning model uses a handful of examples to categorize previously unseen obser-
vations into known labels. A simple few-shot learner achieves matching of the extracted
features to the distribution of the dataset via fine-tuning a small classifier [7–9] or calibrat-
ing target distribution [10]. Another popular alternative, meta-learning approaches [11],
takes “learning to learn from diverse few-shot examples and evaluate the unseen one, even
the unseen domain” to generalize to wild datasets. Practically, the meta-learner considers
optimally measured feature distances and, therefore, can be characterized by constructing
a universal representation with great computation [12,13], or elegantly adapting models
from a good initialization [14,15]. However, the rare context examples still matter if moving
towards unseen categories of spacecraft images.

To cover the corner, the researcher presents grayscale spacecraft images, the BUAA
dataset [16], to simulate the contexts for recognition. With Figure 1, when inspecting
the dataset content, it is at that early deep era when much analysis [4,17] measuring
fine-grained properties and intra-class variance from scratch score well in those offline
archives. However, less diversity in such learning procedures potentially under-fit future
generalizations [18]. Fortunately, these years of milestones in AI research make publicly
accessible assets handy, which could help allow any meta-learner to converge in the range
of the large-scale dataset instead. Even in the few-shot setting, much of the meta-learner
now utilizes a large labeled dataset, episodically simulating few-shot constraints [19].
For instance, Triantafillou et al. [20] present a large-scale Meta-dataset (ten labeled datasets
in composition, with eight for training, e.g., ILSVRC-2012 [21] and two for the testing,
e.g., MSCOCO [22]) that makes few-shot classifications in the cross-dataset setting and
catches up on real-world events. Therefore, the recognition of spacecraft dataset raises the
problem of whether to use a single space target image for training or to use a large-scale
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dataset to aid in training. When the protocol is defined with large-scale Meta-dataset, it
samples random tasks into episodes, and the solutions must consider (1) being adapted
to an indicated domain by using a few task-specific examples, and (2) exploring shared
knowledge between each task. Using shared structures to adapt models with task-specific
formulation is a critical factorization for such an algorithm. Furthermore, limited overhead
in the whole process would be preferred.

Figure 1. Inspection of the BUAA dataset. The data generation uses 3D triangulated models with
dark backgrounds, simulating aircraft in deep space. Images of each category are uniformly rendered
from 230 viewpoints on a default view port in 3Ds MAX software.

Members in the Neural Processes family (NPF) [23] meta-learn a mapping directly from
observations to a distribution over functions, known as the stochastic process, exploiting
prior assumptions to quickly infer a new task-specific predictor at the test time. Conditional
Neural Adaptive Processes (CNAPs) [24], the conditional model [25] for adaptable few-
shot classification, introduce an amortization of FiLM layers [26] in distribution modeling,
offering fast and scaleable realizations from a pre-trained template to predict unseen multi-
task datasets. Observations from [27] also suggest that this is one of the cases where training
images from diverse domains benefit the distribution approximation.

The pipeline in Figure 2 highlights an adaptation of a conditional embedding function
when solving each few-shot classification. CNAPs model amortizes the computational
cost of the model by learning a functional approximator in the meta-training phase, which
generates most of the parameters in Resnet-18 [28] by evaluating the sample. Further,
with no explicit adaptation on the classifier (contrasting with CNAPs), Simple CNAPs
conclude multi-task likelihood estimation in formulating each non-parametric Mahalanobis
distance measurement. By its mathematical definition, two participants in acquiring the
distance and proper conditional embedding function are responsible for such a design.
Figure 2 also shows similarities to another specific design for cross-domain few-shot
learning: Task-Specific Adapters (TSA). As the latest method, TSA attaches its task-specific
adapters to a single universal network distilled from a cross-domain dataset and learns
those adapters on a few labeled image examples. This means the task-specific adapters can
be plugged into a pre-trained feature extractor to adapt it to multiple datasets, similar to
the FiLM layers of the Conditional Neural Adaptive Processes.
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Figure 2. The “Simple” variant of Conditional Neural Adaptive Processes in few-shot classifications [29].
The model also follows the rules of a meta-learning algorithm that learns from labeled context-set (C)
images and predicts unlabeled target-set images (T ).

Back to the highlighted feature adaptation from Figure 2, a solid fact is that generating
task-specific embedding functions always constitutes their task-specific parameters [30],
also known as the amortization parameter, according to a task-level feature representation.
The process connects to the capacity of scaling to complex functions for given datasets.
Since the deterministic representation cannot match the diversity in data domains, a direct
likelihood estimation for the model would fail. It also could be interpreted as an underfit-
ting phenomenon (or amortization gap [6]) that the task-level aggregate mathematically
captures a distribution over task-specific parameters but potentially under-fits small-scale
examples [31]. Simply observing sufficient data would, in turn, violate the few-shot setting.

In this work, we specify a meta-objective to diversify the conditional feature adapta-
tion, generalizing the large in-distribution datasets [20] to perform spacecraft recognition,
particularly in the few-shot setting. The idea is to resample the task-level representation
explicitly (see comments in Figure 2). To achieve this, we adopt variational learning to
parameterize generative density, from which we can directly sample the reformulated
features. We further assume the neural process variational inference to approximate a
distribution over tensor values that encoder the context features, allowing us to sample
a collection of embedding schemes for each latent feature. Our resampling formulation
has two implementations: (1) A conditional variational auto-encoder pipeline that pro-
vides controllable constraints in directly estimating the generative density of task-level
representative; and (2) A latent Neural Process [23,32] that reformulates the meta-learned
embedding function to encode task-level representation. Overall, we improve the robust-
ness of the model by reformulating the local progressions to obtain more representative
class prototypes that are resistant to data bias in the few-shot setting. Furthermore, the
adaptation scheme is applied on a single backbone that is only pre-trained on ImageNet
dataset [21], yet it achieves comparable performance against methods in universal represen-
tation [12,13]. The evaluation on the Meta-dataset also shows that the extended version of
the latest few-shot classification algorithm has the highest average rank, particularly with
a large margin on out-of-distribution tasks. A summary of our contributions to solving
few-shot classification are:

(1) We investigate a generative re-sampling scheme for representation learning. The sam-
pled representation is used to condition an amortized strategy and universal backbone
in adapting the embedding extractor function to multiple datasets;

(2) From a self-supervised perspective, we propose a data encoding function based on
neural process variational inference;

(3) We present a comparable out-of-distribution performance against methods with a spe-
cific design on BUAA dataset and with universal representation on the Meta-dataset.
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The remainder of the paper is organized as follows: Section 2 briefly reviews the
related background to our approach. Our approach is studied and detailed in Section 3.
The introduction to the dataset, model ablation studies and experimental results are ana-
lyzed and presented in Section 4. We conclude our work in Section 5.

2. Background

Our preliminary insight into solving a visual classification problem is related to
meta-learning formulations in classification and Neural Processes Family and Generative
distribution modeling.

2.1. Meta-Learning Approaches in a Few-Shot Setting

The meta-learning [33] technique applies the “learning to learn” concept to reduce the
data required for the model. During the meta-training phase, task samples are extracted
from large-scale labeled datasets based on the task distribution P(D). Tasks are randomly
divided into few-shot context and target sets. That is, per iteration, the classification dataset
D, also named a task sample, has x images to be classified as known labels y, and can
further subdivide into two subsets: C that stores contextual supervision and T that requires
generalization from those few contexts.

Over all accessible tasks, a meta-algorithm updates its parametric modeling to mini-
mize a general object function:

L := ∑
C,T

l ( one-hot · d( f (xT ); C), yT ), (1)

in which l is the cross-entropy loss. The distance function d measures how close a categorical
distribution (think about what softmax function outputs) is to the true layout yT . In contrast,
the embedding function f ideally defines a feature space where the pre-defined metric d is
assumed to be optimal for drawing boundaries. Then, there are two main streams on the
table to conclude one meta-learner: one is based on distance (also known as metric learning),
and the other shares the core of adaptation. Compared to earlier explorations [34,35] on
a generic metric space, classic examples for the latter can be found in optimization-based
approaches to few-shot classifications [17]. The algorithms follow particular rules for
learning to adapt from a few observations and addressing unseen bunches in a specific
task. However, what does “adapt for a specific classification task” mean for an algorithm?
Is there a unified formulation, and is it optimal?

If we view model adaptation as solving an optimization with a set of parameters Φ
that updates a set of weights Θ of a classifier f (x; Θ) to a set of adapted weights Θ′ in
predicting C, then optimal parameters are defined to have

Θ′ = argmax
Θ

EC∼P(C)

[
∏
|C|
c=1 p(y = y(c)| f (x(c); Θ) ; Φ

]
. (2)

The classifier under Θ′ is responsible for maximizing the expected density estimation
in predicting T :

E
T ∼P(T )

[
|T |

∏
t=1

p(y = y(t)| f (x(t); Θ′)]. (3)

From this formulation, performing just full gradient descent learning (see MAML, [14])
can be one of the adaptation rules. Still, in most cases, they tend to overfit few-shot data
with expensive computation of the second derivatives. Cheaper implementations are to
ignore the second derivative (fo-MAML) [36], and to incorporate inductive bias from the
prototypes into an initialization scheme (Proto-MAML) [20]. A more efficient way is to
adopt amortized inference [6,24,29] on the contextual information and to enable sharing
global parameters for a learned distribution over embedding functions. Such an inference
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allows us to rapidly instantiate a function f∼p( f ) to participate in a specific task, and
further reduces the cost of adaptation. After iteratively refining their performance across
various instances of few-shot tasks drawn from the distribution P(D) [19], meta-learners
that acquire the ability to adapt ensure, in theory, that their current parameter set θ

′
becomes

optimal for the specific task D [33]:

θ′ = argmin
θ

ED∼P(D) [L(D; θ) ]. (4)

It shows a natural capacity to adapt multi-task scenarios, despite a task formulation
underexposed or unseen settings. The paradigm hence builds our solution.

2.2. Neural Processes Family

Models in the Neural Process Family meta-learn a distribution over random functions
and can be distinguished between two assumptions.

2.2.1. The Conditional Neural Process Family

Members in this family employ a factorization assumption [25]: a conditional model
first explores the entire context set C for a global representation r, using a parameterized
(sub-) encoder φ and aggregator ρ to compute representation:

r = ρ(
|C|

∑
c=1

φ(x(c), y(c))). (5)

The two modules define an encoder architecture in the family members. Then, the
predictive distribution at any set of target inputs xT is factorized and conditioned on the
global representation r:

pθ(yT |xT ; C) =
|T |

∏
t=1

pθ(y(t)|x(t), r). (6)

The factorization assumption in the conditional models allows for directly maximizing
the log-likelihood log pθ(yT |xT ; C) on the target set to train the parameters. Furthermore,
this log-likelihood formulation builds our overall framework.

2.2.2. Latent Neural Process Family

The latent models [23] instead introduce a stochastic latent variable into the parame-
terization of predictive distribution, formulated as:

pθ(yT |xT ; C) =
∫ |T |

∏
t=1

pθ

(
y(t)|x(t), z

)
pθ(z|r)dz. (7)

This is conditioned on a sampled z, a latent representation from posterior distribution
p(z; C, T ), and an analytically intractable posterior, which lies in approximation pθ(z|r).

In practice, Garnelo et al. [23] propose to map all informative samples in D to
the distribution over z as a sampling distribution in approximating the true posterior
p(z; C, T ) ≈ pθ(z|D). A latent model thus has different choices of encoder architecture,
for example, to first have a deterministic representation after having observed both the
context-set and target-set, and then use it to parameterize a distribution over z. Therefore,
the encoder, i.e., an inference network as in the methods [37] for performing approximate
inference and learning probabilistic global latents, and the decoder, which is the same
as the conditional models except for using sampled latent representation z∼pθ(z|D), are
jointly trained to compute an approximation of likelihood objective pθ(yT |xT ; C) at the
target inputs xT in an amortized variational inference:
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log pθ(yT |xT ; C) ≥
∫

pθ(z|D) · [ log ∏
|T |
t=1 pθ(y(t)| x(t), z)

+ log pθ(z | C)− log pθ(z | D) ] (8)

= Ez

[
log ∏

|T |
t=1 pθ(y(t)| x(t), z)

]
−KL( pθ(z | D) ‖ pθ(z | C) ),

by first placing pθ(z|D) in an identity trick and using Jensen’s inequality to derive a
lower bound targeting the intractable integral problem [37], with an expectation and a
Kullback–Leibler divergence.

Members of the Neural Process Family highlight the capacity to interpolate the context
information to produce predictions on unseen in-distribution data, but cannot deal with
a distribution shift [27] from simulated to real-world data at test time. Current feature
weighting on universal representation [12,13] or task-specific parameters combined on dataset
generalization [15] span a large-scale feature space and promote out-of-distribution adaptation.

2.3. The Generative Family in Learning Representation

Machine learning models refer to different probabilistic frameworks [38]. If involved
in vision tasks, discriminative models learn a probability distribution p(y|x) that predicts
the probability of true y when given an image x. The evaluation then determines whether
categorical distribution p(y|x) would match the ground truth. In contrast, a member in the
generative family formulates density function p(x) over all possible inputs x. Conditional
generative modules take further steps to learn p(x|y), conditioning on y in every pair. The
variational generative method performs the density estimation by maximizing a logarithm
lower bound to achieve the true parametric densityp(x; ϑ2). That is, by first assuming
x∼p(x|z; ϑ2) holds for all possible input, and the introduced p(x|z) is subject to a latent
z := µ + σ · ε commonly sampled from a Gaussian prior p(z). Then, in a joint optimization,
a parametric posterior q(z|x; ϑ1) approximates to capture the prior p(z) (in place of the true
posterior p(x|z)).

Being subject to the below normalization constraint of probabilistic finite integrals,
for the generative model, all possible inputs x compete benignly for the probability mass of
their generation. ∫

x
p(x)dx = 1. (9)

Generative models, thereby, can represent seen data and explore more on its latent
pattern. Likewise, in a conditional generative model, every companion y induces a separate
competition among all x, but properties derived from the normalization still hold in the
conditional generative formulation.

3. Methods

Classification algorithms can be broken down into two parts: representation learning
(Section 3.1) and classifier building (Section 3.2). We use the Simple CNAPs model as an
example method, and later we will explore its extension. Straightforwardly, the method
is based on learning from a public large-scale dataset and maximizing the log-likelihood
presented in Equation (15). First, learning the representations of both labeled/unlabeled
images and building a classifier on those representations solve the regular classification
problem. An overall learning object sees Section 3.3.

3.1. Reformulated Representation Learning

A versatile model not only handles spacecraft recognition well but also the rest.
Learning to adapt the future data satisfies the purpose. Here, we first introduce the
extension of the Conditional Neural Process Family into adaptable multi-task classification.
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Likewise to approaches including MAML [14] and its variants that explore a well-behaved
initialization in modeling, the predictive distribution pθ(y = y(t)| f (x(t)); C) in Conditional
Neural Adaptive Processes (CNAPs) [24] has a specific form in parametric modeling:

f (; C) = f (;ϑ , φ), φ = g(r) and r = ρ(∑ w(C)). (10)

Behind the symbol, a fixed-cost adaptation mechanism (as the set of parameters φ
in part of θ) shares a dataset encoder–decoder structure and amortizes C and its feature
encodings into parameters γ and β, a channel-wise function scales and biases input feature
x via γ(C) � x ⊕ β(C) to condition pre-trained f on context information. For few-shot
classifications, it retains every property seen among the family members to infer unseen
patterns and, more importantly, protect against over-fitting by requiring a single forward
pass rather than multiple gradient back props with that optimization-based approaches.
However, the point here is that if going back to the pipeline in Figure 2, task representation
r that indicates the current dataset plays a leading role in the conditional neural process
models. Allowing the diversity of the data domain to broaden the selectivity of the target
task can satisfy the variability of the random function f distribution realization. For this
reason, following formulations, reconsider the process of specifying an encoder–decoder
structure to map handful examples C into FiLM parameters [26] that adapt f (x;ϑ ) to have a
set of weights [ϑ, φ], and practically extend the former statistical deterministic aggregation
into: (1) r∼p(r; C), but the adapted version of ϑ can still be [ϑ, φ = g(r)]; or (2) w∼p(w; C)
and r = ρ · (∑ φ(C)), such that [ϑ, φ] would have the result of g(r) as well. Then, to sum
up, this is a representation learning problem, and Conditional Neural Processes make such
representations the condition.

Following the global encoder–decoder structure defined in the Conditional Neural
Processes collection [25], the function approximator g would relate to the so-called decoder
that generates the desired function set. This results in f ′ := f (; ϑ, φ = g(r)), which is
adapted for each task.

3.1.1. Formulation (1), Directly Resampling Task-Representation from Generative Density

Consider w as a deterministic function. Our first formulation adds a global sampling
on the aggregate r. With this in mind, the procedure in Figure 3 indirectly forces a generative
constraint to estimate the density p(r) with a local variational inference. Here, we amortize
a portion of φ (as a reminder, f (; ϑ, φ)) using a conditional variational auto-encoder [39],
where an encoder–decoder pair is jointly trained to approximate the conditional density
function p(r|rc), using estimated rc := 1/|Cc| ·∑x∈Cc w(x) and, likewise, r := ρ ·∑ w(xC).
That is, qϑ is the encoder that takes duplicated and concatenated input to reparameterize
a Gaussian distribution over the introduced latent z with its associated means µz and
variance Σz; and pϑ2 is the decoder to resample a r′ from the mean of each conditional
distribution p(r|rc, z).

Figure 3. Overview of Formulation (1): the resampling task representative of a latent distribution
posterior reparamertized by a conditional variational inference.
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In a latent variable perspective, we always sample from the generative density p(r| rc)
in the highest probability, making the variables r easy to populate. This satisfies our
representative purpose. In later optimization, we follow the variational inference to draw a
log-likelihood lower bound to capture conditional density p(r|rc). It assumes variable z to
have a relaxed Gaussian prior p(z) = N (0, I).

3.1.2. Formulation (2), a Resample Embedding Function from Grid Density

The second formulation considers a distribution over functions and places w∼p(w)
into aggregating r := ρ · (∑ w(xC , yC)). Considering, in 2D image regression, that a colored
image corresponds to a mapping from an actual 2D grid location xi to its RGB pixel intensity
yi ∈ R3, each latent feature map ν(x(c)) ∈ Rd×h×e can be equivalently interpreted as an
instance function from a stochastic process. Here, we apply the same manipulation as in
Section 3.1.1 (but instead denoted as ν) to first include the latent version of C.

Then, we can specify a function instance w on a fixed h × e grid [23,40]. Through
reconstruction on each feature map, the target representation r can be bound to all the
realizations p(w). For illustration, we refer m := ν(x), x ∈ C to latent feature maps
and n ∈ Rh×e, the absolute position of the entries that constitutes m, to each 2D array.
Further, we randomly select 2D indices to gather a (sub-)context-setMc and target-set
M from all input pairs (n, m), and approximating p(w) through predictingM by given
Mc.Mc ⊆M is of note. The following parameterization is left for the Attentive Neural
Processes (ANPs) [32], a latent collection of the Neural Process Family, with multi-head
cross-attention [41–43] to predict the target-set feature maps.

The introduced model of ANPs has two branches featuring deterministic and latent
properties, respectively. From Figure 4, a well-developed attention mechanism reformulates
local encodings (i.e., the values) into representation rd in the deterministic path. It allows
a given target location n(t) (query) to attend the location of the relevant context (i.e., the
keys) inMc and to encode the dot-product relations. The latent path instead samples a
variational latent z that captures distribution properties for subsequent prediction on grid
values. We denote the overall parameterization as ϑ. These fixed dimension representations
model a global structure of stochastic process realization, whereas rd in the deterministic
path models is a fine-grained structure. Finally, a decoder takes representations [z; rd] from
the two paths generating grid density pϑ(m| n, z; rd) to estimate the finalM. Aggregation
of r := ρ(∑ m · pϑ(m| n, z; rd)) makes the representative vector of Rd.

Figure 4. Overview of Formulation (2): resampling a latent embedding function in grid density. The
pipeline is adapted from [32], except that we manipulate grid samples.



Remote Sens. 2023, 15, 4321 10 of 20

Theoretically, when pϑ(m(t)| n(t), z; rd) specifies a Gaussian density characterized by
respective [µ(t), σ2(t)] to present each grid value, the factorization (see Section 2.2) goes into
an infinite mixture of Gaussians:

pθ(yT |xT ; C) =
∫

pθ(z| C)∏
|T |
t=1N (y(t); µ(t), σ2(t))dz, (11)

meaning that the predictive distribution p(w) conceptually allows us to scale the complex
likelihood function to diversify the global features. Our implementation additionally
considers an experimental manipulation to reduce test-time complexity. That is, aggregating
r solely on prototypes m̄ and their reconstruction, while interpolation on 2D grid features
is left for regularization. For each class k, the prototype is simply:

m̄k = 1/|Ck| ·
|Ck |

∑
c=1

ν(x(c)). (12)

3.2. Building Estimated Classifier

To classify the adapted features of unlabeled targets, a non-parametric version of
CNAPs [29] introduces a convex combination λk · Σk +

(
1− λk

)
· Σ into estimating covari-

ance matrix Qk in the squared Mahalanobis distance for label k:

dk

(
f (x), x̄k

)
=
(

f (x)− x̄k
)T(

Qk
)−1(

f (x)− x̄k
)

. (13)

Mathematically, each covariance estimation in the combination is dealt with using
a sample covariance matrix; an unbiased and efficient estimator of the covariance matrix
in this case. We first derive x̄k := 1/|Ck| ·∑x∈Ck f (x) for class k and task-level prototype
x̄ := 1/|C| ·∑x∈C f (x). Then, by definition, each sample covariance relies on the difference
between each observation and the sample mean, i.e., for a class-related covariance matrix:

Σk =
1∣∣Ck
∣∣− 1 ∑

x∈Ck

(
f (x)− x̄k

)(
f (x)− x̄k

)T
. (14)

Then, use observations x ∈ C that cover whole context set for task-related covariance
matrix Σ. Combining two matrices and considering all individual distributions in the task,
the full covariance estimation presents a hierarchical regularization scheme [44]. Finally,
the conditional predictive model finalizes its factorization assumption with an adapted
embedding function f in a probabilistic mixture model [45], directly estimating the below
likelihood function:

p(y = k | f (x); C) =
exp
(
−dk( f (x), x̄k

)
)

∑k′ exp
(
−dk′( f (x), x̄k′

)) . (15)

And, maximizing the correct likelihood helps to classify image x in T .
Notice that Equation (15) is deterministic and exclusively dependent on the distribution
over embedding function f , which is the key to our formulation below. Furthermore,
the parameter-free structure with the squared Mahalanobis distance explores the theoret-
ical properties of Bregman divergences well. The family of distance functions suggests
a minimal distance in a softmax classifier from the sample as prototypes of all assigned
data points.

There remains one downside to note: the above formulations and their classifier
structure see deficiencies in generalizing out-of-distribution regimes, since true P(D) is still
hard to cover. One of the strongest recommendations is to let (C, T )∼P(D) be a diverse
dataset preparation for maximum-likelihood training. There then lies the top priority to
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digest diverse data, e.g., all training sources from BUAA [16] and the Meta-dataset [20] in
joint training sessions.

3.3. Training Objects

Let pθ(yT | xT ; C) correspond to use of the parametric model θ to obtain a joint categor-
ical distribution. In general, the target is to sample f for each task (C, T ) and participate in
classifying target images T into known labels from C. Now that the classifier is determinis-
tic, Equation (15) can be directly maximized through episodic training with the associated
classification dataset. Furthermore, we simultaneously summarize such episodic training
into solving below local and global optimization.

In the local part, our first formulation instantiates the variational lower bound with an
approximate KL divergence DKL, as well as an expectation that forms a log-likelihood lower
bound L1(ϑ; C) to have log p(r| rc) maximized:

L1(ϑ; C) = DKL +Ez∼q
ϑ1 (z| rc ,r)[log pϑ2(r| rc, z)] (16)

s.t. DKL = −KL(qϑ1(z|rc, r)|| p(z)).

And, by definition, an encoder–decoder pair (parameterized by ϑ) is used for approxi-
mating the true posterior q(z| rc, r) and conditional density p(r| rc, z). Alternatively, our
second inference principle is neural process variational inference [23]. The target objective
evaluates learning the task-level representation r by applying Equation (8) to the Evidence
Lower Bound (ELBO), specifically for embeddings of contexts C. During training, we infer
latent variable z on a posterior sampling from pϑ(z|M), maximizing the lower-bound
LVI(ϑ;M) to predict latent feature maps:

LVI(ϑ;M) = Ez∼pϑ(z |M)

[
log ∏

|M|
t=1 pϑ(m(t)| n(t), z)

]
(17)

−KL( pϑ(z |M) ‖ pϑ(z |Mc) ),

where M and Mc denote context-set and target-set. Not to confuse image–label pairs,
here we use n to refer to 2D grid coordinates and m to refer to feature maps. To the
best of our knowledge, we consider Equation (16), which takes advantage of whole C in
a feasible objective, to meta-learn representations for the downstream task of adapting
f . Essentially, we expect the model to reconstruct targets while being regularized by a
fine-grained exploration within their structures.

Globally, in the maximum likelihood part, we have log-likelihood function speci-
fied to each classification dataset (C, T ) instead. Furthermore, eventually, we evaluate
the expected log-likelihood L̂(θ; C, T ) on all those accessible tasks, approximately over
distribution P(C, T ):

L̂(θ; C, T ) = E(C,T )∼P(C,T )[ log pθ(yT |xT ; C)]. (18)

With reference to the provided pseudocode (see Algorithm 1), we repeat sampling
(C, T ) with image–label pairs and maximize Equation (18) in three steps: (1) learning from
the given observation set C, (2) evaluating targets T , and (3) applying a gradient step until
training converges.

3.4. Architecture with Formulation

In this paper, we first summarize the overall architecture into a local encoder–decoder
pair and global encoder–decoder structure of Simple CNAPs, such that the encoder–decoder
definition is consistent with the framework defined in the Neural Processes Family [23].

Specific choices of the local auxiliary architecture highly connect to the training objects.
Behind the symbol φ, the first introduced is a conditional auto-encoder structure. Basically,
the encoder part involves 4 convolutional layers, each followed by their own batch normal-
ization and ReLU function that locally encodes category-wise sample means rc and the raw
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r into a predictive mean and a diagonal variance, implementing the reparameterization
trick (with two individual linear layers) under a latent variable assumption [39] of a multi-
variate Gaussian distribution over each latent variable z, while the decoder part organizes
subsequent 3 transposed convolutional blocks, with each LeakyReLU and a final Sigmoid
activation on the top, to encourage our global resampling from the generative distribution
p(r| z, rc). Likewise, the second parameterization indicated with a latent neural process
structure [23] involves 3 convolutional layers and their ReLU activations in its deterministic
encoder Enc1, which locally encodes each concatenation [n(c), m(c)] into r(c). A two-head
cross-attention layer with linear embedding functions follows behind. The latent encoder
Enc2 comprises the same amount of convolutional blocks, but is followed by 2 linear lay-
ers to reparameterize a latent posterior as in a VAE model [37]. Instead, the conditional
decoder Dec takes 3 transposed convolutional layers and ReLUs together with linear layers
(familiarly, a predictive mean and a diagonal variance function) to predict multivariate
Gaussians, which each instance function w can be resampled from. A mean aggregator
follows to take all realizations w∼p(w) into task-level representation r. Note that all the
hidden representations will be of 128 dimensions.

Algorithm 1: Example Maximum Likelihood Training for Simple CNAPs
1 Given a distribution over meta-training tasks P(D);
2 Given a pre-trained template f (; ϕ);
3 Freeze ϕ and initialize ϑ, w, g randomly;
4 while not converged do
5 Uniformly sample tasks D = (C ∪ T ) ∼ P(D);
6 if f ormulation 1 stay true then
7 Evaluate lower bound L1 (as Equation (16));
8 Let φ = g(r);
9 else if f ormulation 2 stay true then

10 Evaluate lower bound L2 (as Equation (16)) \ by usingM and subsetMc according to C;
11 Let r = ρ(∑ w(xC , yC )) and φ = g(r);

12 Let f ′ ← f (; ϕ, φ);
13 foreach k in unique label set of C do
14 Estimate Qk by sample covariance matrix;

15 Evaluate a joint categorical distribution on T \ by using Equation (15);
16 Update θ = [ϑ, w, g] to maximize Equation (18);

Regarding the global structure, the encoder only requires us to produce task-level
representation r and can be one of the two formulations above; the decoder is simply the
ResNet-18 and a few amortization steps to generate plug-in FiLM layers [26]. In those
steps, stacks of linear blocks map the aggregate representation r into those parameters of
the channel-wise transformation, specifying the final adapted version f ′.

We apply the formulation to a new model: Task-Specific Adapters (TSAs) [46].
From Figure 5, TSAs are used for cross-domain few-shot classification that aims to learn
a classifier from previously unseen classes and domains with few labeled samples. TSAs
are commonly used with Universal Representation Learning (URL) [47], a single universal
network learned and distilled from the labeled context set C. Briefly speaking, a TSA adapts
the feature extractor created by URL using task-specific adapters. In this paper, we consider
methods (Formulations (1) and (2)) in Section 3.1 as the pre-processed formulation and
post-processed formulation, respectively.
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Figure 5. Overview of reformulated Task-specific Adapters (TSAs). The TSA model adapts extractor
distilled from the Universal Representation Learning (URL) technique. Here, we reformulate its
preprocessing part.

4. Experiments

We first detail the Experimental setups in Sections 4.1 and 4.2. Following comparisons
in the BUAA dataset (see Section 4.3.1), we choose a simple distance-based learner D2N4 [4]
that features adding image global pooling information into each feature descriptor, and our
baseline Simple CNAPs [29], and the optimization-based learner, as the selected models.

4.1. Dataset Format

We evaluated our approach on the joint dataset, which is composed of the BUAA
and the Meta-Dataset [20]. The Meta-Dataset is a large few-shot learning benchmark
and consists of multiple datasets of different data distributions that feature 10 existing
classification problems to help with anxiety. From Figure 6, the benchmark collects labeled
data on diverse domains, varying from natural images with 1000 categories in ImageNet
(ILSVRC-2012), FGVC-Aircraft (aircraft), QuickDraw (hand-drawn sketches), VGG Flower
(flower images), FGVCx Fungi (mushroom), Omniglot (hand-written characters), CUB-200-
2011 (birds), Describable Textures (texture), Traffic Signs, and MSCOCO (nature images).
For any algorithm, samples from the first eight and the name of in-distribution tasks should
not have overlapped during training, validation, and final testing. The unseen out-of-
distribution split, instead, holds the combination of Traffic Signs, MSCOCO and held-out
MNIST, CIFAR10, and CIFAR100. The algorithm should take them only for testing. BUAA,
a space target dataset, has collected 20 classes of satellite models of different types, shapes,
and functions. It is based on a space target 3-D model, using 3Ds MAX software to generate
a space target full viewpoint simulation image. The data set consists of 4600 gray images
from 230 viewpoints sampled on a viewing sphere, so each class has 230 examples. We
adopt average accuracy and rank as the evaluation metric in our experiments. Considering
the model’s rank makes it possible to obtain a more complete picture of its generalization
performance, ensuring that the model remains stable and performs well under different
data distributions and characteristics.

Figure 6. The datasets of the dataset, including the Meta-dataset’s 10 datasets and the left three
datasets Mnist and Cifar10/100 for additional tests.
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4.2. Implementation Details
4.2.1. Dataset Setting

To investigate the applicability of our scheme, we partitioned the BUAA dataset
by placing 25% to 70% of the data categories (with a 5% gradient increase) inside the
distribution and placing the remaining data categories outside the distribution. In our
experiments, we only trained on the in-distribution data and used the out-of-distribution
data for testing. In below sections, performance at each percentage accuracy will be
reported by averaging over 600 proxy classification tasks with a 95% confidence interval.
The benchmark setting does not restrict few-shot tasks to have fixed ways and shots, thus
representing a more realistic scenario.

4.2.2. Training

In Section 3.1.2, we highlighted global sampling in latent neural process models,
where the encoder, as the inference network, plays a dual role [23] of being an approximate
posterior pϑ(z|M), and also of defining the prior, having observedMc, suggesting different
behaviors in between stages: during training, we sample function instances from the
approximate posterior when we have wholeM in observation; during inference, instead,
the sampling can only turn to the prior pϑ(z|Mc) given a subset of entries each feature
map. We train an overall θ with 110,000 sampled tasks, using a task batch of 16 on all
training splits from the Meta-dataset [20]. Our maximum likelihood training remains
identical to [29] as we use episodic context/target splits C, T and set the size of all x within
to be 84 × 84. A step learning rate (from 1× 10−3) scheduler is set to configure the Adam
optimizer. The whole procedure is loaded on a single NVIDIA RTX 3090 GPU.

4.3. Results and Extendable Discussion

We first report selected modelings on the BUAA dataset. However, before we dis-
cuss the benchmark part, we would like to demonstrate the potential of our proposal
formulations in Section 3.1. As Section 2.2 explains, the task-level representation r plays an
important role in the Conditional Neural Processes model. The proposal Formulations (1)
and (2) are designed for this representation. However, we conclude that these formulations
are generally applicable to the neural feature learning problem.

Notice the “test-only” setting means Table 2 evaluating spacecraft images as an out-of-
distribution dataset. It can set a vital criterion to examine the model’s capacity to generalize
unseen domains with public in-distribution examples. Then, we present a leaderboard on
the Meta-Dataset to read how generalizable the models are in close-to-realistic applications.

4.3.1. Benchmarking Spacecraft Dataset

The validation configures two different settings, and we would suggest a “single-domain
training session” and “multi-domain joint training session”.

The setting of the first part adopts BUAA dataset as the only training data. Table 1
is more likely to represent the basic capacity of the baseline models when we exclude
large-scale dataset and train models with our target domain data only. This can also help
to ablate our later max likelihood training. As shown, an average rank via aggregating
across each column of Table 1 both suggests baseline TSA and Simple CNAPs outperform
the simple distance learner D2N4; the modification on TSA encourages its capacity when
having nearly at least half percent available training data. A more intuitive demonstration
can refer to Figure 7a, where all the conditional models maintain an upward performance
if expanding the training splits, but a similar conclusion does not hold for D2N4.
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Table 1. Results reported on unseen in-distribution tasks of BUAA dataset using models trained on a
single domain.

Avg. Rank 25%. 30%. 35%. 40%. 45%. 50%. 55%. 60%. 65%. 70% Categories

D2N4 [4] 5.7 88.6 ± 0.7 89.9 ± 0.6 92.1 ± 0.5 90.8 ± 0.6 91.1 ± 0.6 92.1 ± 0.6 93.8 ± 0.5 94.5 ± 0.5 94.9 ± 0.4 93.9 ± 0.4
Simple CNAPs [29] 2.0 92.9 ± 0.6 93.8 ± 0.5 94.4 ± 0.6 94.2 ± 0.6 93.9 ± 0.4 94.7 ± 0.6 95.0 ± 0.5 95.2 ± 0.6 96.3 ± 0.5 97.0 ± 0.4
TSA [46] 3.0 93.6 ± 0.5 93.9 ± 0.5 94.4 ± 0.4 94.1 ± 0.5 94.3 ± 0.5 94.4 ± 0.4 94.7 ± 0.5 94.9 ± 0.3 96.1 ± 0.4 96.4 ± 0.3

Sim. CNAPs∼fo. 1 5.9 85.8 ± 0.7 88.7 ± 0.6 91.6 ± 0.5 91.5 ± 0.6 91.9 ± 0.7 90.2 ± 0.7 92.2 ± 0.6 94.7 ± 0.5 94.0 ± 0.5 97.0 ± 0.3
Sim. CNAPs∼fo. 2 5.1 88.0 ± 0.6 92.0 ± 0.5 91.1 ± 0.6 93.5 ± 0.6 91.6 ± 0.7 93.2 ± 0.5 93.8 ± 0.5 94.5 ± 0.6 94.5 ± 0.4 96.3 ± 0.3
TSA∼fo. 1 4.1 88.1 ± 0.4 89.6 ± 0.5 91.7 ± 0.6 92.4 ± 0.4 93.5 ± 0.4 94.6 ± 0.5 94.9 ± 0.4 95.0 ± 0.5 94.5 ± 0.5 96.1 ± 0.4
TSA∼fo. 2 2.1 90.4 ± 0.4 91.7 ± 0.6 93.0 ± 0.5 94.6 ± 0.4 95.4 ± 0.6 95.2 ± 0.5 95.7 ± 0.3 95.6 ± 0.4 96.8 ± 0.5 97.5 ± 0.4

The setting of the second part adopts all accessible datasets as the training data
instead. Furthermore, what Table 2 conveys is that both of our formulations turn more
competitive in a joint maximum likelihood modeling with all training splits of the Meta-
Dataset included; particularly, the second formulation prominently leads the result. From a
direct comparison between Figure 7a,b, a wide range of cross-domain training also benefits
the distance-based learner, while some cases see declines for Simple CNAPs. An interesting
result can also be found in the test-only case (Table 2) and a proportion of 70% categories
used in training (Table 1). The result of our formulation using only BUAA for testing in
Table 2 is even comparable to the result of D2N4 in Table 1 using the 70% of samples used
in training. Modifications on TSA convey such improvement, too, making them the highest
average rank among the listed methods. However, such an advantage becomes less when
Simple CNAPs∼fo. 2 makes a well-matched competition with at least 60% of available
training categories.

(a) Single-domain training result (b) Multi-domain training result

(c) Unseen in-distribution result (d) Out-of-distribution performance

Figure 7. Comparisons from (a,b) evaluate models trained on BUAA dataset only, and in similar
settings, but instead with joint maximum likelihood training. (c,d) show performance on Meta-
Dataset in-distribution/out-of-distribution testing using models trained with (none-zero x axis) or
without (zero x axis) feeding spacecraft images.
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Table 2. Results reported on joint In-distribution tasks of BUAA dataset using models trained on
multiple domains.

Avg. Rank Test Only 25%. 30%. 35%. 40%. 45%. 50%. 55%. 60%. 65%. 70% Categories

D2N4 [4] 6.1 89.9 ± 0.6 90.3 ± 0.6 92.3 ± 0.5 93.8 ± 0.5 94.4 ± 0.5 94.7 ± 0.5 95.3 ± 0.4 95.8 ± 0.5 96.2 ± 0.4 96.3 ± 0.4 96.5 ± 0.4
Simple CNAPs [29] 6.4 91.2 ± 0.7 93.2 ± 0.6 93.6 ± 0.6 94.0 ± 0.6 94.3 ± 0.6 94.0 ± 0.5 94.5 ± 0.6 94.1 ± 0.5 95.1 ± 0.6 96.0 ± 0.5 96.7 ± 0.5
TSA [46] 4.1 94.2 ± 1.0 95.3 ± 0.7 95.7 ± 0.7 95.5 ± 0.6 95.8 ± 0.6 95.6 ± 0.7 95.8 ± 0.6 95.4 ± 0.7 96.0 ± 0.5 96.3 ± 0.6 96.5 ± 0.6

Sim. CNAPs∼fo. 1 4.3 92.6 ± 0.5 94.5 ± 0.4 95.2 ± 0.4 95.5 ± 0.5 95.4 ± 0.4 96.9 ± 0.4 95.6 ± 0.4 96.3 ± 0.4 96.8 ± 0.3 97.0 ± 0.3 97.4 ± 0.3
Sim. CNAPs∼fo. 2 3.3 93.1 ± 0.6 94.1 ± 0.5 94.9 ± 0.5 95.3 ± 0.4 95.8 ± 0.4 96.4 ± 0.3 96.8 ± 0.4 97.3 ± 0.4 97.5 ± 0.3 97.8 ± 0.4 98.2 ± 0.3
TSA∼fo. 1 1.7 95.2 ± 0.8 96.2 ± 0.6 96.6 ± 0.7 96.9 ± 0.6 97.3 ± 0.5 97.7 ± 0.5 97.6 ± 0.6 97.4 ± 0.6 97.6 ± 0.5 97.8 ± 0.4 97.9 ± 0.4
TSA∼fo. 2 2.0 94.4 ± 1.0 95.4 ± 0.5 95.9 ± 0.4 96.5 ± 0.5 96.4 ± 0.5 97.3 ± 0.3 97.8 ± 0.4 97.9 ± 0.4 97.6 ± 0.5 98.1 ± 0.4 98.4 ± 0.3

4.3.2. Benchmarking Meta-Dataset

The validation in this subsection goes into two different settings, and we would
suggest a “leaderboard version of unseen tasks performance” and “joint-training version
of unseen tasks performance”.

The first part sees models trained at all available datasets of the Meta-Dataset and
tested on it. Tables 3 and 4 display the in/out-of-distribution statuses for benchmark
models. This setting, however, excludes the BUAA dataset and makes spacecraft images
test-only (the source of that column in Table 2). In Table 3, we also compare methods with
the unseen parts of training sources. The universal representation approach, i.e., SUR [12]
and URT [13], achieves classification by training a respective embedding function for
each intra-distributed dataset and then linearly combining each embedding function to
form a specific embedding function based on the task query set. However, a considerable
domain gap against training sources in out-of-distribution settings explains their need to be
more generalizable from the eight extractors. Instead, we are motivated to approximate a
distribution over dataset-specified embedding functions for Simple CNAPs and to sample
the proper one for each test-time task, which is more efficient [24]. Modifications of TSAs
convey such an idea too. Further evidence of a comparable average rank among listed
models shows our meta-learned formulations promote feature adaptation over the same
embedding function as in Simple CNAPs. Another promising result would be the highest
average rank for TSA∼fo. 1 in Table 4, where we generalize all models to the out-of-
distribution splits of Meta-Dataset. Generative formulation 1 extends the embedding
extractor function of Simple CNAPs and TSAs from encoding static training datasets only
to having generative density, such that resampling schemes can efficiently encourage
adapting out-of-distribution tasks.

Table 3. Results reported on in-distribution tasks using models trained on all training datasets.

Avg. Rank ILSVRC Omniglot Aircraft Birds Textures QuickDraw Fungi Flower

D2N4 [4] 15.3 26.1 ± 0.8 82.8 ± 0.9 72.8 ± 0.9 34.6 ± 1.0 52.7 ± 0.7 66.6 ± 0.9 32.3 ± 0.9 72.8 ± 0.8
fo-MAML [20] 14.6 37.8 ± 1.0 83.9 ± 0.9 76.4 ± 0.7 62.4 ± 1.1 64.2 ± 0.8 59.7 ± 1.1 33.5 ± 1.1 80.0 ± 0.8
ProtoNet [34] 14.3 44.5 ± 1.0 79.6 ± 1.1 71.1 ± 0.9 67.0 ± 1.0 65.2 ± 0.8 64.9 ± 0.9 40.3 ± 1.1 86.8 ± 0.7
Proto-MAML [20] 12.6 46.5 ± 1.0 82.7 ± 1.0 75.2 ± 0.8 69.9 ± 1.0 68.2 ± 0.8 66.8 ± 0.9 42.0 ± 1.1 88.7 ± 0.7
CNAPs [24] 11.1 51.0 ± 1.0 90.7 ± 0.6 72.3 ± 0.8 73.0 ± 0.8 54.8 ± 0.7 74.2 ± 0.6 50.2 ± 1.0 88.5 ± 0.6
Simple CNAPs [29] 9.0 56.5 ± 1.0 91.7 ± 0.6 82.4 ± 0.7 74.9 ± 0.9 67.8 ± 0.7 77.5 ± 0.8 46.9 ± 1.0 89.7 ± 0.6
SUR [12] 8.3 56.1 ± 1.1 93.1 ± 0.5 84.6 ± 0.7 70.6 ± 1.0 71.0 ± 0.8 81.3 ± 0.6 64.2 ± 1.1 82.8 ± 0.8
FLUTE [15] 7.5 51.8 ± 1.0 93.2 ± 0.5 87.2 ± 0.5 79.2 ± 0.8 68.8 ± 0.8 79.5 ± 0.7 58.1 ± 1.1 91.6 ± 0.6
Transductive CNAPs [48] 6.9 57.9 ± 1.1 94.3 ± 0.4 84.7 ± 0.5 78.8 ± 0.7 66.2 ± 0.8 77.9 ± 0.6 48.9 ± 1.2 92.3 ± 0.4
URT [13] 6.7 55.7 ± 1.0 94.4 ± 0.4 85.8 ± 0.6 76.3 ± 0.8 71.8 ± 0.7 82.5 ± 0.6 63.5 ± 1.0 88.2 ± 0.6
URL [47] 3.1 57.5 ± 1.1 94.5 ± 0.4 88.6 ± 0.5 80.5 ± 0.7 76.2 ± 0.7 81.8 ± 0.6 68.7 ± 1.0 92.1 ± 0.5
TSA [46] 2.8 57.3 ± 1.0 95.0 ± 0.4 89.3 ± 0.4 81.4 ± 0.7 76.7 ± 0.7 82.0 ± 0.6 67.4 ± 1.0 92.2 ± 0.5

Simple CNAPs∼fo. 1 9.5 52.5 ± 1.1 88.2 ± 0.8 74.5 ± 0.8 73.2 ± 0.9 74.0 ± 0.8 80.5 ± 0.7 53.4 ± 1.1 90.2 ± 0.6
Simple CNAPs∼fo. 2 7.8 55.1 ± 1.1 92.2 ± 0.6 81.4 ± 0.6 78.1 ± 0.8 72.9 ± 0.9 80.4 ± 0.7 59.4 ± 1.0 89.7 ± 0.6
TSA∼fo. 1 4.0 54.1 ± 0.8 93.8 ± 0.6 85.8 ± 1.0 78.4 ± 1.0 80.1 ± 0.8 84.2 ± 0.8 68.7 ± 0.7 93.1 ± 0.8
TSA∼fo. 2 2.3 56.6 ± 0.6 96.4 ± 0.8 88.4 ± 0.5 83.1 ± 0.8 78.6 ± 1.0 84.4 ± 0.8 69.5 ± 1.0 92.8 ± 0.7
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Table 4. Results reported on out-of-distribution tasks using models trained on all training datasets.

Avg. Rank Traffic Signs MSCOCO Mnist Cifar10 Cifar100

fo-MAML [20] 15.8 42.9 ± 1.3 29.4 ± 1.1 - - -
ProtoNet [34] 14.3 46.5 ± 1.0 39.9 ± 1.0 - - -
D2N4 [4] 11.5 60.7 ± 1.1 28.2 ± 0.9 92.9 ± 0.5 44.0 ± 0.7 39.0 ± 1.0
Proto-MAML [20] 11.2 52.4 ± 1.1 41.7 ± 1.1 - - -
CNAPs [24] 10.8 56.5 ± 1.1 39.4 ± 1.0 92.7 ± 0.4 61.5 ± 0.7 50.1 ± 1.0
SUR [12] 10.0 53.4 ± 1.0 50.1 ± 1.0 94.3 ± 0.4 66.8 ± 0.9 56.6 ± 1.0
URT [13] 9.6 51.1 ± 1.1 52.2 ± 1.1 94.8 ± 0.4 67.3 ± 0.8 56.9 ± 1.0
Simple CNAPs [29] 9.2 59.2 ± 1.0 42.4 ± 1.1 93.9 ± 0.4 74.3 ± 0.7 60.5 ± 1.0
Transductive CNAPs [48] 7.1 59.7 ± 1.1 42.5 ± 1.1 95.7 ± 0.3 75.7 ± 0.7 62.9 ± 1.0
FLUTE [15] 6.6 58.4 ± 1.1 50.0 ± 1.0 95.6 ± 0.5 78.6 ± 0.7 67.1 ± 1.0
URL [47] 6.7 63.3 ± 1.2 54.0 ± 1.0 94.7 ± 0.4 74.2 ± 0.8 63.5 ± 1.0
TSA [46] 2.3 83.5 ± 0.9 55.7 ± 1.1 96.7 ± 0.4 82.9 ± 0.7 70.4 ± 0.9

Simple CNAPs∼fo. 1 6.4 69.5 ± 0.8 52.6 ± 0.7 93.6 ± 0.4 70.5 ± 0.8 69.0 ± 1.0
Simple CNAPs∼fo. 2 6.5 67.4 ± 1.0 55.3 ± 0.7 92.5 ± 0.5 68.4 ± 0.8 69.8 ± 0.9
TSA∼fo. 1 1.8 85.4 ± 0.8 58.7 ± 1.0 95.1 ± 0.6 81.5 ± 0.6 73.3 ± 0.8
TSA∼fo. 2 2.4 84.1 ± 0.6 56.6 ± 0.8 96.4 ± 0.6 80.3 ± 0.8 71.7 ± 0.7

The second part is attached to the “multi-domain joint training session” of Section 4.3.1,
where the setting instead evaluates the incorporation of spacecraft images into Meta-
Dataset performance. Figure 7c,d represent in- and out-of-distribution splits of the Meta-
Dataset, respectively. Similar to spacecraft images, cases of Simple CNAPs on the auxiliary
Meta-Dataset suggest a sharp drop, indicating a deterministic representation in the condi-
tional model is less likely to adapt more domains than the stochastic one. Fewer side effects
can be found with all our modifications, suggesting a potential capability to continue to
learn data from a new domain (at least for spacecraft images).

4.4. Ablation Study

By analyzing Tables 1 and 2, it can be seen that the recognition accuracy of the target
domain can be improved dramatically when using the joint data as the auxiliary data of
the target domain. The effect is significant, even if the target domain is not used in the
training phase.

Since space target images have large intra-class gaps and small inter-class gaps
and are close to fine-grained classification settings, we use a classifier based on Maha-
lanobis distance to improve classification performance by analyzing the overall and local
variance. Table 5 shows that the Mahalanobis distance outperforms the Euclidean distance
when only the space target image is used for testing. However, when the amount of space
target data is increased during training, the performance of both is almost equal. This is
because as the number of training samples in the target domain increases, the learnable
feature extractor can achieve the optimization of the intra-class distribution, which reduces
the effect of the Mahalanobis distance.

Table 5. Results of different metrics in the classifier on BUAA.

Simple CNAPs [29] Simple CNAPs∼fo. 1 Simple CNAPs∼fo. 2 TSA [46] TSA∼fo. 1 TSA∼fo. 2

Mahalanobis distance (test only) 91.2 ± 0.7 92.6 ± 0.5 93.1 ± 0.6 94.2 ± 1.0 95.2 ± 0.5 94.4 ± 1.0
European distance (test only) 90.7 ± 0.8 91.2 ± 0.4 92.4 ± 0.6 93.4 ± 0.8 94.5 ± 0.3 94.6 ± 0.9
Mahalanobis distance (70% for training) 96.7 ± 0.5 97.4 ± 0.3 98.2 ± 0.3 96.5 ± 0.6 97.9 ± 0.4 98.4 ± 0.3
European distance (70% for training) 96.6 ± 0.5 97.6 ± 0.5 97.9 ± 0.8 96.8 ± 0.3 97.7 ± 0.7 98.2 ± 0.6

5. Conclusions and Limitations

This paper uses conditional variational inference and latent neural processes [32] to
learn diversified representations over multiple datasets while generalizing spacecraft recog-
nition to a generalization problem to improve space target recognition performance with
the aid of multi-domain datasets. On optimizing Equation (4), we propose to condition such
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meta-learned task-level representations on feature adaptation; as a result, the promoted
adaptation of Simple CNAPs and TSAs improves their performance for benchmark classifi-
cation for the spacecraft images both in-distribution and out-of-distribution. The algorithm
also shows competitive results on larger benchmark settings for multitasking or versatility
purposes. Similar conclusions still hold when we extend the feature learning to a more
general stage, where the proposed formulation preprocesses and post-processes. The algo-
rithm also shows competitive results on a larger benchmark setting for multi-task purposes.
Our approach starts from representation and solves the few-shot problem by generalizing
the prototypical representation of the target data, so it has a strong generalization ability for
the domains where data acquisition is expensive, such as medical engineering and ocean
observations [49]. However, BUAA dataset lacks light intensity variations as well as stellar
interference compared to real space target images, and further validation of the model will
be performed when the real data is complete. Our experiments also suggest a catastrophic
interference, as all the modifications end up forgetting the Meta-dataset training after
including spacecraft images with the joint training. A possible future work approach is
extending our rough applications of neural processes to support future learning.
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