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Abstract: Optical and SAR image registration is the primary procedure to exploit the complementary
information from the two different image modal types. Although extensive research has been
conducted to narrow down the vast radiometric and geometric gaps so as to extract homogeneous
characters for feature point matching, few works have considered the registration issue for non-flat
terrains, which will bring in more difficulties for not only sparse feature point matching but also
outlier removal and geometric relationship estimation. This article addresses these issues with a novel
and effective optical-SAR image registration framework. Firstly, sparse feature points are detected
based on the phase congruency moment map of the textureless SAR image (SAR-PC-Moment), which
helps to identify salient local regions. Then a template matching process using very large local image
patches is conducted, which increases the matching accuracy by a significant margin. Secondly, a
mutual verification-based initial outlier removal method is proposed, which takes advantage of
the different mechanisms of sparse and dense matching and requires no geometric consistency
assumption within the inliers. These two procedures will produce a putative correspondence feature
point (CP) set with a low outlier ratio and high reliability. In the third step, the putative CPs are
used to segment the large input image of non-flat terrain into dozens of locally flat areas using a
recursive random sample consensus (RANSAC) method, with each locally flat area co-registered
using an affine transformation. As for the mountainous areas with sharp elevation variations, anchor
CPs are first identified, and then optical flow-based pixelwise dense matching is conducted. In the
experimental section, ablation studies using four precisely co-registered optical-SAR image pairs of
flat terrain quantitatively verify the effectiveness of the proposed SAR-PC-Moment-based feature
point detector, big template matching strategy, and mutual verification-based outlier removal method.
Registration results on four 1 m-resolution non-flat image pairs prove that the proposed framework
is able to produce robust and quite accurate registration results.

Keywords: optical and SAR image; image registration; non-flat terrain; phase congruency; template
matching; outlier removal; recursive RANSAC; optical flow

1. Introduction

Although the latest imaging sensors have been equipped with advanced positioning
systems, the latitude and longitude information of the geocoded remote sensing images
still contains inevitable errors [1–3]. Remote sensing image registration is the procedure to
spatially align different images of the same region, which is unavoidable for any multi-time
or multi-sensor remote sensing applications, such as change detection and image fusion.
The optical and synthetic aperture radar (SAR) sensors are the two most important ways to
obtain high-spatial-resolution imageries of the earth’s surface from a long distance, such
as from a satellite. Also, they reveal distinct and complementary ground characteristics.
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Therefore, the combined use of them has aroused many concerns in academic circles [4–6],
for which optical and SAR image registration is still a nontrivial issue that needs to be
better resolved.

Current studies on optical-SAR registration, no matter the handcrafted methods [7–19]
or the deep learning-based ones [20–30], mainly focus on dealing with the vast radiometric
and geometric disparity problem, which makes it quite difficult to obtain sufficient reliable
CPs that are sparsely distributed across the input image pairs. After the putative CPs are
obtained, outlier removal and image warping are mostly conducted under the assumption
that the geometric relationship between the input optical-SAR image pairs can be depicted
by a linear equation, such as the affine or projective transformation. This linear assumption
only holds for image pairs of flatlands. However, only a quite small percentage of the
global landmass can be considered strictly flat. When the imaging area contains noticeable
topographic fluctuations, two images acquired from different viewpoints will present
unavoidable local geometric distortions. This distortion can be more serious for high-
resolution optical-SAR image pairs due to the range-imaging nature of SAR sensors, which
produces foreshortening and layover effects [31]. Also, the DEM (digital elevation modal)
images used for the geometric calibration are usually of low spatial and elevation resolution.
Several pixelwise dense registration approaches based on the optical flow technique have
been proposed to deal with the local geometric distortion problem [32–34]. However, the
pixelwise registration would have a high memory demand. It also fails either when the
ground relief changes or when the initial displacement is too large, say more than 50 pixels.

In this article, we investigate the registration problem of large optical-SAR image pairs
with non-flat terrains and high spatial resolution, for which the unified linear geometric
relationship no longer holds, leading to great difficulty for not only the sparse feature point
matching but also for the outlier removal and image warping processes. These are the
two obstacles that make the current optical-SAR image registration frameworks unable to
properly deal with images with non-flat terrains.

As for the sparse feature point matching issue, when the images to be co-registered
are of flatlands, a small amount of sparse CPs is sufficient to acquire a good estima-
tion of the affine or projective transformation. On the other hand, for non-flat terrains,
much denser and sparser landmarks are required so that the geometric formula with a
higher dimension or for each local area can be calculated. Many advantageous algorithms
that generate homogeneous features from heterogeneous optical and SAR image pairs
have been proposed for higher matching accuracy. Generally, they can be classified into
two types, as shown in Figure 1.

The first type is the SIFT-like detection-then-description approach, as shown in
Figure 1a, which tries to identify repeatable feature points from across the whole input
image pairs and then putative correspondences are obtained based on the feature descriptor
similarity measurement. In order to cope with the vast modal differences between the
optical and SAR images, delicately designed feature point detectors and feature descriptors
are proposed. For example, the ALGH method [7] uses the Harris–Laplace Sobel operator
for feature point detection from the optical image and the Harris–Laplace ROEWA operator
for the SAR image. Then, the GLOH-like descriptor is constructed using the amplitudes of
multi-scale and multi-orientation log-Gabor responses. The OS-SIFT method [8] adopts a
similar strategy by using two distinct Harris scale spaces to obtain consistent gradients from
optical and SAR images for repeatable feature point detection. The RIFT method [9] makes
use of the fact that the phase congruency (PC) maps of multiple image models share more
structure information when compared with the intensity image. Therefore, both feature
point detection and feature description are conducted based on the PC maps. In LNIFT [10],
a local normalization filter in the spatial domain is proposed to initially narrow down
the radiometric differences between the multi-modal images. Then, an improved ORB
keypoint detector and a HOG-like descriptor are applied to the filtered images. Although
the previous studies have made noticeable progress for the registration of optical and SAR
images with flat terrain, they are likely to be inapplicable to the registration of non-flat ter-
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rains. Because the detection-then-description paradigm usually cannot produce sufficient
amounts of repeatable sparse CPs from highly heterogeneous optical and SAR images. In
addition, their outlier removal process relies heavily on the geometric constraints within
the inlier CPs.
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matching, where the yellow ‘+’ on the Template Image is the location of the feature point, the yellow
‘+’ on the Search Image is the initial matching position and the red ‘+’ is the correct matching position.

The second scheme to obtain sparse correspondences is the template matching tech-
nique, as shown in Figure 1b, which first applies the blockwise Harris (or Fast, ORB, et al.)
corner detectors to the reference image to obtain an evenly distributed point set. Then, the
correspondences on the sensed image are identified based on the template feature similarity
measurement using the local searching strategy, assuming that the image pairs have been
coarsely registered by the geo-information. For the research following this paradigm, the
main effort is put into the template feature descriptor design or learning process so as
to more reliably measure the feature similarity between the optical and SAR image tem-
plates. The representative handcrafted methods include MIND [11], HOPC [12], CFOG [13],
SFOC [14], OS-PC [15,16], AWOG [17], HOPES [18], et al. For example, the MIND method
uses the self-similarity theory to extract image structures that preserve across modalities.
The HOPC and CFOG methods both use the pixelwise HOG-like descriptor to collect
similar features from multi-modal images. The AWOG method uses the feature orientation
index table to build the pixelwise descriptor. The SFOC combines first- and second-order
gradient information by using steerable filters to obtain more discriminative structure
features. The HOPES method extracts the primary edge structure using the Gabor filters
and conducts an edge fusion algorithm to obtain shared features from optical and SAR
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images. In recent years, many deep learning-based methods have come out [20–30], where
diverse kinds of Siamese or pseudo-Siamese convolutional neural network architectures are
designed to learn shared features from optical and SAR images. In [27], the CNN feature
extractor produces pixelwise deep features, which mimic the handcrafted method. The
authors of [28] claim that both shallow and deep features should be incorporated into the
feature matching process so as to not only get better feature discriminative ability but also
finer feature location precision. Also, a self-adaptively weighted loss function is introduced
to obtain better training result. In [29], three different CNNs are designed and trained
for feature point detection, feature matching and outlier removal, respectively. In [30], a
residual denoising network is incorporated into the pseudo-Siamese CNN to alleviate the
influence of speckle noise on SAR images.

Since this template matching paradigm usually adopts the blockwise feature point
detection strategy, we are able to obtain putatively sparse CPs as dense as we like. However,
the high heterogeneity of optical and SAR images would definitely lead to a large number
of outliers within the putative matches. The outlier ratio varies drastically for different
landcover types, depending on the texture similarity and discernibility between the optical
and SAR images to be co-registered. This leads to the second obstacle, outlier removal.

The outlier removal issue has been extensively researched in the fields of photogram-
metry and computer vision. It is a critical pipeline for many applications, such as structure-
from-motion (SfM) [35], simultaneous localization and mapping (SLAM) [36], multi-view
stereo [37], visual odometry [38], and image registration [39]. Many different techniques
and routes have been proposed. The RANSAC technique [40] randomly and repeatedly
selects a small initial point set and enlarges this set by finding the inlier ones that are
geometrically consistent with the set. Until now, RANSAC has been the most robust and
widely applied method in remote sensing image registration research and applications.
Numerous modified approaches have been proposed to increase the time efficiency and
accuracy of the classical RANSAC, such as the maximum likelihood estimation sample
consensus (MLESAC) [41] method, the least median of squares (LMEDS) method [42],
and the fast sample consensus (FSC) method [43]. Note that the previous RANSAC-like
approaches can only identify outliers under the assumption that all the inliers obey a
unified linear spatial relationship (affine or projective transform), which can be depicted by
a 3 × 3 matrix. In order to distinguish outliers when the linear geometric relationship does
not hold, non-parametric and graph-based methods have been widely exploited.

The non-parametric methods define deformation functions in a high-dimensional
form. For example, the coherent point drift (CPD) method [44] formulates the matching
problem as the estimation of a mixture of densities utilizing Gaussian mixture models. The
vector field consensus (VFC) method [45] models the movement consensus in the vector
field, which operates in a vector-valued reproducing kernel Hilbert space. The graph-based
methods are based on the assumption of geometric consensus among neighborhood inliers.
For example, the grid-based motion statistics (GMS) method [46] identifies the inliers by
checking if the adjacent ones are close to each other in both images. The locality-preserving
matching (LPM)-based methods [47,48] assume that the inliers should preserve the spatial
neighborhood relationship and structure. Although non-parametric and graph-based
approaches can deal with non-linear situations and have been prevailingly applied in the
computer vision field, they are rarely applied in the remote sensing image registration task.
It is because they all require very dense, sparse correspondences and usually fail when
inliers are distributed dispersedly [49].

Note that the majority of the earth’s surface is non-flat. Especially for the high-
resolution optical and SAR image pairs, even slight elevation variations would produce
noticeable local geometric distortion. However, the problem of large optical-SAR image
registration of rough terrains has rarely been addressed in the current studies due to the low
matching accuracy issue caused by the extreme radiometric and geometric disparity and
also the difficulty of outlier removal caused by the spatially varying geometric relationships.
This work tries to deal with these problems, with the main contributions as follows:
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1. Under the template matching paradigm, we propose to use the phase congruency
map of the textureless and noisy SAR image to obtain an evenly distributed point set,
which guarantees that each feature point is surrounded by salient local structures that
help to increase the matchability. The putative sparse correspondences on the optical
image are acquired using the learned deep features drawn from a very large local
image patch (641 × 641 pixels), which significantly increases the matching accuracy.
Meanwhile, an adaptive search range is used under the local searching pipeline. In
this way, we are able to get a collection of very densely distributed sparse CPs with a
quite low outlier ratio.

2. An effective outlier removal and transformation estimation procedure is proposed
for putative CPs that do not obey a unified geometric constraint. Firstly, taking
advantage of the different mechanisms of sparse matching and optical flow-based
dense matching, we propose a mutual verification-based outlier removal method.
In this way, unreliable CPs are initially filtered out without any assumption of the
geometric constraint. Secondly, we assume that, except for the mountainous area with
extremely sharp elevation variations, most of the ground surface can be considered
locally flat. A recursive RANSAC method is proposed to automatically cluster the
CPs into different point sets, with each set located in a locally flat image area, which
can then be co-registered using the linear geometric transformation. As for the
mountainous areas, small subsets of inlier CPs are identified, which are used as anchor
points, so as to preparatively remove the large positioning error of the mountainous
areas for the subsequent optical flow-based image warping.

3. Extensive experiments are conducted to evaluate the effectiveness of the proposed
sparse matching, outlier removal, and transformation estimation methods. The results
show that the proposed sparse matching method produces a significant increase in
matching accuracy, from about 30% to 100%. The subsequent mutual verification-
based outlier removal strategy further filters out about 30% of the outliers. Also,
compared with the other well-established methods, the proposed non-flat image
warping process is able to produce both robust and accurate registration results for
diverse landcover and landscape types.

The overall framework of the proposed optical-SAR image registration method is
shown in Figure 2.
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2. Methodology
2.1. Reliable Sparse Correspondence Identification

Since the image registration of non-flat terrains requires estimating multiple geometric
relationships that are spatially varying, the registration accuracy relies heavily on the
density of the sparse correspondences. Herein, we adopt the template matching paradigm
to get the putative sparse correspondences, so as to let the user determine the density of
CPs as desired.

2.1.1. Salient Sparse Feature Point Detection

It is considered that local image templates containing salient structures would be
likely to produce higher matching accuracy. That is why current studies usually apply
the Harris, FAST, or ORB feature point detectors to the optical image for sparse feature
point detection. However, we think that the high response locations obtained by these
Harris-like operators can only be considered ‘salient’ in a very limited local neighborhood,
about 10 × 10 pixels for the normally applied parameter setting. It does not guarantee the
saliency of the local image template, which is usually 100 × 100 to 200 × 200 pixels [11–30].
To this end, a deep learning-based feature point detector is proposed in [29], which uses
a convolutional network to assess the ‘goodness’ of the local image patches for template
matching. However, the experiment results present quite low matching accuracy—only
67% on a favorable dataset.

Inspired by the works in [9,50], which conduct feature point detection in the frequency
domain, we find that the phase congruency information would reflect the local saliency of
a much bigger receptive field, with hundreds of pixels of extent. Herein, we propose to
use the phase congruency model for sparse feature point detection. As presented in [50],
each local complex-valued Fourier component at the location p = (x, y) of the input 2D
image would have an amplitude As(p) and a phase angle φs(p), where s stands for the
index of the scale of the 2D log-Gabor filters. The phase congruency for each orientation o is
defined as:

PCo(p) =
∑s Wo(p)

⌊
Ao

s(p)
(

cos
(

φo
s (p)− φ

o
(p)
)
−
∣∣∣sin

(
φo

s (p)− φ
o
(p)
)∣∣∣)− To

⌋
∑s Ao

s(p) + ε
(1)

where φ(p) is the mean phase angle over all the scales, W(p) is a weighting function that
penalizes frequency distributions that are particularly narrow, and ε is a small value to
avoid division by zero. T is a threshold, with which an energy smaller than T would be
considered noise. All the previous parameters are dependent on the rotation value, which
is usually set as i · π/6, with i = {0, 1, 2, 3, 4, 5}.

Hereafter, the phase congruency sequence of different orientations can be obtained as
{PCo}, then the moments of {PCo} can be calculated. As presented in [50], the magnitude
of the maximum moment reflects the saliency of the local image features and can be used
for salient feature point detection. The maximum moment is calculated as:

MPC =
1
2

(
c + a +

√
b2 + (a− c)2

)
(2)

where:
a = ∑o(PCo cos(o))2

b = 2∑o (PCo cos(o)) · (PCo sin(o))
c = ∑o(PCo sin(o))2

(3)

Note that SAR images are usually texture-less when compared with their optical
counterparts. Conducting feature point detection on the optical image would face the
risk that the corresponding SAR local image template contains no salient features. Hence,
in this study, we conduct the feature point detection process on the SAR image, termed



Remote Sens. 2023, 15, 4458 7 of 27

the SAR-PC-Moment detector, and then apply the local searching strategy to locate the
correspondences on the optical image.

Specifically, the phase congruency sequences {PCo} and then the maximum moment
map MPC of the input SAR image are calculated. Hereafter, the blockwise FAST feature
point detector is applied on the MPC to identify the locations with salient local features.
The density of the feature points can be controlled by the block size of the FAST detector.
We experimentally found that selecting one salient feature point for each non-overlapped
64 × 64 sized block would be effective for the image registration of non-flat terrains.

2.1.2. Putative Sparse Correspondences Generation

The accuracy of the template matching result relies heavily on the discriminability of
the extracted feature descriptors. Herein, we choose to construct the pixelwise dense feature
volumes from the local image templates, which have been prevailingly researched in recent
years [12–18,27,28]. As shown in Figure 1b, for a M×M sized template Ire f drawn from
the location of a feature point detected using the SAR-PC-Moment, a 1× K sized feature
vector is produced for each pixel, leading to a M×M× K sized reference feature volume
Vre f . Similarly, for the bigger search patch Isen collected from the same geo-location of the
sensed image, the feature volume Vsen sized of N × N × K can be obtained, where N > M.
Hereafter, the calculation of the sum of squared differences (SSD) between Vre f and Vsen
is conducted, resulting in a similarity score map S sized of (N −M + 1)× (N −M + 1),
which indicates the location of the corresponding feature point.

As for the pixelwise feature construction, although many advanced handcrafted or
deep learning-based methods have been proposed, they hardly pay attention to finding a
proper template size for blockwise feature matching. As mentioned previously, the template
is always set as 100 × 100 to 200 × 200 pixels, mostly as 128 × 128 pixels. However, we
think that the template size is essential here. It is because, unlike SIFT-like descriptors,
which collect image features from nearby pixels with a fixed extent, the feature volumes
used for template matching can be collected from an arbitrary extent size. A larger extent
would bring in more information into the feature volumes, but also more interference.

In order to decide the proper template size, an elaborate experiment is conducted using
4 pairs of large optical and SAR images of flatlands, which are described in our previous
research [28] and have been precisely co-registered using the half-manual method [23].
Image templates of different sizes, {97 × 97, 225 × 225, 353 × 353, 481 × 481, 609 × 609,
737 × 737}, are evenly collected from the large input optical-SAR pair with a fixed step size.
The matching accuracy is defined as the ratio of the image templates that present a matching
displacement error smaller than a fixed threshold t. The widely applied handcrafted method
CFOG [13] and the learning-based network OSMNet [28] are, respectively, used to conduct
the template matching process.

From the experiment results shown in Figure 3, a surprising conclusion can be drawn:
a bigger template size helps to increase the matching accuracy by a remarkable margin;
the increases range from 30% to 100%. We assume that a larger template size brings in
more homogenous features, which overrides the increased amount of interference, such as
possible ground relief changes. In addition, increased template size is favorable not only for
matching accuracy but also for matching precision, since the correct matching rate increases
for both t ≤ 2 and t ≤ 1. Although the matching of a larger template requires more
computational cost, it is quite appealing to the registration problem of non-flat terrains,
considering the requirement for denser, sparser correspondences as well as the difficulty of
outlier removal when the inliers do not follow a unified geometric relationship.
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Herein, we propose to use a large template size for block-wise dense feature matching.
Specifically, the template size N is set as 641 × 641 pixels. Although the experiment results
shown in Figure 3 indicate that a bigger template would further increase the matching
accuracy, we think that the increase in margin is modest, but it brings in more computational
cost. Furthermore, the experiment results shown in Figure 3 are obtained using image pairs
of flatland, where the local geometric distortion between optical and SAR images is not
significant. While it is not the case for images of non-flat terrains, for which the matching
performance is likely to decline when the template size is too large.

As can be seen from Figure 3, the OSMNet outperforms the handcrafted CFOG
method by a significant margin, although the network is trained only on a small dataset, the
OSDataset, which is publicly available [51]. Therefore, in this study, we use the OSMNet,
which was proposed in our previous work [28], for spare feature point matching. Here is
a brief review of this network. Specifically, the OSMNet consists of two branches of fully
convolutional networks with identical structures but distinct network parameters, which
separately extract pixelwise deep-dense feature volumes Vre f and Vsen from the SAR and
optical template images. The similarity score map S is estimated based on the SSD index:

S(u, v) = ∑
x,y

(
Vre f (x, y)−Vsen(x− u, y− v) · T(u, v)

)2
(4)



Remote Sens. 2023, 15, 4458 9 of 27

where T is the template window that has the same size with Vre f . The SSD calculation can
be conducted in the Fourier domain for acceleration:

S = F−1
(

F∗
(

Vre f

)
F
(

Vre f T
))
− 2F−1

(
F∗
(

Vre f

)
F(VsenT)

)
(5)

By incorporating an effective multi-level feature fusion method, a novel multi-frequency
channel attention module, and a self-adaptive weighting loss function, the OSMNet out-
performs several representative handcrafted or deep learning-based optical-SAR image
matching methods. The detailed information can be seen in [28].

Another important parameter for the template matching process is the search range. In
our subsequent experiment, the 1 m-resolution GaoFen-3 SAR images and the Google Earth
optical images are used. As presented in [16], the relative positioning error of the GaoFen-3
SAR ranges from 20 pixels to 200 pixels. However, setting the search range at 200 pixels is
not sufficient for non-flat terrains, especially in mountainous areas. It is because when the
elevation varies drastically, the local geometric distortion caused by different view angles
and the foreshortening effect of SAR sensors would lead to additional positioning errors of
hundreds of pixels.

Instead of directly taking a very large search range value, which would lead to a large
amount of computational cost, we propose to determine the search range based on local
elevation variation. Based on the SAR imaging geometry, the relative positioning error Eh
caused by elevation error ∆h can be estimated as:

Eh = ∆h tan(π − θ) (6)

where θ is the incident angle.
Herein, we define the elevation adaptive search range as:

sra = srmin + α ·
⌊

1− hmean

h

⌋
· hstd · tan(π − θ) (7)

where hmean and hstd are the mean and standard deviation of the 30 m-resolution DEM
map, which can be downloaded freely from the internet. srmin is the user-defined minimum
search range, α is a coefficient set at 2.5 in this study.

2.2. Outlier Removal and Transformation Estimation

By adopting the previous strategy that used very large template images for sparse
feature point matching, the matching accuracy has been remarkably increased. However,
there are still plenty of outliers hidden in the putative sparse correspondences, ranging from
7% to 30% for the specific datasets shown in Figure 3, when the mismatch threshold t is set
to 2 pixels. The outlier ratio would further increase for images of non-flat terrains due to
severe local geometric distortion. Furthermore, since the geometric relationship is spatially
varying, both the outlier removal and the transformation estimation processes would be
quite tricky. In this article, we propose an initial outlier removal method based on mutual
verification so as to further reduce the outlier ratio. Then a recursive RANSAC strategy
is proposed. It automatically segments the input image into dozens of locally flat areas,
which can be co-registered using the linear geometric transformation. For mountainous
areas with sharp elevation variations that cannot be considered locally flat, small subsets of
CPs are identified based on local RANSAC, which are then used as anchors for the optical
flow-based pixelwise image matching.

2.2.1. Initial Outlier Removal Based on Mutual Verification

For the template-matching-based method, the similarity between each CP is deter-
mined by the cumulated feature distance of the whole local optical and SAR image template.
On the other hand, the dense matching method, which is usually performed using the
optical flow technique, can also estimate the displacement value between the corresponding
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feature points. Different from the cumulated feature similarity of the whole image template,
the dense matching process relies on the pixelwise feature similarity as well as the smooth
assumption of the displacement maps. Therefore, it is better at preserving the intrinsic
uncertainties to obtain a robust but less precise result. Since the two approaches accomplish
the image matching task from distinct perspectives and use different image characteristics,
we propose to initially remove the outliers based on the consistency of the matching results
produced by the two different approaches.

Specifically, for each feature point p on the SAR image, its correspondence feature
point on the optical image is first obtained by the template matching approach using the
OSMNet, termed as qs. Then, two local small patches surrounding p and qs are cut from
the SAR and optical images, respectively, termed as JS and JO. The dense matching is
conducted on {JS, JO} using the OSFlowNet, which is a learning-based optical-SAR flow
framework proposed in our previous research [34], resulting in the pixelwise displacement
map F. The 2D displacement vector of the central pixel p can be obtained from F, termed
as
(

f p
x , f p

y

)
. If the template-based sparse matching is successful, the dense matching result

would also be valid with a high probability, considering that the probable large initial
displacement has been removed by the sparse matching process. In this case,

(
f p
x , f p

y

)
should ideally equal to (0, 0). Herein, we consider {p, qs} as outliers if:√(

f p
x

)2
+
(

f p
y

)2
> tsd (8)

In the subsequent experiments, we set Tsd = 7 pixels. Note that a large value of tsd is
necessary so as to identify the obvious outliers and, at the same time, protect the inliers
from being mistakenly treated as outliers. The proposed mutual verification-based outlier
removal method requires no geometric assumption within the inlier CPs and is therefore
especially appropriate for the non-flat image registration problem.

Furthermore, we experimentally find that a multiple mutual verification process is
able to produce a very reliable CP set, which can be taken as the pseudo-ground truth (P-Gt)
CPs for quantitative evaluation of the registration result. Specifically, the template matching
process is conducted not only with a very large template size, which is 641 × 641 pixels in
this study, but also with two smaller template sizes, say 513 × 513, and 385 × 385 pixels.
In this way, 3 template matching results are obtained using different image scales. By
conducting a multiple mutual verification process within the 3 sparse matching results
and 1 dense matching result, the P-Gt set is obtained. Specifically, a CP is considered
pseudo-ground truth only when the sparse matching results of the 3 scales are exactly

identical with each other, also

√(
f p
x

)2
+
(

f p
y

)2
≤ 1 pixel.

Here is a brief introduction to the deep learning-based OSFlowNet proposed in our
previous work [34]. It uses a two-branched pseudo-Siamese network for optical and
SAR pixelwise feature extraction and then produces a 4D correlation volume for feature
similarity measurement. The optical flow field is estimated based on the GRU (gated recur-
rent unit). Compared with the handcrafted approaches, OSFlowNet shows a significant
performance increase. The detailed information can be seen in [34].

2.2.2. Locally Flat Area Identification and Image Warping

Although the images to be co-registered are of rough terrains, many areas can still
be considered locally flat, to a small or large extent, depending on the local elevation
variations. Herein, we propose a CP clustering process based on a recursive RANSAC
strategy. This process clusters the putative CPs into dozens of subsets. If the CPs from one
subset obey a unified linear geometric relationship, they are considered to form a locally
flat area. Specifically, after the initial outlier removal procedure, the resulting putative CP
set, termed as CP0, is considered the input of the recursive RANSAC algorithm, as shown
in Algorithm 1:
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Algorithm 1: Recursive RANSAC

Input: the putative CP set CP0
Output: the CP subsets {CPk}k=1,2,...K of K locally flat areas, and the remaining CP set termed as
CPrem.

(1) k = 1, CPrem = ∅
(2) while 1
(3) Use the RANSAC algorithm to find the largest geometric consensus CP set from CP0,

termed as CPh, with the RANSAC threshold set as 3 pixels.
(4) Segment the point set CPh into L subsets using the point clustering algorithm based on the

Euclidean distance. The subsets are termed as {CPl}l=1,2,...L
(5) for l = 1 : L
(6) if cardinal(CPl) ≥ 8
(7) CPk = CPl , k = k + 1
(8) else CPrem = CPrem + CPl
(9) end if
(10) end for
(11) CP0 = CP0 − CPh
(12) if cardinal(CP0) ≤ 5 do
(13) CPrem = CPrem + CP0
(14) break
(15) end if
(16) end while

Except for the first RANSAC iteration, whose input is the whole putative CPs CP0, the
input of each RANSAC iteration is obtained after subtracting the output of the previous
RANSAC iteration CPh from CP0, as shown in Line 11 of Algorithm 1. We can see that each
RANSAC iteration would identify a geometric consensus set CPh. However, the CPs in CPh
would probably be located in separate parts of the input image, as shown in the upper row
of Figure 4. It is because the RANSAC algorithm is conducted on CPs that are collected
from the whole large input image with complex terrain. The inlier CPs that are located
at the same elevation level, although they may be separated by hills, will always gather
together in one RANSAC iteration. In this case, we propose to cluster the CPs into separate
subsets based on the Euclidean distance, with the distance threshold set at 500 pixels, as
shown in the lower row of Figure 4. In each subset, if the number of CPs is smaller than 8,
the local geometric consistency assumption is not reliable, therefore they are reserved in
the CPrem set.

For each CP subset CPk, which is composed of more than 8 CPs that follow a unified
geometric relationship and are also located nearby, the continuous area within the bounding
polygon of the CPs are considered a locally flat area. In this way, a sequence of locally
flat areas with different extent values is identified, termed as {Ak}k=1,2,...K. In addition,
an image dilation operation can be conducted on each area to enlarge it by a proper
margin. Hereafter, each locally flat area Ak can be co-registered by calculating the pixelwise
displacement using the linear affine transformation, which is estimated using CPk. Note
that the previous recursive RANSAC process used a relatively large threshold of 3 pixels.
In this transformation estimation step, an additional RANSAC process is conducted on CPk
with the threshold set at 2 pixels.
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2.2.3. Non-Flat but Matchable Area Identification and Image Warping

Note that Algorithm 1 does not conduct any outlier removal operation but just clusters
the input CP set into a sequence of inlier subsets {CPk}k=1,2,...K that are considered to be
located in locally flat areas, as well as the remaining CPs, termed as CPrem. Firstly, as for
each CP in CPrem, if it is located in any flat area of {Ak}k=1,2,...K, it is considered an outlier
and then removed from CPrem. Hereafter, the CPrem would be composed of the outliers as
well as potential inliers that are located in mountainous areas that exhibit sharp elevation
variations, which makes it nontrivial to distinguish the inliers from the outliers. The optical
flow-based dense matching approach is effective for the registration of non-flat images, but
only when the initial displacement is small, say less than 50 pixels, as presented in [34].
However, this constraint is particularly difficult to meet for rough terrains since bigger
elevation variations would produce larger positioning errors, as presented in Equation (6).

In order to make sure that the non-flat area can be co-registered reliably using the
optical flow technique, it would be necessary to obtain the anchor CPs beforehand, which
are used to reduce the initial displacement value to a limited range. To this end, we
assume that the inliers that are located in the mountainous area should still contain a
subset that follows a relaxed geometric consensus. Herein, we do not try to identify all the
inliers from CPrem, but only small inlier subsets that can be used to roughly estimate the
initial displacement value before conducting the optical flow-based image warping process.
Specifically, the input image is divided into 512 × 512 sized blocks with an overlap of 50%.
The CPs from CPrem located in each block are gathered together, termed as

{
CPb

i

}
i=1,2,...N

,

where N is the total number of blocks that contain more than 8 CPs. Hereafter, the RANSAC
algorithm is conducted on each CPb

i with a very loose threshold as 4 pixels. Then the largest
geometric consensus subset CPc

i can be identified, with CPc
i ⊆ CPb

i . If the consensus subset
contains more than 6 CPs, that is cardinal

(
CPc

i
)
≥ 6, the CPc

i is considered the anchors
of this local area, which are used to estimate the initial displacement value. Specifically,
assume CPc

i = {(pl , ql)}l=1,2,...L, then the initial displacement value is calculated as:

D =
L

∑
l=1

(ql − pl) (9)
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where pl = (xl , yl) denoted as the feature point on the reference image block, and
ql = (ul , vl) denoted as the corresponding feature point on the sensed block, L is the
number of anchor CPs.

Although the anchor CP sets are identified by small image blocks sized at 512 × 512 pixels,
the matchable area should be determined by the elevation variation in the local region
surrounding each anchor point. Herein, for each anchor CP set CPc

i , its matchable region
mask is obtained by:

Maskl = |H − H(pl)| ≤ HT

Mask =
L
∪

l=1
Maskl

(10)

where H is the elevation map of the local area, HT is a predefined threshold of elevation
variation. Hereafter, the deep optical-SAR flow network OSFlowNet, is used to estimate
the pixelwise displacement of the local matchable area.

By combining the displacement map of the non-flat but matchable areas with that
of the locally flat areas, the final registration result is obtained. At this point, there are
probably still some image areas that have not been co-registered. It is because no reliable
anchor CPs are identified at these locations. This situation happens mostly in mountainous
terrains that are composed of pure natural landcover, such as forest, grass, or bare rocks,
which exhibit repeatable texture or texturelessness. Directly applying the OSFlowNet to
these areas would face a high risk of producing the wrong registration result. Nevertheless,
registration of mountainous areas with pure natural landcover is unnecessary for most of
the high-resolution remote sensing image applications.

3. Experiments and Evaluations

Extensive experiments are conducted to evaluate the performance of the proposed
optical and SAR image registration frameworks for non-flat terrains. The datasets and the
evaluation metrics are first introduced, followed by an ablation study that quantitatively
evaluates the effectiveness of the proposed SAR-PC-Moment-based sparse feature point
detector, the big template-based sparse matching strategy, as well as the mutual verification-
based outlier removal method. Finally, based on four large optical and SAR image pairs
with non-flat terrain, the registration results after CP clustering, further outlier removal,
and image warping are presented and evaluated qualitatively and quantitatively.

3.1. Dataset Description and Evaluation Metrics

Four pairs of large optical and SAR imageries with 1 m spatial resolution are used
to evaluate the proposed method, where the optical images are collected from the Google
Earth platform and the SAR images are obtained by the GaoFen-3 satellite. The correspond-
ing DEM images are also obtained from the Google Earth platform, with a 30 m spatial
resolution. The detailed information is shown in Figure 5 and Table 1. The four image pairs,
termed 1-Yanliang, 2-Beijing, 3-Zhengzhou, and 4-Chengdu, exhibit increasing elevation
variations, considering the growing standard deviation (STD) values as shown in Table 1.
The incident angles presented in the last column are used to estimate the elevation adaptive
search ranges based on Equation (7), where the influence of the geo-location error between
the 30 m-resolution DEM and the 1 m-resolution SAR images is negligible.

Table 1. Detailed information about the four optical and SAR image pairs used for the experiment.

Image Name Size Elevation
Range

Elevation
STD

Incident Angle of
the SAR Image

1-Yanliang 12,617 × 8354 367–411 8 27◦

2-Beijing 11,802 × 10,358 17–442 48 47◦

3-Zhengzhou 11,235 × 9163 333–1026 118 50◦

4-Chengdu 10,001 × 9001 455–985 122 44◦
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(c) 3-Zhengzhou; (d) 4-Chengdu.

Other than the previous datasets with highly variable terrain, we also introduce four
optical-SAR pairs with flat terrain. They are used to quantitatively evaluate the proposed
method, considering that it is difficult to obtain the ground truth registration results of the
non-flat datasets shown in Figure 5 and Table 1. Actually, the flat terrain datasets have
already been used to produce the experiment results shown in Figure 3. They are the first
four image pairs introduced in our previous research [28], termed 1-SH, 2-ZZ, 3-BJ, 4-XS.
More detailed information can be found in [28].

In order to quantitatively evaluate the proposed method, we use the matching ratio
(MR) in terms of the ratio of inlier CPs under a predefined displacement threshold t, the
number of inliers (NI), and the root mean square error (RMSE) as the metrics.

3.2. Ablation Study

In this subsection, the four image pairs of flat terrain are used to quantitatively evaluate
the performance of the proposed feature point detection, matching, and initial outlier
removal methods.

3.2.1. Evaluation of the Sparse Feature Point Detector

We first compare the SAR-PC-Moment detector with the widely applied Harris de-
tector as well as the naive method by taking the points with a fixed interval space as the
feature points. Specifically, for each non-overlapped image block sized at 64× 64 pixels, the
point location that presents the biggest SAR-PC-Moment or Harris response is considered
the feature point. Note that the proposed SAR-PC-Moment detector is applied to the
SAR image, while the Harris detector is applied to the optical image. Furthermore, the
center point of each 64 × 64 sized SAR block is also collected to compose the naive feature
point set. For each feature point, the correspondence is obtained using the OSMNet, with
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the template size set at 225 × 225 pixels. The matching results in terms of MR with the
displacement error (termed as t) smaller than 1 pixel are shown in Table 2.

Table 2. Comparison of different feature point detectors in terms of MR with t ≤ 1 pixel (%). The
matching is conducted with the template size set at 225 × 225 pixels.

Image Name Naive Harris SAR-PC-Moment

1-SH 43.04 42.74 43.76
2-ZZ 17.32 17.49 18.88
3-BJ 21.13 21.01 23.15
4-XS 27.96 29.10 29.50

We can see that, compared with the Harris detector, the SAR-PC-Moment detector
helps to increase the MR by a noticeable margin, especially for the 2-ZZ and 3-BJ datasets,
where the optical-SAR pairs exhibit a larger discrepancy, leading to lower MR results. It is
worth noting that the Harris set does not always outperform the naive feature point set
due to the fact that a high response within a very limited local neighborhood would not
guarantee a higher matching accuracy for template matching.

3.2.2. Evaluation of the Sparse Matching Method

As for the evaluation of the sparse matching results, an extensive comparative experi-
ment has been presented in Figure 3, where we can see that the matching accuracy continues
to increase as the template size increases, no matter if the handcrafted or learning-based
method is used, which proves the effectiveness of the proposed big template matching
strategy. Figure 3 also reveals that the learning-based OSMNet outperforms the handcrafted
CFOG method by a significant margin. In the subsequent experiments, the OSMNet is used
for sparse feature point matching.

Herein, the big template matching results using the OSMNet are compared with two
representative detection-then-description methods, the RIFT and the LNIFT. The matching
ratio and the number of inliers are presented in Table 3. We can see that the LNIFT method
is able to produce more inlier CPs when compared with the RIFT method, although with
a lower matching ratio. This performance increase is brought about by a simple local
normalization filtering process conducted on the optical and SAR images, respectively,
before the feature point detection and feature matching processes. On the other hand, the
proposed big template matching result using OSMNet significantly outperforms the RIFT
and LNIFT methods in terms of both the matching ratio and the number of inliers.

Table 3. Comparison of different sparse matching methods in terms of MR and NI with t ≤ 1 pixel.
For the proposed method, the matching is conducted with the template size set at 641 × 641 pixels.

Image Name
Matching Ratio (MR, %) Number of Inliers (NI)

RIFT LNIFT Proposed RIFT LNIFT Proposed

1-SH 27.87 13.17 70.70 3745 4892 8498
2-ZZ 9.83 10.37 36.45 489 1524 3178
3-BJ 12.07 11.82 43.66 880 1963 3267
4-XS 23.75 13.17 52.95 5194 4892 15,717

Note that for the RIFT and the LNIFT methods, if the whole image pair of large size
is directly used as the input of the feature point detection-then-description paradigm, it
will produce very poor matching results. Therefore, for the experiment shown in Table 3,
we divide the input large image pair into 512 × 512 sized small patches with an overlap
of 128 pixels. We also conducted an additional experiment by dividing the input into
1024 × 1024 patches, resulting in a significant performance decline. Specifically for the
1-SH image pair, the inlier number of the RIFT method decreases from 3745 to 648. For the
2-ZZ image pairs, it decreases from 489 to 70. In addition, a smaller local patch, such as
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256 × 256 pixels, would not further improve the performance. Especially for real image
registration applications, the initial displacement error could be more than 200 pixels. In
this way, a small patch size would lead to a very low ratio of overlapped area between the
corresponding patch pairs, which further damages the sparse matching results. Also, the
matching ratio results for RIFT and LNIFT shown in Table 3 were obtained after conducting
the RANSAC outlier removal process on each local patch. The matching ratio would be
extremely low if RANSAC were not used. On the other hand, for the proposed method, the
experiment results shown in Table 3 are before the RANSAC process.

3.2.3. Evaluation of the Mutual Verification-Based Outlier Removal Method

In Section 2.2.1, a novel initial outlier removal method is proposed by examining the
consistency between the sparse matching and the dense matching results. Table 4 presents
the experiment results for the four co-registered flat image pairs. We can see that the initial
outlier removal process was able to filter out about 30% of the outliers for the four datasets.
At the same time, only a very small percentage of the inliers are mistakenly identified
as outliers, which is less than 1% for the first three datasets and 3.85% for the fourth
dataset. Note that the proposed outlier removal process does not require any geometric
consistency assumption; therefore, it is very effective for images of non-flat terrains, acting
as a preparatory step to reduce the outlier ratio.

Table 4. Mutual verification-based initial outlier removal results in terms of detected true negative
(TN) numbers and ratios, false negative (FN) numbers and ratios.

Image Name TN Number TN Ratio (%) FN Number FN Ratio (%)

1-SH 63 23.77 56 0.47
2-ZZ 575 25.62 53 0.61
3-BJ 495 33.74 39 0.49
4-XS 482 30.82 1150 3.85

Furthermore, by applying a stricter restriction on consistency within three multi-scale
sparse matching results and one dense matching result, we are able to obtain a pseudo-
ground truth (P-Gt) CP set that can be used to quantitatively evaluate the final image
registration result. For the four image pairs of flat terrain, the CP number of the P-Gt set
and matching accuracy in terms of MR under different threshold t are presented in Table 5.
For each dataset, the CPs in the P-Gt set all exhibit a matching error smaller than 5 pixels,
with a majority of them smaller than 1 pixel and more than 93% smaller than 3 pixels.
Furthermore, these CPs are distributed quite evenly across the whole image, as shown in
Figure 6. This experiment result proves the effectiveness of the proposed P-Gt generation
method, which is fully automatic and requires no human assistance. Therefore, it is very
meaningful for the quality supervision of the registration results when a huge number of
remote sensing images are involved.

Table 5. The CP number and matching accuracy of the P-Gt set in terms of MR with different
threshold t.

Image Name P-Gt Number t ≤ 1 (%) t ≤ 3 (%) t ≤ 5 (%)

1-SH 873 92.67 100 100
2-ZZ 219 56.62 93.15 100
3-BJ 184 54.89 96.74 100
4-XS 1404 69.09 98.36 100
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3.3. Registration Results Evaluation

In this subsection, the four non-flat optical-SAR pairs shown in Figure 5 and Table 1 are
used to evaluate the effectiveness of the proposed registration framework. The initial sparse
matches are first obtained using the SAR-PC-Moment-based feature point detector and the
big template matching method using OSMNet. Then the initial outlier removal and pseudo-
ground truth generation based on sparse and dense mutual verification are performed.
Herein, for each optical-SAR image pair to be co-registered, we obtain a putative CP set as
well as a P-Gt set. The detailed information is shown in Figure 7, where the yellow dots
are the putative CPs and the red dots are the P-Gt CPs. We can see that the CP density
of the mountainous area is noticeably lower than that of the flat area, caused by fewer
salient features and more local geometric distortions. Hereafter, we first try to conduct the
registration using the classical procedure. Then the registration results using the proposed
framework are presented.

3.3.1. Registration Using the Classical One-Pass Procedure

First of all, the classical and still widely applied [7–30] remote sensing image registra-
tion procedure is used to co-register the four non-flat datasets. It is a one-pass procedure
that first removes the outliers using the RANSAC method and then warps the sensed image
using the single linear transformation. Herein, the RANSAC threshold is set to 2 pixels,
and the affine transformation is used. The registration result is measured using the P-Gt
CPs in terms of the RMSE and MR index, as shown in Table 6, where the ‘RMSE before’ is
the matching error before registration. We can see that the classical one-pass registration
procedure is able to eliminate the majority of the RMSE. However, the residual RMSE is
still very large, and a large percentage of P-Gt CPs present a displacement error of more
than 5 pixels. We assume that the classical procedure can be used as a coarse registration
procedure, but the registration accuracy cannot meet the requirements of the subsequent
applications.
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Table 6. Quantitative results of the classical one-pass registration procedure in terms of RMSE (pixels)
and MR (%).

Image Name RMSE before RMSE after MR (t ≤ 1) MR (t ≤ 5)

1-Yanliang 129.1 7.7 17.5 49.2
2-Beijing 35.7 3.4 41.6 86.3

3-Zhengzhou 60.8 6.8 26.9 75.3
4-Chengdu 143.3 10.1 17.9 40.8

Herein, we check the inlier CPs after the RANSAC process, as shown in Figure 8,
where the red dots are inliers and the yellow dots are outliers. Apparently, only a small
subset of inliers are reserved after the RANSAC outlier removal process, caused by the fact
that the putative CPs across the whole input image pair do not follow a unified geometric
constraint. This observation inspires us to conduct a recursive RANSAC process. Instead
of trying to remove the outliers, the main purpose of the proposed recursive RANSAC is
to cluster the putative CPs and therefore automatically segment the large non-flat input
images into dozens of locally flat areas.
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3.3.2. Registration Using the Proposed Method

The proposed registration procedure consists of two steps: using the linear affine
transformation for the registration of locally flat areas and the optical flow method for
mountainous areas. The registration results for locally flat areas are shown in Table 7. We
can see that the majority of the input optical-SAR pairs have been identified as locally flat,
especially for the 1-YanLiang, and 2-Beijing datasets. When compared with the registration
results of the classical one-pass method shown in Table 6, the matching ratio of the proposed
framework is quite high, with about 50% of the P-Gt CPs presenting a displacement error
smaller than 1 pixel, more than 90% smaller than 3 pixels, and more than 97% smaller than
5 pixels. The RMSE error after the registration is reduced to the range of 1.16 to 1.65 pixels,
which is acceptable for most of the subsequent optical-SAR fusion applications.

Table 7. Quantitative results of the proposed registration method after the locally flat areas are
co-registered in terms of RMSE (pixels) and MR (%). The AR (area ratio, %) stands for the area
percentage of the co-registered locally flat regions, and the TAR (total area ratio, %) stands for the
area percentage of the co-registered regions after including the matchable non-flat areas.

Image Name RMSE after MR (t ≤ 1) MR (t ≤ 3) MR (t ≤ 5) AR TAR

1-Yanliang 1.23 53.1 94.4 99.5 99.5 99.8
2-Beijing 1.16 50.5 97.6 99.8 94.6 95.6

3-Zhengzhou 1.39 44.2 93.5 97.1 78.1 82.9
4-Chengdu 1.65 42.7 89.5 97.0 62.1 71.3

Since the four experimental image pairs are all geocoded with the same spatial res-
olution, the scale and rotation distortions between the corresponding locally flat areas
would be quite slight. Herein, we only examine the distribution of the shift values of each
affine transformation, as shown in Figure 9. The affine transforms are 40, 67, 176, and
101, respectively, for the four non-flat datasets. We can see that, even for the most ‘flat’
1-Yanliang dataset, whose maximum elevation variation is merely 40 m, the shift values in
the x-direction still vary from −150 m to −48 m, and in the y-direction vary from −17 m to
48 m. As for the other three datasets, the shift variation could be more than 300 m. This
result further verifies the fact that a single linear transformation is not capable of depicting
the geometric relationship for image pairs of non-flat terrain.
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Figures 11–14 present the enlarged subimages of the registration results, where the 
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Figure 9. Distribution of the shift values of each locally flat area for: (a) 1-Yanliang, (b) 2-Beijing,
(c) 3-Zhengzhou, and (d) 4-Chengdu datasets, where the number of identified flat areas is 40, 67, 176,
and 101, respectively.

Following the detailed procedures presented in Section 2.2.3, several anchor CP sets
are obtained to identify the matchable mountainous areas and calculate the corresponding
initial displacement value. Then the OSFlowNet is used to obtain the pixelwise displace-
ment maps of these matchable areas. After combining the displacement maps of the locally
flat areas, the final registration result is obtained. The mosaic images are shown in Figure 10,
where the areas within the yellow boundaries are co-registered by OSFlowNet while the
others are co-registered by locally affine transformations. Since only one or two P-Gt CPs
can be found in the mountainous areas, their registration quality is evaluated only by visual
inspection, as shown in the last subimages of Figures 11–14.

Remote Sens. 2023, 15, x FOR PEER REVIEW 22 of 29 
 

 

x-direction still vary from −150 m to −48 m, and in the y-direction vary from −17 m to 48 
m. As for the other three datasets, the shift variation could be more than 300 m. This result 
further verifies the fact that a single linear transformation is not capable of depicting the 
geometric relationship for image pairs of non-flat terrain. 

 
(a) (b) (c) (d) 

Figure 9. Distribution of the shift values of each locally flat area for: (a) 1-Yanliang, (b) 2-Beijing, (c) 
3-Zhengzhou, and (d) 4-Chengdu datasets, where the number of identified flat areas is 40, 67, 176, 
and 101, respectively. 

Following the detailed procedures presented in Section 2.2.3, several anchor CP sets 
are obtained to identify the matchable mountainous areas and calculate the corresponding 
initial displacement value. Then the OSFlowNet is used to obtain the pixelwise displace-
ment maps of these matchable areas. After combining the displacement maps of the lo-
cally flat areas, the final registration result is obtained. The mosaic images are shown in 
Figure 10, where the areas within the yellow boundaries are co-registered by OSFlowNet 
while the others are co-registered by locally affine transformations. Since only one or two 
P-Gt CPs can be found in the mountainous areas, their registration quality is evaluated 
only by visual inspection, as shown in the last subimages of Figures 11–14. 

Note that there are still many “black” regions that are not co-registered, especially 
for the 3-Zhengzhou and 4-Chengdu datasets, which are 17.1% and 28.7% of the whole 
image, as shown in the last column of Table 7. After checking the DEM images, we can see 
that these un-co-registered areas are all mountainous and textureless, where no reliable 
CP is identified to reduce the initial displacement value for the optical flow-based regis-
tration. 

 
(a) (b) (c) (d) 

Figure 10. Mosaic images of the registration result, where the areas within the yellow boundaries 
are mountainous with sharp elevation variations and co-registered using the optical flow-based 
method OSFlowNet: (a) 1-Yanliang, (b) 2-Beijing, (c) 3-Zhengzhou, (d) 4-Chengdu. 

Figures 11–14 present the enlarged subimages of the registration results, where the 
first five are in the locally flat areas. We deliberately select the locations on the boundary 
sides of the input large image, where a bigger matching error usually occurs when com-
pared with the central area. We can see that diverse land cover types are aligned with fine 
precision, such as roads, highway overpasses, buildings, and farmlands. Specifically, 

Figure 10. Mosaic images of the registration result, where the areas within the yellow boundaries are
mountainous with sharp elevation variations and co-registered using the optical flow-based method
OSFlowNet: (a) 1-Yanliang, (b) 2-Beijing, (c) 3-Zhengzhou, (d) 4-Chengdu.

Note that there are still many “black” regions that are not co-registered, especially for
the 3-Zhengzhou and 4-Chengdu datasets, which are 17.1% and 28.7% of the whole image,
as shown in the last column of Table 7. After checking the DEM images, we can see that
these un-co-registered areas are all mountainous and textureless, where no reliable CP is
identified to reduce the initial displacement value for the optical flow-based registration.

Figures 11–14 present the enlarged subimages of the registration results, where the first
five are in the locally flat areas. We deliberately select the locations on the boundary sides
of the input large image, where a bigger matching error usually occurs when compared
with the central area. We can see that diverse land cover types are aligned with fine
precision, such as roads, highway overpasses, buildings, and farmlands. Specifically, some
of the foothill areas, such as Figures 11d, 12e, 13b,c and 14c, also present good registration
accuracy. As for the last subimages of Figures 11–14, which show the registration results of
rough terrains based on the optical flow method, some noticeable registration errors can be
observed. For example, the bridge shown in Figure 11f presents a matching error of about 3
pixels, although the roads on both sides of the river are precisely co-registered. Also, some
roads shown in Figure 13f present a matching error of about 2 pixels. These mismatches
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are mainly caused by the abrupt elevation variation, which makes the optical flow map
not conform to the prior smoothness. As for Figures 12f and 14f, which are both typical
textureless landcover, even visual inspection cannot tell the registration performance.
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Figure 14. Enlarged subimages of the registration result of 4-Chengdu dataset. The first five subim-
ages (a–e) are from the red rectangles of locally flat area, and the last subimage (f) is from the yellow
rectangle of non-flat area.

3.3.3. Comparison with Other Registration Methods for Images with
Non-Linear Transformation

As mentioned previously, almost all the current studies, from references [7–30], use
the one-pass procedure presented in Section 3.3.1 for the optical-SAR image registration.
Some non-linear transformation estimation methods are occasionally used for the regis-
tration of single-modal optical–optical or SAR–SAR images. The most well-established
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ones include the local affine method based on the triangulated irregular network (TIN)
structure [52–55], as well as the non-rigid registration method using the coherent point drift
(CPD) algorithm [44,56,57]. The reason that they are usually not applied to the optical-SAR
image registration is that, when compared with optical–optical image pairs, the sparse
feature point matching accuracy of optical-SAR images is too low for a robust non-linear
registration. On the other hand, this article is able to obtain a CP set with a low outlier ratio.
Herein, we use the TIN local affine and non-rigid CPD methods as comparisons with our
proposed method. The registration results in terms of RMSE are shown in Table 8, where
the P-Gt CPs are used for the quantitative evaluation. Note that for these two comparative
methods, the input CPs are the ones after the mutual verification-based initial outlier re-
moval process is performed. The essential step for the TIN local affine method is to further
identify and remove the outliers, while the CPD method is based on probability theory and
is tolerant of a low outlier ratio. Furthermore, we use the OSFlowNet for the registration of
not only the mountainous area but also the locally flat regions, and we present the RMSE
result in Table 8.

Table 8. RMSE (pixels) of different registration methods for the four non-flat datasets.

Image Name Proposed TIN Local
Affine

Non-Rigid
CPD OSFlowNet One-Pass

1-Yanliang 1.23 2.2 0.7 1.7 7.7
2-Beijing 1.16 0.8 1.0 1.5 3.4

3-Zhengzhou 1.39 6.4 1.7 1.4 6.8
4-Chengdu 1.65 15.6 2.2 1.8 10.1

We can see that the TIN local affine method obtains good registration accuracy for
the 1-Yanliang and 2-Beijing datasets. However, it fails to register the 3-Zhengzhou and
4-Chengdu datasets, which present more severe elevation variations, leading to incorrect
outlier removal results. On the other hand, the non-rigid CPD method, although it does
not include any outlier removal steps, produces surprisingly good registration results,
especially for the first two datasets. Still, the proposed method is more accurate for the last
two image pairs. The OSFlowNet method is also able to produce acceptable registration
results for all four datasets, but with lower registration precision. Note that the successful
registration of the non-rigid CPD and the OSFlowNet methods both highly rely on the
low outlier ratio of the putative sparse matches, which is achieved by our proposed sparse
matching method.

Finally, the computation time of different registration methods is presented in Table 9.
We can see that the one-pass method is the most time efficient, but the registration accuracy
is not satisfying. As for the three methods that produce good registration results, the
proposed method is averagely 45% faster than the non-rigid CPD method and 30% faster
than OSFlowNet. In addition, as shown in column 3 of Table 9, the sparse matching process
is also quite time consuming, since we use a very large template size to produce highly
reliable and densely distributed sparse matches. Specifically, for a large input optical-SAR
pair sized at 10,000 × 10,000 pixels, the sparse matching process takes about 30 min.

Table 9. Computation Time of different registration methods (minutes).

Image Name Size Sparse
Matching Proposed TIN Local

Affine
Non-Rigid

CPD OSFlowNet One-Pass

1-Yanliang 12,617 × 8354 32.9 17.9 20.9 24.1 25.0 0.5
2-Beijing 11,802 × 10,358 35.3 17.6 23.0 19.1 31.5 0.8

3-Zhengzhou 11,235 × 9163 33.2 9.8 11.3 15.8 10.6 0.5
4-Chengdu 10,001 × 9001 31.1 9.2 7.4 16.4 8.7 0.5
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4. Discussion

For the registration of remote sensing images with complex terrain, the essential
problem is to obtain a set of reliable, sparse corresponding feature points that distribute
evenly and densely across the input image and also present a low outlier ratio. Owing
to the proposed SAR-PC-Moment-based feature point detector and especially the big
template matching strategy, the outlier ratio of the putative sparse matches is reduced from
more than 50% to less than 30%. The proposed mutual verification-based outlier removal
method further filters out about 30% of the outliers, therefore reducing the outlier ratio
to less than 20% in general. This result is very meaningful for the subsequent geometric
relationship estimation procedure. Based on the proposed recursive RANSAC method,
the input large image is automatically segmented into locally flat and non-flat areas, and
different registration strategies are applied to the two different landscape types. In this way,
a very robust registration result can be obtained, with higher matching precision for flat
regions and a relatively bigger matching error when local topographic fluctuation exists.

The proposed registration framework can be applied not only for optical-SAR images
but also for any image types that exhibit spatially varying geometric relationships, such
as high-resolution optical–optical, SAR–SAR, optical–LIDAR image pairs. Therefore, it
is able to act as a reliable technique for supporting information fusion applications using
multi-time and multi-modal remote sensing images of various landscape types.

Still, there are shortcomings and unsolved problems. Firstly, the time consumption of
sparse matching is quite high since very large image templates, sized at 641 × 641 pixels,
are used for sparse matching. This time consumption can be reduced by decreasing the
intensity of the sparse feature points, but it would probably result in a higher registration
error. Secondly, as shown in Table 8, the non-rigid CPD method is able to produce better
registration accuracy for the first two datasets, which are composed of more flat terrains,
as shown in Figure 5. This result indicates the potential to further improve registration
accuracy by combining the conception of probabilistic non-rigid registration with the
proposed method, as long as densely distributed sparse matches with a low outlier ratio
are obtained beforehand. The third problem is that there are still many image areas of
mountainous terrain unregistered, due to the lack of reliable sparse matches caused by the
extreme local geometric distortions. In [58], a geometric registration approach using the
DEM or DSM is proposed, which remaps the central perspective projection of the optical
sensor into the side-looking mechanism of the SAR sensor. However, this method requires
high geo-location accuracy for both the optical and SAR imaging systems as well as precise
DEM or DSM information, which are all hard to get. The registration of optical and SAR
images of mountainous areas is still an open question.

5. Conclusions

This article is, as far as we know, the first to deal with the registration problem of large,
high-resolution optical and SAR images with non-flat terrains. By taking full advantage
of the previous studies, we proposed a SAR-PC-Moment-based feature point detection
method, a template matching strategy with very large local patches, and a novel mutual
verification-based initial outlier removal method. These methods help to produce a very
reliable putative CP set with a low outlier ratio. Hereafter, the proposed recursive RANSAC
method automatically segments the input large image into locally flat areas, and dozens
of independent linear geometric relationships are estimated for image warping. As for
image areas with very sharp elevation variation that therefore cannot be considered locally
flat, the anchor CPs are identified for the optical flow-based pixelwise image warping.
Extensive experiments have been conducted to verify the effectiveness and robustness
of the proposed framework for the registration of optical and SAR images with highly
variable terrains.
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Abbreviations

AR Area Ratio P-Gt Pseudo Ground Truth
CNN Convolutional Neural Network RANSAC RANdom SAmple Consensus
CP Correspondence feature Point RMSE Root Mean Square Error
CPD Coherent Point Drift SAR Synthetic Aperture Radar
DEM Digital Elevation Modal SAR-PC-Moment SAR image Phase Congruency Moment map
FN False Negative SSD Sum of Squared Differences
GRU Gated Recurrent Unit TAR Total Area Ratio
MR Matching Ratio TIN Triangulated Irregular Network
NI Number of Inliers TN True Negative
PC Phase Congruency
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