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Abstract

:

Registration of optical and synthetic aperture radar (SAR) images is challenging because extracting located identically and unique features on both images are tricky. This paper proposes a novel optical and SAR image registration method based on relative total variation (RTV) and scale-invariant feature transform (SIFT), named RTV-SIFT, to extract feature points on the edges of structures and construct structural edge descriptors to improve the registration accuracy. First, a novel RTV-Harris feature point detection method by combining the RTV and the multiscale Harris algorithm is proposed to extract feature points on both images’ significant structures. This ensures a high repetition rate of the feature points. Second, the feature point descriptors are constructed on enhanced phase congruency edge (EPCE), which combines the Sobel operator and maximum moment of phase congruency (PC) to extract edges from structured images that enhance robustness to nonlinear intensity differences and speckle noise. Finally, after coarse registration, the position and orientation Euclidean distance (POED) between feature points is utilized to achieve fine feature point matching to improve the registration accuracy. The experimental results demonstrate the superiority of the proposed RTV-SIFT method in different scenes and image capture conditions, indicating its robustness and effectiveness in optical and SAR image registration.
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1. Introduction


Optical and synthetic aperture radar (SAR) image registration serves as the basis for many tasks in remote sensing image analysis [1,2,3]. Multimodal remote sensing image registration has been extensively studied, with intensity-based, feature-based, and learning-based methods being the main categories [4]. Intensity-based methods use various similarity metrics, such as mutual information [5], normalized cross-correlation coefficient [6], and cross-cumulative residual entropy [7], to match image patches. However, these methods are often limited in performance when applied to multimodal images with large radiation differences, such as optical and SAR Images.



With the development of deep learning technology, some learning-based methods have been proposed [8,9,10,11,12]) to perform registration on multi-modal images by learning image features. However, due to the difficulty in obtaining sufficient multi-modal remote sensing images and ground truth for training and testing [13], and the difficulty in achieving end-to-end registration implementation, these methods are not widely used. In addition, learning-based methods have poor adaptability to different remote sensing images and their training performance is highly dependent on computer hardware [14], so they have not been widely applied. In contrast, feature-based methods are faster and more flexible. In this work, the feature-based approach is adopted to tackle the problem of optical and SAR Image registration, which faces two fundamental challenges:




	
How to find homology and effective feature points on optical and SAR images that have significantly different inherent natures?



	
How to overcome nonlinear intensity differences and construct feature descriptors that are similar at corresponding points but distinguishable at non-corresponding points?








These two issues must be considered together in order to obtain a good registration performance. To clarify this point, Figure 1 shows the feature points detected and matched by the PSO-SIFT [15], SAR-SIFT [16], and our proposed RTV-SIFT method in a pair of optical and Gaofen-3 (GF-3) SAR images. The matched points are marked in green and the unmatched points are marked in red. The PSO-SIFT method directly adopts the scale-invariant feature transform (SIFT) detector [17], which extracts many unrepeatable feature points (the large number of red points in Figure 1a) in both optical and SAR images because the second-order partial operation in the Difference of Gaussian (DoG) [18] is sensitive to noise and details [16]. This will not only increase the computational burden of the following feature matching task but also will increase the incorrect matching rate. To overcome this problem, Zhang et al. [19] improved the anti-noise capability of SIFT algorithm by using a Canny edge detector to remove the wrong candidate points on the edges. Fan et al. [20] combined the spatial relationship of feature points to filter out unrepeatable feature points. Xie et al. [21] masked the complex regions to avoid extracting the interference points. Radiation-variation insensitive feature transform (RIFT) [22] proposed to detect corner and edge points on phase congruency (PC) maps that are robust to noise.



Forero et al. [23] and Sharma et al. [24] compared and analyzed various improved feature point detectors, many of which still rely on second-order derivatives as in SIFT or methods that take extremes in the neighborhood, which can make the feature point detectors sensitive to noise. Harris-Laplace detector [25] is more sensitive to corner points and has a degree of robustness to speckle noise [26]. Hence, it is widely used for feature point detection in remote sensing images. Chen et al. [27] employed a Harris detector to detect feature points on multimodal retinal images. Fan et al. [28] designed a uniform nonlinear diffusion-based Harris (UND-Harris) feature extraction method, which reduces the effect of speckle noise and obtains more uniformly distributed feature points. The SAR-SIFT method improved the traditional multiscale Harris detector by a new gradient calculation method, such that, as illustrated in Figure 1b, the detected feature points are mainly distributed on the corners of significant structures, effectively avoiding the influence of noise and texture details. However, the SAR-SIFT was originally proposed for SAR image registration. If the nonlinear intensity differences between optical and SAR images are not considered to construct distinctive feature descriptors, only a few feature points can be matched when the SAR-SIFT is directly applied to the optical-SAR image registration task.



To avoid the effect of nonlinear intensity difference on the descriptors, Chen et al. [27] proposed a partial intensity invariant feature descriptor (PIIFD) that uses the averaging squared gradients in place of the traditional gradient to restrict the gradient direction within [0,  π ) for solving the gradient reversal phenomenon. LNIFT [13] proposes a local normalization filter, which first transforms the original image into a normalized image, and then detects and describes feature points on the normalized image, in order to reduce the nonlinear intensity differences between multi-modal images. PSO-SIFT suggested calculating the gradient direction and gradient magnitude of the feature descriptors on the image boundaries. Shuai et al. [29] and Yu et al. [30] constructed descriptors by combining phase consistency [31,32,33] and gradient amplitude to address the gradient direction inconsistency in multimodal images. Fan et al. [28] built phase congruency structural descriptor (PCSD) on PC structure images which can get discriminable and robust structural edge descriptors.



Xie et al. [21] found that the unavailable features are mainly concentrated in complex regions, so they masked these regions to avoid extracting the interference points. We found that complex regions are texture-rich regions [34] such as mountainous areas, vegetation-covered areas, and dense urban areas. And the speckle noise in SAR images can also be regarded as a texture feature. The image inherent nature of optical and SAR images differ significantly in these texture regions, affecting the repeatability of feature points and descriptors’ uniqueness. Smoothing the images can reduce the feature points extracted in the texture regions. However, many studies have shown that Gaussian smoothing destroys the natural edges of the image so that both details and noise are smoothed to the same extent, which reduces the localization accuracy of feature points and Description accuracy [16,28]. Therefore, how suppressing the texture while maintaining the sharpness of the edges of the image structure becomes the crux of the problem.



The relative total variation (RTV) method [34] has proven to be effective in smoothing texture while preserving the edges. Building upon this, we propose a novel RTV-Harris feature point detection method by combining the RTV smoothing and multiscale Harris detector. Our approach allows for more accurate extraction of feature points focusing on the structure edges, where the feature points have a higher matching potential. To account for the nonlinear differences in intensity between optical and SAR images, we propose an enhanced phase congruency edge detector to construct the structural feature descriptor. Finally, a coarse-to-fine matching strategy is adopted to increase the correct matching rate. Experimental results demonstrate that our method yields higher feature point matching rates, as illustrated in Figure 1c. For ease of description, we name the proposed method as RTV-SIFT.



The contributions of this paper are as follows.




	
Based on the RTV theory and multi-scale Harris detector, an RTV-Harris feature point detector is proposed so that the detected feature points are distributed at the structural edges with higher matching potential.



	
To mitigate the effect of nonlinear intensity difference between optical and SAR images, an enhanced phase consistency edge (EPCE) descriptor is proposed for the structural feature description of the feature points.



	
A coarse-to-fine matching strategy based on feature point position and orientation Euclidean distance (POED) is introduced to improve the registration precision.








The paper is organized subsequently as follows. Section 2 describes the proposed registration method, including the RTV-Harris feature point detector, the EPCE feature descriptor, and the POED based matching method. The experimental setup, procedure, and result analysis are provided in Section 3. Section 5 gives the conclusion of this paper.




2. Proposed Method


The schematic diagram of the proposed RTV-SIFT method is shown in Figure 2 and the modules are described as follows.



2.1. Iterative Structure Preserving Smoothing Using RTV


As discussed in Section 1, it should be avoided to extract feature points for registration in the texture region. Therefore, the original optical and SAR images are first smoothed using the RTV method [34] to remove the texture while preserving the structural information in the images. This is achieved by optimizing the following objective function:


  arg  min S   ∑ p     ( S  ( p )  − I  ( p )  )  2  + λ ·  (   W T  V x   ( p )    W I  V x   ( p )    +   W T  V y   ( p )    W I  V y   ( p )    )   ,  



(1)




where I is the original optical or SAR image, S is the estimated structural image,   p = ( x , y )   is the pixel coordinate, and  λ  is a weight coefficient.   W T V   and   W I V   are the windowed total variation and windowed inherent variation measures, respectively, defined as


     W T  V x   ( p )  =  G σ  ·    ∂ S ( p )   ∂ x    ,  W T  V y   ( p )  =  G σ  ·    ∂ S ( p )   ∂ y    ,       W I  V x   ( p )  =   G σ  ·   ∂ S ( p )   ∂ x    ,  W I  V y   ( p )  =   G σ  ·   ∂ S ( p )   ∂ y    ,     



(2)




where   G σ   is a two-dimensional Gaussian kernel with variance of  σ . Both the texture and structural regions will yield a large WTV response, while the WIV response is smaller in pure texture regions than in the structural regions.



The optimization problem in Equation (1) can be implemented iteratively [34], expressed as


   v S  n + 1   =   ( 1 + λ  L n  )   − 1   ·  v I  ,  



(3)




where   v S   and   v I   are vector representations of S and I, respectively; L is the weight matrix computed based on the structural vector   v S  ,  1  is an identity matrix, and n is the iteration index.



For an optical or SAR image, a series of images   {  S n  , n = 1 , ⋯ , N }   with progressively suppressed texture information can be generated using the Equation (3), which is hereafter named the RTV iteration space. The choice of the maximum number of iterations N, referred to as the number of layers of the RTV iteration space, is discussed in Section 3.3.




2.2. Multiscale Feature Point Detection


The feature points of optical and SAR images are detected by Harris operators [25] with different scales in their RTV iteration spaces, respectively. Specifically, a gradient covariance matrix is first computed for each pixel in each structural image   S n   in the RTV iteration space. The covariance matrix is then smoothed with a Gaussian convolution kernel with standard deviation    2   σ n    and multiplied by a scale factor   σ n 2  . The resulting covariance matrix is written as


     C  ( p )  =  σ n 2  ·  G   2   σ n    ∗           (   ∂  S n   ( p )    ∂ x   )  2       ∂  S n   ( p )    ∂ x   ·   ∂  S n   ( p )    ∂ y              ∂  S n   ( p )    ∂ x   ·   ∂  S n   ( p )    ∂ y        (   ∂  S n   ( p )    ∂ y   )  2         ,     



(4)




where we set    σ n  =  σ 0  ·  2  − n / 3     with   σ 0   the initial Gaussian kernel variance.



Finally, the feature points in   S n   are obtained by thresholding the Harris response score


  R  ( p )  = det  ( C  ( p )  )  − d ·  Tr 2   ( C  ( p )  )  ,  



(5)




where d is a constant sensitivity factor, “det” and “Tr” denote the determinant and trace of a matrix, respectively.




2.3. Feature Point Description


In order to alleviate the impact of nonlinear intensity differences between optical and SAR images on registration accuracy and to improve the discriminability of feature point representation, feature descriptors can be constructed by utilizing the image edge information. Existing methods usually use the Sobel operator (e.g., in [15]) or phase congruency (e.g., in [29]) to extract the image edges. However, the Sobel operator is sensitive to noise and prone to multi-pixel width, while the phase congruency maximum moment cannot reflect the contrast of edges.



In this study, we propose an enhanced phase consistent edge (EPCE) detector that combines the advantages of phase congruency and Sobel operator. More specifically, for each structural image   S n   in the RTV iteration space, its maximum moment of phase congruency edge map   M n   and the Sobel edge map   H n   are first computed. Figure 3 shows the Sobel and phase congruency edge maps of an example optical image. Due to the sensitivity of the Sobel operator to image details, the Sobel edge map looks quite noisy. To remove the noisy edge fragments from the Sobel edge map,   H n   is filtered by its intersection with the phase congruency edge map   M n  , which is formulated as


    H  n   ( p )  =  (  M n   ( p )  &  H n   ( p )  )  ·  H n   ( p )  ,  



(6)




where the symbol “&” denotes the pixel-wise “AND” operation. The results obtained are logical 0 or 1. Finally, the filtered Sobel edge map is summed with the phase congruency edge map   M n   to obtain an enhanced EPCE map   M  e n  n  , written as


   M  e n  n   ( p )  =   H  n   ( p )  +  M n   ( p )  .  



(7)







Figure 3d illustrates that the EPCE detector is effective in extracting image contours and filtering out the noisy edge fragments. The gradient amplitude and orientation of the EPCE map   M  e n  n   are calculated as


      G n   ( p )  =     (   ∂  M  e n  n    ∂ x   )  2  +   (   ∂  M  e n  n    ∂ y   )  2    ,        R n   ( p )  = arctan  (   ∂  M  e n  n    ∂ y   /   ∂  M  e n  n    ∂ x   )  .     



(8)







The domain orientations of feature points and the construction of descriptors are computed using histograms of gradient orientation, similar to SIFT. Instead of using a square neighborhood for feature points in SIFT, we use log-polar sectors neighborhoods to compute the descriptor as in PSO-SIFT, which generates 17 bins as the Log-polar sectors in Figure 2b. And the gradient orientations are quantized in eight bins, so that EPCE yields a 136-dimensional feature descriptor.




2.4. Coarse-to-Fine Feature Point Matching


In the feature point matching process, we first employ the Nearest Neighbor Distance Ratio (NNDR) [17] to coarsely match the feature points of the optical and SAR images, and use the Fast Sample Consensus (FSC) algorithm [35] to reject incorrect corresponding points and obtain the coarse affine transformation model   H 1   between the optical and SAR images.



To further improve the matching accuracy, Ma et al. [15] employed the position, scale, and main orientation information of the feature points to recalculate the Euclidean distance between the feature points, which is named PSOED and expressed as


     P S O E D (  p i  ,  p j  )   = e r r  (  p i  ,  p j  )  E D  (  p i  ,  p j  )  ,       e r r  (  p i  ,  p j  )   = ( 1 +   e p   (  p i  ,  p j  ) )     ( 1 +  e s   (  p i  ,  p j  )  )   ( 1 +  e o   (  p i  ,  p j  )  )  ,     



(9)




where   p i   and   p j   are the feature points on the reference image and sensed image, respectively;   E D (  p i  ,  p j  )   represents the Euclidean distance between the feature descriptors of   p i   and   p j  ,    e p   (  p i  ,  p j  )   ,    e s   (  p i  ,  p j  )    and    e o   (  p i  ,  p j  )    respectively denote the position error, scale error and main orientation error between   p i   and   p j  , which are defined as


      e p   (  p i  ,  p j  )      =  | |   p i  −  H 1   (  p j  )    | |  2  ,        e s   (  p i  ,  p j  )       = | 1 −   r *  ·   s j   s i    | ,         e o   (  p i  ,  p j  )       = | Δ   θ  i , j   − Δ  θ *   | ,      



(10)




where   H 1   denotes the coarse transformation model,    | |  ·   | |  2    represents the Euclidean distance calculation,   s i   and   s j   are the scales of   p i   and   p j   respectively,   Δ  θ  i , j     is the main orientation difference between   p i   and   p j  ,   r *   and   Δ  θ *    are the statistical maxima of the scale ratio and the major orientation differences between the matched pairs obtained from the initial matching, respectively.



Due to the different resolution and edge diffusion effects of different scale images in Gaussian scale space, it is difficult to correctly match the feature points with large-scale disparity. Whereas in the RTV-Harris scale space, the images have consistent resolution and clear edges, thus minimizing the impact of scale difference on our method. To reduce the computational burden, we discard the scale error term in the PSOED method and refer to the new Euclidean distance function as POED, expressed as


  P O E D  (  p i  ,  p j  )  =  ( 1 +  e p   (  p i  ,  p j  )  )   ( 1 +  e o   (  p i  ,  p j  )  )  E D  (  p i  ,  p j  )  .  



(11)







After coarse registration and obtaining the coarse transform matrix   H 1  , the Euclidean distances between descriptors of the feature points are fine-tuned using Equation (11). Then NNDR is used again to match the feature points with the fine-tuned distance between descriptors and the FSC algorithm is used to obtain a more accurate transformation matrix   H 2  .





3. Experiments and Results


In this section, we evaluate the performance of the proposed RTV-SIFT and compare it with several state-of-the-art registration algorithms. The hardware device for our experiments is a computer equipped with AMD Ryzen 9 3900XT CPU and 32GB memory, and the software platform is MATLAB R2019a.



3.1. Evaluation Metrics


The metrics for evaluating the registration method are as follows



Repeatability rate. repeatability rate [36] is a criterion for evaluating the stability of the feature point detector in detecting the homonymous point on two modal images. Let    x ˜  1   and    x ˜  i   be points that lie on the common part of the images of   I 1   and   I i  , and they are defined as


     x ˜  1   =   x 1   |   H  1 i    x 1  ∈  I i   ,    x ˜  i   =   x i   |   H  i 1    x i  ∈  I 1   .  



(12)




where   H  i j    denotes the homography between images   I i   and   I j  . Then, a neighborhood size  ϵ  is determined, and the  ϵ -repetition rate is defined as


   R i   ( ϵ )  =   (   x ˜  1  ,   x ˜  i  )   | d i s t   (  H  1 i     x ˜  1  ,   x ˜  i  )  < ϵ  .  



(13)




where   d i s t ( )   denotes The Euclidean distance between two points. Thus, the repeatability rate for image   I i   is defined as


   r i   ( ϵ )  =    |   R i    ( ϵ )  |    m i n (  n 1  ,  n i  )   .  



(14)




where    n 1  =  |    x ˜  1   |    and    n i  =  |    x ˜  i   |    are the number of points detected in the common part of images   I 1   and   I i   respectively.



Correct Matching Number (CMN). CMNis an important indicator of the robustness of registration algorithms. In our experiments, we manually selected more than 20 pairs of uniformly distributed and reliable corresponding points in each pair of the test images to estimate a standard transformation matrix   H o  . After applying the   H o   transformation, matches with position errors of less than 3 pixels are considered correct matches.



Correct Matching Ratio (CMR). CMR is the ratio of the CMN to the total number of matches   N m  , written as


  CMR =  CMN  N m   .  



(15)







Root Mean Square Error (RMSE). RMSE is an important indicator of registration accuracy and the formula is written as


  RMSE =     1  N m    ∑  i = 1   N m    | |   (  x r i  ,  y r i  )  −  H o   (  x s i  ,  y s i  )    | |  2     1 / 2   ,  



(16)




where   (  x r i  ,  y r i  )   and   (  x s i  ,  y s i  )   are the coordinates of the ith matched point pair on the reference image and the sensed image, respectively.



Distribution of the matched points (  S  c a t   ). Goncalves et al. [37] points out that the correct corresponding points should be distributed over the whole image as much as possible, and proposes a quantitative metric   S  c a t    to measure this distribution. First, given that   x =   x 1  ,  x 2  , ⋯ ,  x N     denotes the correct corresponding feature points in the reference image. Then, the Euclidean distances between every feature point and all of the feature points are calculated as


   D i  =  d i s t  (  x i  ,  x 1  )  , d i s t  (  x i  ,  x 2  )  , ⋯ , d i s t  (  x i  ,  x N  )   .  



(17)




where   i ∈  1 , 2 , 3 , ⋯ , N   . Finally,   S  c a t    is calculated as


   S  c a t   =    ∑  i = 1  N  m e d  (  D i  )   N  .  



(18)




where   m e d (  D i  )   denotes the medians of   D i  . On the same order of magnitude, the more uniform the distribution of feature points is, the larger the   S  c a t    value is. Note that the coordinates of feature points used in the calculation of   S  c a t    are normalized.



Time(s). The time required for two images to be successfully matched from input to output was calculated.




3.2. Test Images


This paper uses two sets of test images. The first one is a subset of the OS (Optical-SAR) dataset [38]. Since this dataset contains aligned optical and SAR Images, we use it to verify the repeatability of the proposed RTV-Harris feature point detector. We randomly selected 8 pairs of aligned optical and SAR images of different scenes (size 512X512, resolution 1 m) from the OS dataset [38], as shown in Figure 4.



Another test dataset contains 11 pairs of unaligned large-scene optical and SAR images. The details of the images are shown in Table 1. These test images are used to evaluate the performance of the overall registration algorithm, shown in Figure 5.




3.3. Parameter Settings


The variance  σ  of the Gaussian kernel in Equation (2) plays a crucial role in feature point detection. We set  σ  to 2 pixels for the optical images and 4 pixels for the SAR images in the experiments. It can be fine-tuned according to the texture size.



Under the guidance of Xu et al. [34], the parameter  λ  in Equation (3) is set to 0.004. In the traditional multi-scale Harris algorithm, as the Gaussian smoothing scale increases, the image edges gradually spread, so a gradually increasing scale window is needed to detect feature points. On the contrary, in the RTV-Harris scale space, the size of the spatial scale window   σ n   is gradually decreasing in order to preserve the sharpness of the edges. We set the initial scale   σ 0   of the RTV-Harris detector to 6 pixels and the ratio of adjacent scales to   2  −  1 3    . The constant d in the Harris response score function is set to 0.04. The score function threshold for feature point detection is set to 0.1. The ratio threshold of NNDR is set to 0.9.



In addition to the above parameters, the number of layers N of the RTV iteration space, a key parameter of the RTV-SIFT method, was determined experimentally. We evaluated the average CMN and the average consumption time of the RTV-SIFT method on the test images with N ranging from 1 to 11, while other parameters were kept the same as above. The results in Figure 6 show that the average CMN does not always increase with the number of layers. When N is greater than 8, the growth of average CMN is no longer significant and even starts to decrease after 10 layers. However, the average consumption time of the algorithm keeps increasing with the number of layers. The results suggest that increasing the number of layers in the RTV iteration space does not necessarily lead to better registration performance. As the number of feature points increases, more redundant feature points are involved in matching, which ultimately leads to a decrease in registration performance. Therefore, to strike a balance between computational efficiency and algorithmic robustness, we advocate setting N = 8 for the RTV iteration space in all the following experiments.




3.4. Performance of RTV-Harris Feature Point Detector


The repeatability rate [36] with different thresholds was calculated for the 8 pairs of aligned optical and SAR images from the OS (Optical-SAR) dataset. The comparison results with the DoG method [17], the SAR-Harris method in SAR-SIFT [16], and the modified multi-scale Harris (multiscale-Harris with refinement) method in OS-SIFT are shown in Figure 7.



Among the four methods, the RTV-Harris detector achieves the highest repeatability rate of feature points for different senses and localization errors, as shown in Figure 7. In particular, for scenes with more small targets, such as the image pair (d), the advantage of the RTV-Harris detector is more pronounced. When the localization error is 4 pixels, the feature point repeatability rate has exceeded 50%. The RTV-Harris detector performs best for several reasons. First, the RTV method is able to attenuate texture and eliminate speckle noise, which prevents extracting invalid feature points to a certain extent. Second, the detection window of RTV-Harris gradually narrows, which improves the localization accuracy of feature points. These two factors contribute to the low false alarm rate and high repeatability rate.




3.5. Performance of EPCE Feature Descriptor


The performance of the EPCE feature descriptor was evaluated on the 11 large-scene optical and SAR image pairs by comparing it with descriptors constructed on the gradient of the Sobel edge and PC edge. For each group of experiments, the RTV-Harris detector with the same parameters was used to extract the feature points, and the matching method is the proposed coarse-to-fine method as described in Section 2.4. On average, the CMN of the EPCE descriptor is 32.55 ± 23.86 higher than that of the Sobel edge descriptor and 34.36 ± 22.81 higher than that of the PC edge descriptor. The resulting CMN metrics are shown in Figure 8. It shows that the EPCE descriptor provides a more precise characterization of feature points.




3.6. Overall Registration Performance of RTV-SIFT


In this subsection, we compare the effectiveness of the proposed RTV-SIFT method with the SAR-SIFT [16], Harris-PIIFD [27], and the other four state-of-the-art feature point-based methods, namely LNIFT [13], PC-SIFT and its enhanced version PCG-SIFT [29], PSO-SIFT [15] and OS-SIFT [39]. To ensure the validity of the experimental results, we followed the parameter settings in the original method.



The comparison results are presented in Table 2. It can be inferred that the SAR-SIFT, LNIFT, PC-SIFT, and PCG-SIFT methods often fail to achieve image registration for optical and SAR images with significant nonlinear intensity differences. Although some methods perform better than others, they lack robustness in different scenarios. For example, OS-SIFT and PSO-SIFT fail to register in dense urban areas (image pair 7), while Harris-PIIFD and OS-SIFT fail to register in suburban areas with large rotation angles and high vegetation coverage (image pair 11). In addition, the existing methods detect fewer and more concentrated feature points, which leads to larger registration errors in the RMSE values. In contrast, the feature points detected by our RTV-SIFT are mainly distributed at the edges and thus have higher matching potential, resulting in higher CMN and CMR. Furthermore, since the detected feature points are more evenly distributed over the whole image, the registration error (RMSE) is smaller. Hence it is more robust in various situations. The last two rows of Table 2 also give the results of RTV-SIFT without/with the coarse-to-fine feature point matching strategy POED. The results indicate that RTV-SIFT achieves superior registration performance compared to existing algorithms only when coarse alignment is applied. The introduction of the fine-matching POED strategy leads to a significant improvement in the registration performance of RTV-SIFT. In addition, we also demonstrate the registration performance with N = 5 in Table 2. It can be seen that when N = 5, better results than the SOTA method can be achieved, and the average time consumption is only 70% of that with N = 8.



The qualitative comparison of the better performing Harris-PIIFD, OS-SIFT, PSO-SIFT, and our RTV-SIFT methods on the airport area, suburban area, and vegetation-covered area, respectively, are shown in Figure 9. It is visible that the correct matching points obtained from the OS-SIFT and PSO-SIFT algorithms are mainly concentrated on the roads with clear features. In contrast, our RTV-Harris detector produces a wider distribution of matching points. The concentrated distribution of matching points will increase the registration error in areas without matching points, while a uniform distribution of matching points can achieve more accurate alignment over the whole image range, as illustrated in Figure 10.



Finally, we also report the time spent on each step of RTV-SIFT to give a reference for subsequent studies, as shown in Table 3. Note that the results are the average time consumed for all the test image pairs.




3.7. Validation under Different Conditions


Except for the interference from speckle noise, SAR images are unaffected by the weather conditions and time of day they are taken. However, optical images are susceptible to various factors such as illumination intensity and weather conditions. In this subsection, we employ simulated images under different imaging conditions to test the robustness of the proposed RTV-SIFT registration method. The simulated images were generated by processing real optical images with varying illumination, different levels of noise interference, and cloud occlusion, as depicted in Figure 11. Since the number and distribution of matching points significantly influence the registration effect, we utilize CMN and   S  c a t    to evaluate the algorithm’s performance.



3.7.1. Illumination Intensity


Variations in illumination intensity are the most common weather conditions that affect the contrast of optical images, thereby interfering with the registration results. We simulated optical images of different illumination intensities by attenuating and enhancing the intensity of the image to varying degrees. In order to vary the illumination intensity uniformly from weak to strong, we set 11 illumination levels as   [ 0.5 , 0.6 , 0.7 , 0.8 , 0.9 , 1 ,  1  0.9   ,  1  0.8   ,  1  0.7   ,  1  0.6   ,  1  0.5   ] .  



Figure 12a,d show the average CMN and average   S  c a t    values of the 11 pairs of test images. The proposed RTV-SIFT performs better and is more stable than the other two competing algorithms in all cases at different illumination levels. This is attributed to the fact that the EPCE descriptor inherits the PC’s insensitivity to light intensity and contrast [40].




3.7.2. Noise Interference


Since the space optical cameras mainly use linear array CCDs (Charge-coupled Devices) as the sensor and the readout noise of CCD cameras follows Gaussian distribution [41], we simulated noise interference to optical images by adding different levels of Gaussian noise. The mean values of Gaussian noise were set to 0 and the variance was divided into 11 levels sampled at equal intervals from 0 to 0.1.



As shown in Figure 12b,e, the RTV-SIFT is able to maintain good performance all the time with different levels of noise disturbances, with almost no fluctuations in the average CMN and average   S  c a t    values. This proves that the RTV-SIFT is robust to noise.




3.7.3. Cloud Covering


Optical remote sensing images can be negatively impacted by cloud occlusion during capture [42], resulting in degraded image quality and affecting feature extraction. A good registration algorithm should be robust to cloud occlusion to ensure optimal performance. To evaluate the impact of cloud occlusion on registration results, we used a mask with controlled transparency and extent to simulate clouds in optical images, with the cloud center set at the image center. 11 levels were set to represent varying cloud thicknesses and influence ranges.



The results in Figure 12c,f show that the average CMN and average   S  c a t    of RTV-SIFT decrease with the increase of cloud thickness and occlusion area, but its performance is still far superior to the other two algorithms.





3.8. Summary of Experimental Results


Based on the above experimental results, we can draw the following conclusions.




	
Our proposed RTV-Harris feature point detector is robust to speckle noise and texture, so the extracted feature points are mainly distributed at the edges of the structure with a higher repeatability rate than the traditional DoG and multiscale-Harris approaches.



	
The EPCE feature descriptor can effectively overcome the nonlinear intensity differences between optical and SAR images, and is more accurate than the descriptors constructed on the Sobel and PC edges.



	
The POED based fine matching method can effectively increase the number of correct corresponding points and make their distribution more uniform, as shown in the last two rows of Table 2.



	
The RTV-SIFT method outperforms other algorithms in various scenes and imaging conditions, showcasing its superior robustness and adaptability.










4. Discussion


Despite significant radiometric differences between optical and SAR images, their structural information is consistent and stable. Our proposed method leverages this structural information to effectively address the two problems outlined in Section 1. Firstly, we use the RTV method to smooth speckle noise and texture regions while preserving edge accuracy. By detecting feature points on the structure image, we significantly increase the likelihood of detecting the homology point on both images. The experiments in Section 3.4 suggest this property. Next, we construct EPCE descriptors on the structure image to assign each feature point an accurate, unique descriptor. The structural edge descriptors of homonymous points are stable and similar, leading to a significant improvement in the correct matching rate of feature points as shown in Table 2.



In summary, the experiments conducted in this paper provide valuable insights into the registration of optical and SAR images and demonstrate the effectiveness of the proposed methods. The findings in this study have important implications for future research in the field of remote sensing image applications. however, since our method relies on the structural features of the images, it may not perform well in weakly structured regions, as depicted in Figure 13. These areas are localized with very small fields of view (256 m × 256 m), thus lacking significant structural features, leading to registration failure. Nevertheless, in practical engineering applications, we can still harness structural information to register large scene images, thereby achieving registration of local regions with weakly structural features.




5. Conclusions


In conclusion, we have proposed a novel algorithm for registering optical and SAR images based on structure extraction and structural edge descriptors. Our approach utilizes the RTV-Harris detector to extract feature points located mainly on the structural edges, resulting in a high repeatability rate. The EPCE feature descriptors constructed on the RTV iteration space effectively overcome the intensity nonlinear difference between the optical and SAR images, obtaining accurate descriptors. Furthermore, the POED-based fine-matching method combines the position and principal direction information of feature points, resulting in more precise correspondences and improved registration accuracy. In comparison to several state-of-the-art methods, we found that the proposed RTV-SIFT method achieves superior registration results and is more robust to illumination variations, noise, and cloud occlusion. Our work provides a novel idea for optical and SAR image registration and demonstrates the potential of utilizing multi-modal image structural information for registration. We believe that our proposed method can be extended to other multimodal image registration fields, making significant contributions to the remote sensing domain.
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Figure 1. Feature points extracted and matched in an optical image (left) and a SAR image (right) by (a) PSO-SIFT, (b) SAR-SIFT, and (c) our RTV-SIFT method. The points shown in the images are the detected feature points, with the green points indicating the correctly matched points. mCMR is the mean correct matching ratio (CMR, defined in Section 3). 
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Figure 2. Diagram of the RTV-SIFT method. Abbreviations: RTV: Relative Total Variation; EPCE: Enhanced Phase Consistent Edge; NNDR: Nearest Neighbor Distance Ratio; FSC: Fast Sample consensus; POED: Position Orientation Euclidean Distance. “&”, “x”, “+” denote the “and”, “multiply” and “add” operations for the corresponding pixel values, respectively. 
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Figure 3. Example edge maps of (a) an optical image extracted by (b) the Sobel operator, (c) the phase congruency, and (d) the proposed enhanced phase congruency edge detector. 
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Figure 4. Randomly selected 8 pairs of aligned optical (top) and SAR (bottom) images from the OS dataset [38]. where, (a,c,h) is urban area, (b,f,g) is farmland area, (e) is suburban area, and (d) is airport area. 
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Figure 5. 11 pairs of unaligned large-scene optical and SAR images. (a–k) are image pairs 1–11, respectively. 
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Figure 6. The average CMN (a) and the consumption time (b) of the RTV-SIFT method with the number of layers N in the RTV iteration space varying from 1 to 11. 
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Figure 7. (a–h) are the feature points repeatability rate of the images pairs (a–h) in Figure 4, respectively. The independent variable of the line graph is the localization error. 
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Figure 8. CMN of feature descriptors based on different edge detectors. 
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Figure 9. Qualitative comparison of different registration methods, from left to right, Harris-PIIFD, OS-SIFT, PSO-SIFT, and RTV-SIFT (ours). (a–d) are the results on test image pair 1, 2, 7, and 11, respectively. 
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Figure 10. Qualitative comparison of the registration results of PSO-SIFT and RTV-SIFT (ours) on test image pair 1. The registration results are shown as checkerboard images. The left patches of the zoomed-in views in (b) are from the result of PSO-SIFT, and the right patches are from that of RTV-SIFT. 
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Figure 11. Example images of simulated optical images under different imaging condition and their registration results by RTV-SIFT method. (a,d,g) are the simulated optical images with illumination variation, noise, and cloud covering, respectively. (b,e,h) show the corresponding points in the image pairs. (c,f,i) show the checkerboard images of the registration results. 
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Figure 12. Average CMN (top row) and average   S  c a t    (bottom row) of the PSO-SIFT, OS-SIFT, and RTV-SIFT (ours) on the test images under different simulated optical imaging conditions. (a,d) Results of simulated illumination variation. (b,e) Results of simulated noise interference. (c,f) Results of simulated cloud obscuration. 
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Figure 13. Registration effects in local weakly structured regions. 
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Table 1. Information about the test images.
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Type

	
Image Pairs




	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11






	
Size

	
SAR

	
1025 × 800

	
600 × 675

	
735 × 768

	
788 × 888

	
350 × 675

	
975 × 925

	
875 × 552

	
975 × 800

	
501 × 494

	
900 × 898

	
705 × 878




	
Optical

	
832 × 640

	
496 × 544

	
468 × 528

	
720 × 704

	
224 × 416

	
656 × 624

	
677 × 482

	
864 × 608

	
356 × 366

	
665 × 689

	
919 × 643




	
Resolution

	
SAR

	
1 m

	
1 m

	
1 m

	
1 m

	
1 m

	
1 m

	
1 m

	
1 m

	
1 m

	
1 m

	
1 m




	
Optical

	
2 m

	
2 m

	
2 m

	
2 m

	
2 m

	
2 m

	
2 m

	
2 m

	
2 m

	
2 m

	
2 m




	
Source

	
SAR

	
GF-3

	
GF-3

	
GF-3

	
GF-3

	
GF-3

	
GF-3

	
GF-3

	
GF-3

	
GF-3

	
GF-3

	
GF-3




	
Optical

	
Google Earth

	
Google Earth

	
Google Earth

	
Google Earth

	
Google Earth

	
Google Earth

	
Google Earth

	
Google Earth

	
Google Earth

	
Google Earth

	
Google Earth




	
Scene

	

	
Airport

	
Airport

	
Airport

	
Airport

	
Airport

	
Airport

	
Dense urban area

	
Airport

	
Airport

	
Airport

	
Suburb with large rotation angle








Note: GF-3 is the Chinese satellite Gaofen-3.













 





Table 2. Performance comparison of different registration methods.
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Method

	
Criterion

	
Image Pairs




	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10

	
11






	
SAR-SIFT

	
CMN

	
1

	
0

	
1

	
5

	
0

	
2

	
0

	
0

	
0

	
0

	
24




	
CMR(%)

	
20.00

	
0

	
33.33

	
71.43

	
0

	
18.18

	
0

	
0

	
0

	
0

	
88.89




	
RMSE

	
10.68

	
130.21

	
322.64

	
2.36

	
71.54

	
3.50

	
486.83

	
477.25

	
165.60

	
386.00

	
1.72




	
   S  c a t    

	
-

	
-

	
-

	
0.021

	
-

	
-

	
-

	
-

	
-

	
-

	
0.175




	
Time(s)

	
14.70

	
10.25

	
10.81

	
17.22

	
1.06

	
122.65

	
5.72

	
5.82

	
1.86

	
21.36

	
28.52




	
PC-SIFT

	
CMN

	
1

	
16

	
1

	
0

	
0

	
0

	
0

	
4

	
1

	
0

	
1




	
CMR(%)

	
33.33

	
100

	
33.33

	
0

	
0

	
0

	
0

	
80.00

	
25.00

	
0

	
33.33




	
RMSE

	
240.54

	
1.16

	
108.66

	
324.02

	
31.41

	
289.85

	
342.71

	
1.92

	
42.07

	
357.27

	
284.56




	
   S  c a t    

	
-

	
0.172

	
-

	
-

	
-

	
-

	
-

	
0.240

	
-

	
-

	
-




	
Time(s)

	
10.15

	
3.97

	
6.13

	
8.65

	
0.61

	
8.64

	
5.36

	
4.84

	
0.77

	
12.69

	
14.70




	
PCG-SIFT

	
CMN

	
7

	
27

	
0

	
7

	
0

	
8

	
0

	
7

	
1

	
1

	
8




	
CMR(%)

	
77.78

	
100

	
0

	
87.50

	
0

	
72.73

	
0

	
63.64

	
25.00

	
25.00

	
88.89




	
RMSE

	
4.56

	
1.18

	
181.67

	
5.20

	
213.82

	
2.61

	
295.51

	
2.69

	
56.42

	
36.66

	
4.65




	
   S  c a t    

	
0.094

	
0.182

	
-

	
0.197

	
-

	
0.187

	
-

	
0.167

	
-

	
-

	
0.067




	
Time(s)

	
9.28

	
4.11

	
6.03

	
7.90

	
0.6

	
8.15

	
5.25

	
4.86

	
0.79

	
11.89

	
17.81




	
Harris-PIIFD

	
CMN

	
8

	
23

	
13

	
9

	
5

	
8

	
3

	
8

	
8

	
12

	
0




	
CMR(%)

	
80.00

	
100

	
100

	
64.29

	
83.33

	
57.14

	
27.27

	
66.67

	
80.00

	
68.42

	
0




	
RMSE

	
2.41

	
0.71

	
1.39

	
3.82

	
1.94

	
3.77

	
5.33

	
4.62

	
2.77

	
3.26

	
625.37




	
   S  c a t    

	
0.146

	
0.206

	
0.208

	
0.368

	
0.337

	
0.272

	
0.298

	
0.321

	
0.345

	
0.266

	
-




	
Time(s)

	
1.48

	
1.14

	
1.26

	
1.32

	
1.06

	
1.41

	
1.26

	
1.39

	
1.27

	
2.23

	
1.35




	
LNIFT

	
CMN

	
0

	
0

	
0

	
0

	
0

	
0

	
19

	
19

	
18

	
15

	
70




	
CMR(%)

	
0

	
0

	
0

	
0

	
0

	
0

	
37.25

	
44.19

	
40.00

	
39.47

	
86.42




	
RMSE

	
235.57

	
206.51

	
239.47

	
517.31

	
106.19

	
285.63

	
3.41

	
3.67

	
3.51

	
6.90

	
2.19




	
   S  c a t    

	
-

	
-

	
-

	
-

	
-

	
-

	
0.284

	
0.253

	
0.251

	
0.319

	
0.296




	
Time(s)

	
44.27

	
32.82

	
36.26

	
50.77

	
20.04

	
45.08

	
34.58

	
50.98

	
24.00

	
49.93

	
40.49




	
OS-SIFT

	
CMN

	
11

	
25

	
5

	
15

	
3

	
15

	
1

	
4

	
5

	
11

	
1




	
CMR(%)

	
100

	
100

	
83.33

	
88.24

	
75.00

	
88.24

	
20.00

	
80.00

	
62.50

	
73.33

	
33.33




	
RMSE

	
1.37

	
1.08

	
2.05

	
1.99

	
28.33

	
1.89

	
5.44

	
4.01

	
3.80

	
2.67

	
126.29




	
   S  c a t    

	
0.109

	
0.201

	
0.276

	
0.265

	
0.284

	
0.243

	
-

	
0.253

	
0.366

	
0.182

	
-




	
Time(s)

	
18.65

	
10.83

	
12.37

	
18.36

	
1.04

	
23.53

	
6.97

	
11.36

	
2.17

	
22.31

	
27.31




	
PSO-SIFT

	
CMN

	
33

	
63

	
4

	
10

	
9

	
27

	
0

	
2

	
17

	
6

	
14




	
CMR(%)

	
100

	
96.92

	
26.67

	
71.43

	
90.00

	
80.95

	
0

	
28.57

	
100

	
66.67

	
46.67




	
RMSE

	
1.26

	
1.38

	
5.09

	
5.13

	
1.67

	
2.76

	
61.36

	
6.71

	
1.80

	
2.55

	
5.20




	
   S  c a t    

	
0.087

	
0.174

	
0.109

	
0.168

	
0.364

	
0.174

	
-

	
-

	
0.228

	
0.053

	
0.246




	
Time(s)

	
41.00

	
9.91

	
22.44

	
27.48

	
0.48

	
40.21

	
11.24

	
6.55

	
0.88

	
70.73

	
99.19




	
RTV-SIFT with POED (N = 5)

	
CMN

	
34

	
53

	
26

	
35

	
7

	
86

	
30

	
10

	
18

	
32

	
36




	
CMR(%)

	
100

	
100

	
86.67

	
100

	
70

	
94.51

	
93.75

	
58.82

	
85.71

	
84.21

	
81.81




	
RMSE

	
1.18

	
1.52

	
2.09

	
1.68

	
2.39

	
1.78

	
2.64

	
3.28

	
2.33

	
1.54

	
2.27




	
   S  c a t    

	
0.197

	
0.226

	
0.276

	
0.439

	
0.318

	
0.283

	
0.313

	
0.129

	
0.333

	
0.267

	
0.241




	
Time(s)

	
23.96

	
10.86

	
14.52

	
21.72

	
1.79

	
38.34

	
22.84

	
22.29

	
2.29

	
22.32

	
26.41




	
RTV-SIFT without POED (N = 8)

	
CMN

	
46

	
51

	
23

	
31

	
8

	
78

	
10

	
12

	
21

	
17

	
55




	
CMR(%)

	
97.87

	
100

	
100

	
100

	
100

	
89.66

	
76.92

	
100

	
91.3

	
100

	
100




	
RMSE

	
1.04

	
1.11

	
1.02

	
0.85

	
0.72

	
1.95

	
2.86

	
1.85

	
2.03

	
1.75

	
1.01




	
   S  c a t    

	
0.161

	
0.195

	
0.230

	
0.291

	
0.355

	
0.257

	
0.247

	
0.165

	
0.277

	
0.266

	
0.206




	
Time(s)

	
31.08

	
15.75

	
18.8

	
29.84

	
2.22

	
46.39

	
26.07

	
28.99

	
3.10

	
29.42

	
44.94




	
RTV-SIFT with POED (N = 8)

	
CMN

	
94

	
127

	
69

	
108

	
47

	
126

	
96

	
23

	
44

	
58

	
87




	
CMR(%)

	
100

	
100

	
100

	
100

	
100

	
100

	
100

	
54.76

	
95.65

	
100

	
100




	
RMSE

	
0.64

	
0.75

	
0.80

	
0.68

	
2.27

	
0.75

	
0.69

	
3.89

	
1.91

	
0.77

	
3.12




	
   S  c a t    

	
0.258

	
0.272

	
0.30

	
0.416

	
0.35

	
0.274

	
0.266

	
0.237

	
0.296

	
0.312

	
0.328




	
Time(s)

	
32.43

	
17.29

	
20.35

	
31.59

	
2.41

	
49.45

	
28.81

	
28.11

	
3.10

	
30.59

	
48.62








Note: The values of CMR are shown in percentage. Bolded fonts are the best performers in this metric.













 





Table 3. Average consumption time on each step of RTV-SIFT.






Table 3. Average consumption time on each step of RTV-SIFT.





	RTV-Harris Space Construction
	Keypoints Detection
	EPCE Feature Description
	Corse-to-Fine Match
	Final Time





	5.82 s
	0.38 s
	18.39 s
	2.02 s
	26.61 s
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