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Abstract: Accurate building extraction for high-resolution remote sensing images is critical for
topographic mapping, urban planning, and many other applications. Its main task is to label each
pixel point as a building or non-building. Although deep-learning-based algorithms have significantly
enhanced the accuracy of building extraction, fully automated methods for building extraction
are limited by the requirement for a large number of annotated samples, resulting in a limited
generalization ability, easy misclassification in complex remote sensing images, and higher costs due
to the need for a large number of annotated samples. To address these challenges, this paper proposes
an improved interactive building extraction model, ARE-Net, which adopts a deep interactive
segmentation approach. In this paper, we present several key contributions. Firstly, an adaptive-
radius encoding (ARE) module was designed to optimize the interaction features of clicks based
on the varying shapes and distributions of buildings to provide maximum a priori information for
building extraction. Secondly, a two-stage training strategy was proposed to enhance the convergence
speed and efficiency of the segmentation process. Finally, some comprehensive experiments using
two models of different sizes (HRNet18s+OCR and HRNet32+OCR) were conducted on the Inria
and WHU building datasets. The results showed significant improvements over the current state-of-
the-art method in terms of NoC90. The proposed method achieved performance enhancements of
7.98% and 13.03% with HRNet18s+OCR and 7.34% and 15.49% with HRNet32+OCR on the WHU
and Inria datasets, respectively. Furthermore, the experiments demonstrated that the proposed
ARE-Net method significantly reduced the annotation costs while improving the convergence speed
and generalization performance.

Keywords: interactive building extraction; adaptive-radius encoding; two-stage training; remote sensing

1. Introduction

In recent years, deep learning algorithms have significantly advanced the accu-
racy of building extraction for high-resolution remote sensing images [1–5]. These tech-
niques have found extensive applications in diverse areas such as smart city develop-
ment and planning [6–8], economic activity distribution [9], urban disaster prevention and
mitigation [10–13], and unauthorized construction detection [14]. The major objective of
building extraction for high-resolution remote sensing imagery is to ascertain the pres-
ence of buildings in an image and assign each pixel as either belonging to a building or
not [15]. While supervised fully automated methods have achieved impressive results, they
rely heavily on a large number of labeled samples. Inadequate data can result in model
overfitting, which subsequently diminishes the model’s generalizability.

For building extraction from high-resolution remote sensing images, the issue of
limited samples is prevalent. Existing high-quality samples are often restricted to a few
specific datasets, hampering the application of building extraction methods to remote
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sensing images without samples. On the other hand, traditional interactive building
extraction methods for sample-free remote sensing images only rely on manual fine tracing
or clicking to complete fine building extraction, which has greater adaptability compared
to fully automated methods. However, traditional interactive segmentation methods are
based on hand-crafted features, meaning that the pixel-level labeling of natural images
takes an average of 10.1 min per image [16–22], while remote sensing image annotation is
even more time-consuming and challenging due to various factors, such as water vapor
and lighting conditions [23,24]. Hence, it is vital to utilize deep learning techniques to
understand objects and semantics and achieve the high-precision extraction of structures at
a lower cost.

The primary objective of interactive segmentation in the framework of deep learn-
ing is to refine the annotation of image pixels made by deep learning networks through
human-provided interaction information, such as mouse clicks. These deep-learning-based
interactive applications are superior to traditional interactive applications, significantly im-
proving the accuracy and efficiency of object extraction, and even providing a promising so-
lution for the challenge of extracting buildings from high-resolution remote sensing images
without cross-domain samples. Commonly used interactive segmentation methods can be
broadly classified into the following categories: (1) Bounding-box-based methods [25–27].
These methods do not effectively provide cues for foreground and background, and in
the context of high-resolution remote sensing images, accurately handling overlapping
bounding boxes in large images is a challenging problem. (2) Polar-coordinate-based meth-
ods [28,29]. These approaches have been proven to be effective but require a click at the
corner location of the building, which increases the burden on the user. (3) Doodle-based
approaches [30–32]. Although these approaches can provide a substantial amount of in-
teraction information, it is computationally expensive to simulate real graffiti to train the
convolutional neural network (CNN). (4) Click-based approaches [33–37]. These methods
are simple and effective, allowing the extraction of the target by clicking at any position
with low cost. Therefore, this paper focuses on click-based interactive building extraction
from high-resolution remote sensing images, and we redesigned an interactive encoding
method to improve the rate of convergence (RoC), reduce the number of clicks required
to achieve the desired accuracy, and simultaneously ensure the network inference time to
continually reduce user interaction latency and time cost in interactive applications. To our
knowledge, this is the first work to improve interactive encoding in the interactive building
extraction of RS images.

Traditional interactive segmentation methods can be categorized into boundary-
based and region-based methods according to the interaction approach [38]. Boundary-
based methods include techniques such as Intelligent Scissors [39], Level Set [40], Active
Contours [41], and Snakes [42]. The Intelligent Scissors method utilizes dynamic program-
ming to find the lowest-cost path on the user-defined target boundary, which is considered
as the segmentation boundary. Level Set, Active Contours, and Snakes process the initial
contour provided by the user by minimizing an energy function evolution curve to obtain
the final boundary contour. Boundary-based methods rely heavily on high-quality user-
supplied clicks or initial contours and are sensitive to image grayscale inhomogeneity and
noise, which can affect the segmentation stability.

The first region-based interactive segmentation approaches were based on graph
cuts [43], where users label foreground and background pixel points by drawing lines.
Similar to graph cuts, Random Walk [44] constructs segmentation models based on graph
theory, representing an image as an undirected graph with each pixel as a node and image
edges representing the relationship between pixel points. Interaction based on region
growing algorithms [45] starts from a labeled pixel point and expands in eight directions,
grouping pixel points based on the range of the absolute difference in pixel values. The
interaction is gradually iterated to achieve segmentation. Region-based interactive seg-
mentation does not require explicit boundaries but relies on the labeling of foreground
and background points. However, these algorithms predict the foreground/background
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distribution based on hand-crafted image features, which may not meet the accuracy
requirements of segmentation in complex high-resolution remote sensing images.

Interactive segmentation has gained significant attention in recent years, allowing
users to accurately select objects of interest by providing inputs such as scribble and
bounding boxes. The graph cut method has played a pivotal role in advancing interactive
segmentation, leading to the development of numerous algorithms to address this prob-
lem. Taking advantage of the remarkable advances in deep neural networks, particularly
convolutional neural networks (CNNs), in image classification and detection, researchers
have applied them to semantic segmentation tasks. Ning Xu et al. [33] were the first to
incorporate deep learning into interactive segmentation. Their approach utilized user in-
puts of foreground and background clicks to calculate the Euclidean distance as a distance
map. This distance map, together with the input image, was fed into an FCN network for
interactive semantic segmentation, enhancing both accuracy and efficiency. Based on the
click-based input method, the image features extracted by the VGG16 model [46] were
incorporated into a segmentation network [34]. Subsequently, it was found that the first
click plays an important role in determining the location and subject information of the
target object [19]. Edge information from the image along with user clicks as inputs to
fine-tune the network was proposed in [37]. A different click encoding method using disk
encoding instead of the Euclidean distance map was introduced in [47]. In each iteration
epoch, this method incorporated the previous prediction results as prior information along
with the encoding. On this basis, an interactive segmentation scheme that progressed from
coarse to fine was designed [48]. It performed region segmentation in the click area and
refined the segmented area, significantly reducing the computation time and number of
model parameters. To further enhance the performance of the segmentation model, dy-
namic encoding and phased incremental learning strategies were proposed [49]. Interactive
building extraction techniques can make full use of user knowledge to guide the extraction
process and refine the extraction accuracy. Compared to fully automated and manual
extraction methods, deep-learning-based interactive building extraction strikes a balance
between accuracy and efficiency.

In our research, we investigated several prominent interactive segmentation
methods [20,35,47,48]. However, these methods all rely on a fixed-radius click encoding
scheme to assist in the segmentation task. Compared to scribble annotation, the fixed-
radius approach provides limited a priori information. Our summary of existing research
found that in high-resolution remote sensing images, buildings can have various geometric
shapes, such as rectangles; characters (H, L, T, U, Z); circles; and combinations thereof.
Simply enlarging the radius of the clicks can result in the wrong areas being covered. In
addition, we analyzed the training process of deep-learning-based interactive methods and
discovered a difference compared to traditional deep learning network training. In the early
stage of deep-learning-based interactive methods, the main purpose of network training is
to learn interactive features and maximize the influence of each click to quickly establish
building masks. In the later stage, the focus of network training should be shifted to fine-
tuning the mask output by the network according to the correction information provided
by each interaction, which can also weaken the impact of clicks to prevent convergence
(CG) deterioration caused by misclassification or blurring and improve the convergence
speed. Some methods, such as DRE-Net [49], employ an incremental learning training
strategy to enhance the low rate of convergence (RoC), but this increases the training
cost. Furthermore, the interaction features obtained from fixed-radius clicks overlook the
fine-tuning effect of correction information and lead to confusion in the building extraction
task for high-resolution remote sensing images. To fully exploit the potential of the user’s
prior knowledge and to adapt to different training stages with different learning goals, we
designed a strategy involving adaptive-size disk coding and a two-stage training approach.

In this paper, in order to maximize the extracted semantic information of the buildings
in the interactive segmentation features, we designed the adaptive-radius encoding (ARE)
algorithm. It can fully exploit the potential of manual clicking based on prior knowledge
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and improve the accuracy of building extraction. Furthermore, we proposed a training
strategy that divides the network training into two distinct stages, each with different
goals. By providing specific supervision at different stages of the training process, this
strategy can continuously guide deep networks to learn the correction information of
manual clicks, thereby improving the RoC performance in building extraction and refining
its segmentation results. The contributions of our work can be summarized as follows:

• We proposed a novel interactive segmentation model, ARE-Net, for building extraction
from high-resolution remote sensing images. Compared to state-of-the-art interactive
information encoding modules, the proposed ARE module can learn more priori
information to support the segmentation task in buildings of various shapes.

• We designed a two-stage training strategy that guides the network to treat clicks at
different stages differently in order to more efficiently refine the accuracy of building
semantic segmentation.

• We conducted an evaluation of the method on the Wuhan University aerial building
dataset (WHU [50]) and the Inria aerial dataset (Inira [51]). The experimental results
demonstrated that the proposed method could achieve better performance compared
to existing methods while significantly reducing the number of annotations.

2. Materials and Methods
2.1. An Overview of ARE-Net

In our research, interactive building extraction was regarded as a binary segmentation
task. The goal is to generate accurate building masks through an iterative process that
fully exploits the guidance information provided by user clicks on annotations on high-
resolution remote sensing imagery. Each click serves as an iterative step towards achieving a
satisfactory result for the user. We focused on optimizing two main aspects of the interactive
building extraction process. The first goal was to reduce the number of user clicks required
while achieving higher accuracy. By improving the rate of convergence of the model,
the number of interactions required to obtain satisfactory segmentation results could be
minimized. This optimization would enhance the efficiency of the interactive process and
reduce the burden on the user. Secondly, we aimed to reduce the time cost associated with
user annotation. The manual annotation of remote sensing images can be time-consuming
and labor-intensive. Therefore, we aimed to develop a model that can generalize well
across different images and datasets, reducing the need for extensive manual labeling. By
ensuring the generalizability of the model, we could minimize the time and effort required
for user labeling while still achieving accurate and reliable building extraction results. By
addressing these optimization goals, our research aimed to improve the overall efficiency
and usability of interactive building extraction, making a more practical and effective
approach for high-resolution remote sensing imagery.

In order to fully demonstrate the effectiveness of our approach, we built ARE-Net
following the framework of the current state-of-the-art method RITM [47] by inserting the
ARE module. ARE-Net can use any semantic segmentation network as a segmentation
module. As the segmentation network, we used HRNet18s+OCR and HRNet32+OCR,
which are widely used in interactive segmentation. The specific pipeline is shown in
Figure 1, which illustrates the training process of ARE-Net. The segmentation model
(prediction) is the inference stage, where the original images and interactive features are
inferred in the network to obtain a prediction mask. During this process, no adjustments
are made to any parameters of the segmentation model, but only the positive/negative
points list is updated using the prediction output mask. The segmentation model (training)
is the model training stage, where the network parameters of the segmentation model are
trained using input raw images and interactive features. During this process, the model
parameters are adjusted. First, users place positive/negative clicks randomly in the input
image. Clicking on a building is a positive click, and clicking elsewhere is a negative click.
These clicks are coded as interaction features by ARE. A zero matrix of the same size as
the input image is initialized as the feature map of the third channel. Clicks are randomly



Remote Sens. 2023, 15, 4457 5 of 24

selected on the image, and these clicks are generated as interaction features by ARE. Then,
these interaction features are initialized into a zero-initialized matrix and stitched into
a feature map with 3 channels. Next, according to the different judging conditions in the
two different training stages, these feature maps are fed into the network and trained in
two different stages: the first stage and the second stage. The stages initialize the number
of iterations and an iteration threshold. The number of iterations is initialized to 0, and the
iteration threshold, which is initialized to a larger value Niter, is used to limit the number of
iterations. In the first stage, the training strategy of RITM is applied, and the number of
iterations and the iteration threshold are initialized. Then, the model fuses the input feature
map and the original map for prediction, updates the feature map based on the prediction
map until the number of iterations reaches Niter, and inputs it to the network training. In
the second stage, one more IoU threshold is initialized. If the number of iterations does not
reach the threshold, the intersection over union (IoU) value is calculated for each prediction
result. If the IoU value is higher than the initialization threshold, that feature map and the
original map are directly utilized for training. Otherwise, the sequence of interacting clicks,
the prediction, and the loss function (iteration loss) continue to be computed until the IoU
value exceeds the threshold or the number of iterations reaches Niter.
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Figure 1. Pipeline of the proposed ARE-Net with the architecture of the segmentation model. The
ARE module generates coordinate features from the original image, a positive/negative points list,
and the ground truth and connects them with the previous prediction mask as input features. Then, it
determines the input features through conditional judgment and sends them to different stages of the
segmentation network. The inference mode in the two stages aims to update the positive/negative
points list using the prediction mask of the segmentation network. The training mode aims to train
the network parameters using input features and output the predicted segmentation mask. In the
two-stage training strategy, Niter is the iteration threshold, and n is used as the counting variable.
Each time the positive and negative click queue is updated using the mask inferred by the model,
an interaction click is added, and n is increased by 1. The number of interactive clicks should not
exceed Niter.

2.2. Adaptive-Radius Encoding

The current mainstream interactive information encoding methods transform the
coordinates in the interactive sequence into interactive features using fixed-radius binary
disk coding. Then, the fusion module fuses these features with the original image features.
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Fixed-radius binary disk coding works by using the coordinates in the interaction sequence
as the center of a circle. It employs one-hot coding to assign a value of 1 to the region within
the fixed radius and 0 to other regions. This local coding approach effectively provides
interaction information to the network and mitigates the effects of network confusion
to some extent [47]. Therefore, we also adopted this local coding approach to encode
interactive clicks and obtain interactive features.

In click-based interaction segmentation, positive and negative clicks have distinct
interaction effects. For positive clicks, the binary disk encoding centered on the click
coordinates should cover as much of the positive sample area as possible. This ensures
that the interaction features contain more semantic information about the building objects.
However, for buildings of different shapes, fixed-radius disk encoding will inevitably
include information about non-building areas, leading to confusion for the network. On the
other hand, negative clicks should randomly appear around buildings and non-building
areas. The corresponding binary disk encoding should be as close as possible to the edge
areas of the buildings, providing boundary information to constrain the extraction of
buildings. As a result, simply enlarging the radius to provide more a priori information
is not suitable for extracting buildings with different shapes from high-resolution remote
sensing images. Furthermore, the original method samples negative clicks far away from
the target, and this kind of sampling will produce ineffective redundancy information
in the binary classification problem. Based on these two observations, we designed the
adaptive-radius binary disk coding algorithm. For coding positive clicks, the algorithm
uses a distance transformation to compute the maximum inner tangent circle radius of the
region where the clicks are located in the interaction sequence. This radius is then used as
the coding radius for the corresponding clicks. For coding negative clicks, the clicks are
located at the edges of the building region, and the minimum distance between the click
region and the building is computed using the distance transformation. This distance is
then used as the radius of the disk.

Figure 2 shows the class activation mappings (CAMs) generated in the network
after encoding the interaction sequences into feature maps using both methods. For
buildings of different shapes, the fixed-radius binary disk coding method often produces
inaccurate results. As shown in Figure 2, the polygonal area represents a non-building
region, indicating that the fixed-radius disk coding scheme included some background
regions in the feature maps of the positive clicks. This led to confusion in the final extraction
results of the network. To address this issue, the proposed ARE can capture more semantic
information about the interaction features from the network model, and it can be seen that
the obtained heat zones were all within the building area.

We present the pseudo-code for the ARE algorithm in Algorithm 1. The algorithm
operates in two phases: random sampling and corrected sampling. During the random
sampling phase, line 1–3, we decompose the binary mask into positive/negative masks
using one-hot coding, and then use distance transformation to obtain the corresponding
positive/negative distance map. In line 4, by combining the two maps, we can calculate the
inscribed circle radius of all pixel closest to the building boundaries. In line 5–9, we convert
the clicks into a distance map through distance transformation, calculate the inscribed
radius from it, and limit the inscribed radius value of negative clicks to within 5. In line
10, ϕ(point_radius, point_InscribedDistance) maps each radius distance to the encoding
radius of the corresponding click. In line 11, after the disk encoding, all positive/negative
interactive disk mappings are merged to obtain AREMap. Distance transform is a method
in computer graphics. The main function of this method is to obtain the distance from each
pixel in the mask to the background pixel. In the corrected sampling phase, new clicks
are generated based on the prediction results. The same method is used to calculate the
distances and update the clicks and distances in the list. Subsequently, the feature maps are
generated and returned to the network.
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(a) Image

(b) Ground Truth

(c) Fixed Radius 

(d) Adaptive Radius

Figure 2. The class activation mappings of fixed-radius binary disk coding and ARE’s disk coding. In
the fixed-radius binary disk coding, all clicks are encoded using the same radius, while in ARE, the
radius of encoding is dynamically adjusted according to the location of the clicks to avoid the problem
of network confusion due to anomalous buildings and provide more correct a priori information
from the same clicks.

Algorithm 1 Adaptive-radius encoding

1: Input: click_List, previous_masks, images

2: Output: ARE_Maps

3: PositiveMask, NegativeMask = One-Hot(previous_masks)

4: PositiveDistanceMap = distanceTransform(PositiveMaskt, images)

5: NegativeDistanceMap = distanceTransform(NegativeMask, images)

6: incircle_maps = max(PositiveDistanceMap, NegativeDistanceMap)

7: dist_maps = distanceTransform(click_List, images)

8: point_radius, point_InscribedDistance=dist_maps[point], incircle_maps [point]

9: if point is Negative_clicks then then

10: encoding_map[point] = min(5, encoding_map)

11: end if

12: encoding_map = ϕ(point_radius, point_InscribedDistance)

13: ARE_Maps = sum(encoding_map)

14: return ARE_Maps

2.3. Two-Stage Training Strategy

The current mainstream iterative correction sampling strategy involves the following
steps: Firstly, a random maximum iteration threshold, denoted as N, is set. The initial
correction sampling is performed using model predictions on randomly sampled clicked
images. New clicks are added within the region of maximum error prediction. The
remaining N − 1 sampling iterations are conducted based on the model predictions of the
prediction map from the previous round of correction sampling, along with the augmented
clicked images, and new clicks are added in a similar manner as before. Finally, the
prediction map, along with the final set of clicked images, is sent for training.
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After analyzing the IoU of the prediction maps generated at each iteration of the model
during training, we observed a fluctuation in the IoU with an increase in clicks during the
initial stages of training. However, we noticed that the IoU gradually improved as the
number of clicks increased in the later stages, as shown in Figure 3. This indicated that the
training objectives differed between the first and second stages of the network. During
the early stages of network training, the IoU exhibited erratic fluctuations, indicating that
the primary task at this point was for the network to learn the motivating effect of the
interaction features. Conversely, in the later stages of training, the IoU demonstrated
a consistent upward trend with increasing clicks. This suggested that the focus in the later
stages should be on enhancing the network’s RoC performance. Our work aimed to achieve
higher accuracy with minimal clicks. However, during the later stages of training, the
model tended to prioritize fine-tuning the network by adding more clicks while potentially
neglecting the comprehensive learning of local features in newly clicked regions. As
a result, treating clicks at different stages indiscriminately led to limited improvement in
the IoU and challenged the network’s ability to improve the number of clicks (NoC) metric.

We divided the model training into two stages. The first stage remained the same
as the original training stage, aiming to enhance the network’s performance for building
extraction. The second stage focused on fine-tuning, and we introduced two key improve-
ments: (1) During each correction sampling iteration, we calculated the IoU of the model’s
prediction results. If the IoU reached a predefined threshold, we terminated the current
round of iterative sampling early and proceeded to train the model directly. (2) We intro-
duced the iteration loss function to maximize the improvement of the NoC metric. This
loss function is shown in Equation (1).

iteration_loss =
n

∑
k=0

(1− IoUk) (1)

Considering the number of correction sampling iterations and the IoU achieved in
each correction, if there are more correction samplings and the IoU for each correction is
lower, the value of this loss will be larger.

Figure 3. Changes in IoU with increasing clicks at different stages.

We used the normalized focal loss (NFL) [52] to calculate the loss of the model output
results and promote the convergence of the model. The final design of our loss function is
shown in Equation (2).

loss =
1
2

iteration_loss +
1
2

NFL (2)

3. Experiments and Results
3.1. Dataset

In our experiments, we assessed the effectiveness of our proposed ARE-Net using
two open building extraction datasets: WHU and Inria. Below are presented detailed
descriptions of these datasets.
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Inria dataset [51] (this dataset can be downloaded from: https://project.inria.fr/
aerialimagelabeling/, accessed on 1 January 2022). The Inria dataset comprises five subsets:
Austin, Chicago, Kitsap, Tyrol, and Vienna. Each subset contains 36 tiles with a spatial
resolution of 0.3 m and a size of 5000× 5000 pixels. The total area covered by the dataset
is 405 km², with a total of 180 tiles. These subsets represent different cities and include
buildings with diverse styles, structures, and shapes. Notably, the highest average accuracy
achieved on this dataset using fully automated segmentation networks is only 76.21%.
Therefore, due to the varying distribution of buildings and the complex environment
surrounding them, this dataset poses challenges for interactive building extraction. To
ensure fairness, we divided the dataset as follows: the first 25 tiles of each city were used as
the training set, tiles 26–30 were allocated to the validation set, and the remaining tiles were
designated for testing the effectiveness of our method. Each tile was sequentially cropped
into non-overlapping RGB images with a size of 512 × 512 pixels. Consequently, the
training set, validation set, and test set of each city consisted of 2500, 500, and 600 images,
respectively. Sample images from the Inria dataset are shown in Figure 4.

The WHU building dataset [50] (this dataset can be downlaod from http://gpcv.whu.
edu.cn/data/, accessed on 1 January 2022). The WHU dataset is renowned as a challenging
dataset for building detection. It comprises three sub-datasets: an aerial image dataset,
satellite dataset I, and satellite dataset II. For our experiments, we focused on the aerial
image dataset, as shown in Figure 5, which consists of 8188 non-overlapping RGB images
with a size of 512× 512 pixels collected over Christchurch, New Zealand. The training set,
validation set, and test set of this dataset contain 4736, 1036, and 2416 images, respectively.
We followed the official setup provided by the dataset creators to conduct our experiments.

Chicago

Chicago – reference

Vienna

Vienna – reference

Kitsap County, WA

Kitsap County, WA – reference

Figure 4. Sample imagery of Inria dataset.

https://project.inria.fr/aerialimagelabeling/
https://project.inria.fr/aerialimagelabeling/
http://gpcv.whu.edu.cn/data/
http://gpcv.whu.edu.cn/data/
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The sample of aerial imagery The sample of aerial imagery—reference 

Figure 5. Aerial image dataset sample of the WHU dataset.

By utilizing these datasets, we aimed to address the difficulties posed by varying
building distributions and complex environmental factors and evaluate the effectiveness of
our interactive building extraction method.

3.2. Evaluation Metrics

To ensure a fair comparison, we employed an extensive sampling strategy [20,47,48] to
simulate the number of clicks during the evaluation process. This strategy involved simulat-
ing the clicking process using ground-truth masks as references. The first click was placed
at the center of the ground-truth mask, while subsequent clicks were placed at the center of
the region with the maximum error from the previous mask. This approach allowed us to
simulate the interactive process and evaluate the performance of different methods.

Considering the challenges posed by these datasets, we used the NoC80/85/90 metric
to assess the RoC of different methods. NoC80/85/90 represents the average number of
clicks required for the segmentation results to achieve the target IoU of 80%, 85%, and 90%,
respectively. The formula for calculating NoC80/85/90 is shown in Equation (3).

NoCk =
1
N

N

∑
i=1

ni,k (3)

where N is the number of predicted images, and ni,k denotes the total number of clicks
consumed for the ith image to reach IoU@k. As in the previous work, we limited the
number of clicks to 20 when comparing the RoC.

We also employed the same evaluation metric as in [48], NoF100
85/90 (number of failures:

the number of images whose IoU did not reach 85/90 in a maximum of 100 clicks), to
evaluate the generalizability. The formula is shown as follows in Equation (4):

NoFk =
N

∑
i=1

mi,k (4)

where N is the number of predicted images, mi,k = {0, 1}, and mi,k = 0 means that the ith
image can reach the target IoU@k in a maximum of 100 clicks before the maximum number
of clicks.

Considering the labor cost and the possibility of using the model on mobile devices
and websites, we compared the time to process the entire data set (Time) and seconds per
click (SPC), whose formula is shown in Equation (5).

SPC =
Time

all_clicks
(5)
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where Time is the time taken to process the whole dataset, and all_clicks is the total number
of clicks consumed in the case of a maximum of 20 clicks.

In addition, we evaluated the convergence based on the average IoU@k curves of
different methods at 20 clicks [20] and the generalization ability of different methods based
on their NoF metric at a maximum of 100 clicks [47].

3.3. Implementation Details

To ensure the fairness of the experiments, we followed a consistent procedure to train
the models. The images were randomly resized within the range of (0.75, 1.4), maintaining
their aspect ratio. Both the Inria and WHU datasets had an original image input size of
512× 512 pixels. We also applied image transformations such as inversion and random
variations in brightness, contrast, and RGB values. During the random sampling and
correction sampling stages, we limited the total number of positive and negative clicks to
not exceed 24. By consistently applying these preprocessing steps and limitations across
the training process, we aimed to establish a fair and comparable experimental setup for
evaluating the performance of our proposed method.

In our experiments, we employed the Adam optimizer with β1 = 0.9 and β2 = 0.999,
which are hyperparameters used to control the exponential decay rates for the first and
second moments of the gradients, respectively. We trained two models with different
sizes: HRNet18s+OCR and HRNet32+OCR [53,54]. The batch size was set to 16 for HR-
Net18s+OCR and 8 for HRNet32+OCR. Accounting for the variations in building size
distributions across different sub-datasets, we set the min_object parameter to 0. This
meant that we did not remove any buildings with small targets during the training process.
This choice allowed us to retain all buildings in the dataset, regardless of their size. The
training process consisted of a total number of epochs, a learning rate, and a learning
rate decay strategy that were consistent with the RITM method [47]. Meanwhile, we di-
vided the total number of epochs into two segments. The first 150 epochs followed the
original training strategy, while the remaining epochs incorporated our iterative training
strategy. By utilizing these training configurations, we aimed to compare the performance
of our models against the baseline and evaluate the effectiveness of our proposed iterative
training strategy.

3.4. Results

Our method utilized CNN-based models to adapt and accelerate inference on mobile
devices and websites. We collaborated with several mainstream methods based on CNN
models: RITM [47], RGB-BRS, f-BRS [20], BRS [35], and FocalClick [48]. To ensure the
fairness of the experiment, we implemented all of them using the RITM framework.

3.4.1. RoC and CG Analysis

In order to draw a fair comparison regarding the convergence speed of different
methods for high-resolution image building extraction, we compared the NoC80, NoC85,
and NoC90 among the six methods using the same segmentation models (HRNet18s+OCR
and HRNet32+OCR), as shown in Tables 1 and 2. It was evident that our method achieved
a significant improvement on all sub-datasets of the Inria and WHU datasets when using
the same model. In the HRNet18s+OCR model, we observed improvements of 17.92%,
15.14%, and 7.98% for NoC80, NoC85, and NoC90, respectively, on the Inria sub-dataset.
Simultaneously, on the WHU dataset, we achieved improvements of 10.53%, 13.38%, and
13.03% for NoC80, NoC85, and NoC90, respectively.
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Table 1. Comparison of the NoC80, NoC85, and NoC90 for HRNet18s+OCR (the best results are
in bold).

Data NoC RITM RGB-BRS BRS f-BRS FocalClick ARE-Net

Inria

Austin
NoC80 4 4.01 4.16 4.58 12.39 3.75
NoC85 9.75 9.9 10.09 11.03 14.92 9.49
NoC90 15.81 15.95 16.02 16.15 16.89 15.55

Chicago
NoC80 5.13 5.43 5.46 5.58 7.23 4.17
NoC85 7.9 8.52 8.53 8.77 9.74 6.8
NoC90 11.99 13.07 13.01 13.07 13.43 10.75

Kitsap
NoC80 10.3 11.06 11.49 11.43 14.19 9.89
NoC85 14.05 14.55 14.99 15.28 16.58 13.55
NoC90 17.89 18.05 18.09 18.44 18.45 17.38

Tyrol
NoC80 5.16 5.36 5.46 5.47 10.16 3.81
NoC85 11.19 11.78 12.14 11.85 13.77 9.15
NoC90 16.73 17.06 16.89 16.87 17.08 15.35

Vienna
NoC80 9.17 9.22 9.47 9.65 10.71 7.7
NoC85 13.12 13.36 13.69 13.73 13.73 11.07
NoC90 17.5 17.53 17.72 17.27 17.27 16.23

Average
NoC80 6.752 7.016 7.208 7.342 10.936 5.864
NoC85 11.202 11.622 11.888 12.12 13.748 10.012
NoC90 15.984 16.332 16.346 16.456 16.624 15.052

WHU
NoC80 1.71 1.66 1.66 1.67 11.62 1.53
NoC85 2.69 2.7 2.75 2.28 13.62 2.33
NoC90 9.98 10.22 10.38 10.9 15.69 8.68

Table 2. Comparison of the NoC80, NoC85, and NoC90 for HRNet32+OCR (the best results are
in bold).

Data NoC RITM RGB-BRS BRS f-BRS FocalClick ARE-Net

Inria

Austin
NoC80 2.77 2.65 2.95 2.77 12.79 2.31
NoC85 6.95 6.92 7.64 7.62 14.99 6.05
NoC90 14.2 14.21 14.67 14.57 17 13.54

Chicago
NoC80 4.35 4.66 4.91 4.58 7.83 3.36
NoC85 6.71 7.41 7.73 7.22 10.17 5.63
NoC90 10.82 11.77 12.2 11.53 13.67 9.32

Kitsap
NoC80 9.67 10.37 10.87 10.64 14.73 9.35
NoC85 13.32 13.84 14.32 14.27 16.76 13.05
NoC90 17.48 17.64 17.78 18.01 18.55 16.97

Tyrol
NoC80 4.53 4.69 4.73 4.67 10.63 3.4
NoC85 10.63 11.26 11.31 11.05 14.41 8.4
NoC90 16.28 16.96 16.79 16.65 17.27 14.92

Vienna
NoC80 7.55 7.7 7.92 7.9 10.08 6.11
NoC85 10.74 11.11 11.49 11.36 13.85 9.29
NoC90 15.89 16.14 16.52 16.57 17.18 14.44

Average
NoC80 5.774 6.014 6.296 6.112 11.212 4.906
NoC85 9.67 10.108 10.498 10.31 14.036 8.484
NoC90 14.934 15.344 15.592 15.466 16.734 13.838

WHU
NoC80 1.59 1.52 1.52 1.53 11.13 1.43
NoC85 2.19 2.1 2.2 2.19 13.13 1.88
NoC90 5.94 6.12 6.71 6.87 15.39 5.02
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For HRNet32+OCR, we observed improvements of 15.03%, 12.26%, and 7.34% for
NoC80, NoC85, and NoC90, respectively, on the Inria sub-dataset, and 10.06%, 14.16%, and
15.49% on the WHU dataset. Additionally, the average recall error (ARE) demonstrated
performance improvements across all sub-datasets, indicating that our approach was not
limited to a specific geographic building style but was applicable to various geographic
building categories. Furthermore, our method exhibited a noticeable improvement in
large-scale buildings or sub-datasets with a dense building distribution (such as Chicago,
Tyrol, and Vienna), which provided evidence that the method effectively leveraged a priori
information to enhance building extraction.

Figures 6 and 7 show the mean IoU@K curves for different methods using the HR-
Net18s+OCR and HRNet32+OCR models to investigate the changes with an increasing
click count. The increase in the number of clicks not only provides more guidance informa-
tion, but also increases noise, leading to network confusion. To reduce the noise impact
caused by input changes, RITM, FocalClick, and ARE-Net add previous masks, while BRS
and RGB BRS use multiple forward and back passes through the entire model. F-BRS is
a lightweight solution for BRS and RGB-BRS. Considering the time cost for the multiple
propagation of BRS and RGB-BRS, only auxiliary parameters are used to optimize the
network. As shown in the figure, although this method could effectively reduce time costs,
it resulted in the network being sensitive to noise and decreasing when the number of
clicks increased to eight, while other methods had a stable upward trend. According to the
figure, ARE-Net had a significant advantage when the number of clicks was less than five
on the Inria dataset with fewer samples. For the HRNet18S+OCR model, ARE-Net could
achieve an 85% IoU with 10 clicks. For the HRNet32+OCR model, an 85% IoU could be
achieved with just seven clicks. Compared to the other methods on the WHU dataset with
a large number of samples, the advantage was not significant when the number of clicks
was low, but the upward trend of ARE-NET was stable and quick, reaching a 90% IoU
faster. ARE-Net achieved a 90% IoU with five clicks for HRNet18S+OCR, while the other
methods required nine clicks. For HRNet32+OCR, we achieved a 90% IoU with three clicks,
while the other methods required five clicks. This indicated that compared to existing
methods, our proposed method could provide faster, more effective convergence and lower
interaction cost requirements.

Figure 6. Mean IoU@k curves for the WHU dataset and Inria dataset in HRNet18s+OCR with
an increasing click number.
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Figure 7. Mean IoU@k curves for the WHU dataset and Inria dataset in HRNet32+OCR with
an increasing click number.

3.4.2. Generalizability Analysis

Generalizability is a crucial aspect of interactive segmentation algorithms. To assess
the generalization performance, we conducted computer simulations on both the Inria and
WHU datasets, considering up to 100 clicks using two different models. The results are
summarized in Table 3. Notably, FocalClick exhibited a limited generalization capability,
as it failed to reach the set IoU for more than 1000 test sets out of a total of 3000 test sets
in the Inria and WHU datasets. This degradation in generalization could be attributed to
FocalClick’s focus on fine-tuning segmentation by zooming in on regions with segmentation
errors, which neglects the segmentation of other targets in complex multi-target scenarios.
Both BRS and f-BRS optimized segmentation by tuning the network and exhibited good
generalization performance on the WHU dataset. However, their performance on the more
challenging Inria dataset fell short. In contrast, RGB-BRS and RITM demonstrated favorable
results on both datasets. Importantly, our method outperformed RGB-BRS and RITM in
terms of generalization. Even though some images did not achieve the set accuracy using
our method, the number of such images was significantly lower than for the other methods.
This finding indicated that our method offered a higher generalization performance, serving
as strong evidence of its effectiveness. The robust generalization capability of our method
underscores its suitability for diverse and complex scenarios, reinforcing its potential for
real-world applications.

Table 3. Generalizability analysis on Inria and WHU datasets. NoF100
IoU indicates the number of images

that could not reach the specified IoU within 100 clicks for both models (the best results are in bold).

Model Data NoF RITM RGB-BRS BRS f-BRS FocalClick ARE-Net

HRNet18s
+OCR

Inria NoF100
85 253 314 468 789 1067 158

NoF100
90 787 807 1092 1377 1360 603

WHU NoF100
85 43 11 12 25 1023 10

NoF100
90 131 85 225 635 11980 51

HRNet32
+OCR

Inria NoF100
85 169 147 438 600 1020 99

NoF100
90 590 649 1019 1212 1309 419

WHU NoF100
85 36 9 14 14 922 8

NoF100
90 78 27 136 248 1122 25

3.4.3. Labeling Cost Analysis

Reducing the time cost of annotation is another crucial aspect of interactive segmenta-
tion algorithms. To evaluate our method against previous work in terms of time cost, we
analyzed the seconds per click (SPC) and the total time consumed (time) based on the rules
described in Section 3.2. All experiments for this metric were conducted on a 5 vCPU In-
tel(R) Xeon(R) Platinum 8338C CPU @ 2.60GHz, without any external interference. Table 4
presents the results of our analysis. RGB-BRS and BRS required constant back-and-forth
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passes in the network, resulting in a large computational burden and significantly increased
the time consumed per click. Consequently, the labeling time cost was substantially higher
for these methods. Although f-BRS optimized only the network parameters, its inference
speed was better than that of the previous two methods. However, due to the increased
number of clicks and the resulting decline in accuracy, the labeling time cost remained
relatively high. FocalClick utilized the ZoomIn method, which reduced the number of
parameters in the network and achieved a relatively good SPC index. However, the method
did not effectively address multi-target segmentation tasks, leading to increased time con-
sumption and an unsatisfactory annotation time cost. In contrast, RITM and our method
(ARE) required the least annotation time cost. Our method performed significantly better
than RGB-BRS, BRS, and f-BRS in terms of annotation time cost for different models and
datasets. This result demonstrated that our method had minimal impact on the time cost for
annotation, ensuring efficient and effective interactive segmentation. By reducing the time
required for annotation, our method enhances the user experience and facilitates practical
applications that involve large-scale or time-sensitive segmentation tasks.

Table 4. Average time per click and total time cost for WHU and Inria in HRNet18s+OCR and
HRNet32+OCR (the best results are in bold, and the second-best results are underlined).

Model Data Time Cost RITM RGB-BRS BRS f-BRS FocalClick ARE-Net

HRNet18s
+OCR

Inria
SPC, s 0.0298 1.3492 0.9994 0.0622 0.0334 0.034

Time, H:M:S 0:18:56 14:00:28 10:43:48 0:40:47 0:21:59 0:19:40

WHU
SPC, s 0.024 0.885 0.06 0.035 0.033 0.033

Time, H:M:S 0:06:51 6:11:53 4:25:08 0:16:53 0:15:45 0:08:19

HRNet32
+OCR

Inria
SPC, s 0.0566 1.2884 0.8944 0.0994 0.053 0.0574

Time, H:M:S 0:32:44 13:00:40 9:06:25 1:00:26 0:35:01 0:31:59

WHU
SPC, s 0.06 1.338 0.939 0.096 0.053 0.059

Time, H:M:S 0:10:21 3:56:11 3:01:04 0:19:03 0:23:36 0:08:37

3.4.4. Comprehensive Comparison

In Table 5, we rank the methods based on the metrics of RoC, CG, generalizability, and
labeling costs for the two different models. RGB-BRS and BRS prioritized performance at the
expense of increased labeling costs. This resulted in higher annotation time costs compared
to the other methods. On the other hand, FocalClick sacrificed performance in order to
reduce labeling costs but failed to achieve a balanced performance. Our method exhibited
slightly higher annotation costs on the small model compared to RITM but outperformed
RITM on the large model, indicating its higher potential. Overall, our method achieved the
top ranking, demonstrating superior performance across all metrics. The comprehensive
analysis indicated that our method struck a good balance between performance and labeling
costs, offering the best overall results among the compared methods.
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Table 5. Comprehensive ranking of the different methods.

Model Metrics First Second Third Fourth Fifth Sixth

HRNet18s
+OCR

ROC ARE RTIM RGB-BRS BRS f-BRS FocalClick
CG ARE RTIM RGB-BRS BRS f-BRS FocalClick

Generalizability ARE RGB-BRS RITM BRS f-BRS FocalClick
Labeling costs RITM ARE FocalClick f-BRS BRS RGB-BRS

HRNet32
+OCR

ROC ARE RTIM RGB-BRS BRS f-BRS FocalClick
CG ARE RTIM RGB-BRS BRS f-BRS FocalClick

Generalizability ARE RGB-BRS RITM BRS f-BRS FocalClick
Labeling costs ARE RITM FocalClick f-BRS BRS RGB-BRS

4. Discussion

Interactive semantic segmentation differs from general semantic segmentation in that
it incorporates human clicks to guide the network’s segmentation task. These clicks are
converted into feature maps using binary disk coding and then fed into the network. As
a result, the feature maps are transformed differently based on the size of the clicks. In
high-resolution remote sensing images, buildings exhibit diverse shapes and characteristics,
making the click radius an important factor. Expanding the click radius of a fixed-size may
introduce non-target areas into the feature maps and degrade network training, while using
a smaller click radius may weaken the influence of human clicks in guiding the network.
The network is trained by learning from RGB images and click-transformed feature maps,
aiming to achieve click-guided network segmentation. The network’s accuracy fluctuates
during the early stage of training as the number of clicks increases but gradually improves
as more clicks are added in the later stage. This discrepancy reflects the differences in
training objectives between the pre-training and post-training phases. In the initial stage,
the network learns to handle the increasing click information, while in the later stage, the
focus is on expanding the loss cost associated with additional clicks to enhance network
convergence. This is why ARE-Net improved in terms of all performance metrics. To
demonstrate the effectiveness of our method, we visualized the interaction process and
conducted ablation experiments, as presented in the following sub-sections.

4.1. Comparison with Fully Supervised Classification Methods

To demonstrate the low cost and effectiveness of ARE-Net, we chose HRNet18+OCR
and HRNet32+OCR as the benchmark models for fully supervised classification and com-
pared their classification results with those of ARE. The results are shown in Tables 6 and 7.
According to Table 6, under fully supervised classification, the IoU of HRNet18s+OCR for
the Inria and WHU datasets reached 73% and 87.86%, respectively, while ARE exceeded
the fully supervised building extraction results with only two to three clicks. Similarly,
from Table 7, it can be observed that the IoU of HRNet32+OCR for the Inria and WHU
datasets reached 74.61% and 89.06%, respectively. ARE also exceeded the fully supervised
building extraction results with a maximum of three clicks. This indicated that the interac-
tion extraction method proposed in this article could significantly improve the accuracy of
building extraction with a small amount of human–computer interaction.

Table 6. Comparison of extraction accuracy between HRNet18s+OCR and ARE with different
click counts.

Dataset HRNet18s+OCR ARE
(with 1 Click)

ARE
(with 2 Clicks)

ARE
(with 3 Clicks)

ARE
(with 5 Clicks)

ARE
(with 10 Clicks)

ARE
(with 20 Clicks)

Inria 73% 66.86% 75.84% 79.25% 82.27% 85.39% 87.94%
WHU 87.86% 82.15% 87.07% 88.48% 89.75% 91% 92.02%
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Table 7. Comparison of extraction accuracy between HRNet32+OCR and ARE with different
click counts.

Dataset HRNet32+OCR ARE
(with 1 Click)

ARE
(with 2 Clicks)

ARE
(with 3 Clicks)

ARE
(with 5 Clicks)

ARE
(with 10 Clicks)

ARE
(with 20 Clicks)

Inria 74.61% 71.02% 78.17% 80.95% 83.71% 86.55% 88.92%
WHU 89.06% 83.89% 88.72% 89.99% 91.15% 92.28% 93.11%

4.2. Visualization Analysis

Interactive progress visualizations for six interactive segmentation methods in building
extraction are shown in Figures 8 and 9. Figure 8 shows the extraction results of buildings
after 1, 3, 4, and 6 clicks, while Figure 9 shows the extraction results after 7, 9, 10, and 11
clicks. The corresponding IoU values are listed under each image. The first row shows the
original image, and the second row shows the ground truth. The methods in each column
from left to right are FocalClick, RGB-BRS, BRS, f-BRS, Ritm, and the proposed ARE-Net
method. The red areas on the graphs are building masks. Due to the use of adaptive-radius
binary encoding in ARE-Net, the size of the green dots representing positive clicks and
red dots representing negative clicks adapted to the size of the building and non-building
areas, as shown in the sixth column of the figure. The green and red dots in columns one to
five are fixed in size. According to these visualization figures, our method demonstrated
superior performance compared to the others. Each click was supervised effectively during
the two-stage training strategy of ARE-Net.

In Figure 8, the third and fourth rows demonstrate the advantages of the ARE module.
After the first click, most methods only extracted a portion of the building in the upper right
corner of the image (marked by a yellow box). ARE-Net covered a more complete range of
buildings. This was because the interaction information provided by the fixed-radius click
method was limited, and multiple clicks were required for correction. The ARE module
maximized the extraction of useful information from positive clicks through the adaptive
radius. Compared with other methods for identifying missing building information in the
upper right corner of the image, ARE-Net better identified building information in that area.
In the third row, only FocalClick and ARE-Net could achieve an IOU of over 80% after the
first click, and the method in this article achieved a value 4% higher than that of FocalClick.
After another positive and negative click, i.e., after three clicks, ARE-Net extracted the
elongated buildings in the central area of the image that had not yet been extracted after
the first click, while the other methods could only extract partial area information of the
building. Compared to the other methods, ARE-Net had the highest IOU value after
three simulated click samples, at 89.58%, which was 3% 6% higher than the result of the
other methods. As shown in the blue-framed images in rows five and six, the building
footprints in the yellow box area could be completely extracted by other methods through
two clicks, while ARE-Net only needed one click to achieve the complete extraction of
building information, which demonstrated that ARE-Net had lower interaction costs and
a faster RoC. Meanwhile, ARE-Net was the only method that achieved a 90% IOU after
four clicks, which was significantly superior to the other methods.

The extraction visualization images after the 7th, 9th, and 11th clicks are shown in
Figure 9. Although FocalClick achieved a better IoU with fewer clicks in Figure 8, the
mask accuracy actually decreased as the number of clicks increased, as shown in the
first column with yellow borders in Figure 9. This was because building extraction is
a multi-objective segmentation task, and FocalClick adopted an amplification strategy,
which caused the network to focus on the same area (the yellow boundary area in the
upper left corner of the image), only increasing the number of clicks in that area, without
improving the recognition accuracy of other building targets. When RGB BRS, f-BRS, and
BRS were applied to obscured targets such as adding clicks in the occluded area for the
9th, 10th, and 11th clicks (images with green borders in the fifth and sixth rows), the IoU
decreased. Typically, when the IoU of f-BRS approached 90% (rows four and six in the
figure), additional clicks could cause a sharp decrease in mask accuracy.



Remote Sens. 2023, 15, 4457 18 of 24

According to the visual graphs in Figures 8 and 9, ARE-Net showed a faster rate of
convergence, lower interaction costs, and a steadily improved accuracy with the increase in
the number of clicks in the interactive process of building extraction.
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Figure 8. Visualization of the interaction process for all methods at 1–6 clicks. Green and red dots
represent positive and negative clicks, respectively. The blue background contains the shortcomings
of the other methods compared to our method.
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Figure 9. Visualization of the interaction process for all methods at 7–11 clicks. Green and red
dots represent positive and negative clicks, respectively. The yellow, green, and pink backgrounds
represent the shortcomings of the other methods.

4.3. Qualitative Result

To demonstrate the generalizability of the proposed method across various building
shapes, scales, distributions, and other scenarios, we added two datasets with images of
buildings with different shapes and distributions in different cities for qualitative experi-
mental analysis. The results are shown in Figure 10. Figure 10a,b,d,e include images from
the Chicago, Vienna, and Austin sub-datasets of Inria, and Figure 10c includes images from
the WHU dataset. In addition, Figure 10a–d, respectively, include images representing
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cases of circular buildings, polygonal buildings, an imbalanced distribution of buildings,
and inconsistent building sizes. In the figure, the first column represents the original
image, while columns two to four demonstrate the annotation process from scratch. ARE
could quickly obtain high-quality predictions with a few clicks. Columns five to six show
the results after clicking on the demonstration image to improve the accuracy, and the
last column is the ground truth. From Figure 10a–d, it can be seen that ARE-Net could
effectively extract buildings with different shapes and distributions, but in Figure 10e with
more complex terrain categories, ARE could not effectively extract such slender buildings
that were similar to the surrounding environment.

1 Clicks,IoU=38.54% 2 Clicks,IoU=62.88% 3 Clicks,IoU=75.55% 8 Clicks,IoU=84.88% 12 Clicks,IoU=90.72% gtImage

1 Clicks,IoU=74.69% gtImage 2 Clicks,IoU=88.88% 3 Clicks,IoU=89.64% 9 Clicks,IoU=90.36% 11 Clicks,IoU=90.45%

Image 1 Clicks,IoU=54.68% 2 Clicks,IoU=67.57% 3 Clicks,IoU=73.51% 11 Clicks,IoU=85.29% 18 Clicks,IoU=87.04% gt

Image gt1 Clicks,IoU=15.28% 2 Clicks,IoU=25.75% 3 Clicks,IoU=34.57% 10 Clicks,IoU=62.23% 20 Clicks,IoU=76.2%

(a)

(b)

(c)

(d)

(e)

gtImage 1 Clicks,IoU=33.31% 2 Clicks,IoU=61.62% 3 Clicks,IoU=74.81% 7 Clicks,IoU=86.22% 11 Clicks,IoU=90.47%

Figure 10. Visualization of the interaction process for ARE-Net with different numbers of clicks on
images of buildings with different shapes and distributions in different cities from the two datasets.
Green dots and red dots represent positive and negative clicks, respectively. (a) Chicago, Inria;
(b) Vienna, Inria; (c) WHU; (d) Austin, Inria; and (e) Chicago, Inria. The first column shows the
original image; columns two to four show the results for 1, 2, and 3 clicks; columns five and six show
the results for multiple clicks to improve accuracy; and the last column shows the ground truth.

4.4. Ablation Experiments

The ablation experiments conducted on the Vienna sub-dataset of Inria compared
the two-stage training strategy and the ARE module based on the RITM framework.
Tables 8 and 9 present the results of these experiments. From the values of NoC80, NoC85,
and NoC90, it could be seen that the ARE module and the two-stage training strategy could
effectively reduce the value of the NoC, which meant that a higher building extraction
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accuracy could be achieved through fewer interactions. At the same time, it could also
be observed that compared to the independent use of the ARE module and the two-stage
training strategy, their joint use achieved the greatest reduction in NoC90, obtaining the
required accuracy with fewer interactive clicks.

On the other hand, the ARE module enhanced the network’s potential for building
extraction by incorporating a priori information through adaptive-size encoding. This led
to notable improvements in the NoC, demonstrating the effectiveness of ARE in leveraging
click-guided network segmentation. Combining Table 9, Figures 6 and 7, the average
IoU@k curves in the figure and the number of images that did not reach IoU@k at the
maximum of 100 clicks in the table reflect the generalization performance of our method. It
is worth noting that no additional weights were introduced, which further affirmed the
effectiveness of our approach. Overall, the ablation experiments provide strong evidence
in favor of the effectiveness of the ARE module compared to the two-stage strategy and the
caseline, in terms of improvements in both the NoC and generalization capabilities.

Table 8. RoC evaluation for each fractional ablation experiment on the Vienna sub-dataset.

Baseline ARE Module Two-Stage Training
Strategy NoC80 NoC85 NoC90

X 9.17 13.12 17.5
X X 8 11.67 16.49
X X 8.56 12.27 17.5
X X X 7.7 11.07 16.23

Table 9. Generalizability evaluation for each fractional ablation experiment on the Vienna sub-dataset.

Baseline ARE Module Two-Stage
Training Strategy

NoF100
85 NoF100

90

X 163 270
X X 122 218
X X 138 245
X X X 113 212

5. Conclusions

In this paper, we presented an efficient method for the interactive extraction of build-
ings from high-resolution remote sensing images. Our approach leveraged an adaptive-
radius encoder and a two-stage training strategy to enhance the network’s ability to extract
buildings and improve annotation efficiency. Firstly, the adaptive-radius encoding method
played a crucial role in transforming each click into a feature map with an adaptive radius
size. This approach provided more detailed interaction information to guide the network in
accurately extracting buildings. By adapting the click radius, we struck a balance between
capturing detailed information and maintaining the effectiveness of the click guidance.

Additionally, our proposed two-stage training strategy effectively addressed the train-
ing tasks at different stages. We distinguished the models in the pre-late stage to ensure
they focused on specific training objectives. In the later stage, we emphasized the impact of
increasing clicks on the loss results, leading to faster network convergence. Extensive exper-
iments were conducted to evaluate our method on various datasets and models. The results
demonstrated that our method outperformed existing approaches in terms of both accuracy
and efficiency. Notably, on the Inria dataset using the HRNet18s+OCR model, we achieved
significant improvements in terms of NoC80, NoC85, and NoC90, as well as NoF100

85 and
NoF100

90 . Similar improvements were observed on the WHU dataset and the HRNet32+OCR
model. Furthermore, our method exhibited optimal convergence and labeling time costs.
It struck a balance between annotation efficiency and performance, making it a favorable
choice for interactive building extraction. Overall, our method showed state-of-the-art
performance in all performance aspects, surpassing previous approaches. The combination
of adaptive-radius encoding, two-stage training, and efficient annotation made our method
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an effective and practical solution for interactive building extraction in high-resolution
remote sensing images. However, the additional computation required for obtaining the
adaptive radius size in the coding process introduced some additional time and space
consumption costs. Therefore, segmentation methods that are more lightweight and enable
faster inference deserve further study. In addition, further generalization verification will be
conducted on a wider range of datasets in the future, such as the SZTAKI-INRIA building
detection dataset.
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