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Abstract: The topographic skeleton is the primary expression and intuitive understanding of topo-
graphic relief. This study integrated a topographic skeleton into deep learning for terrain recon-
struction. Firstly, a topographic skeleton, such as valley, ridge, and gully lines, was extracted from
a global digital elevation model (GDEM) and Google Earth Image (GEI). Then, the Conditional
Generative Adversarial Network (CGAN) was used to learn the elevation sequence information
between the topographic skeleton and high-precision 5 m DEMs. Thirdly, different combinations of
topographic skeletons extracted from 5 m, 12.5 m, and 30 m DEMs and a 1 m GEI were compared
for reconstructing 5 m DEMs. The results show the following: (1) from the perspective of the visual
effect, the 5 m DEMs generated with the three combinations (5 m DEM + 1 m GEI, 12.5 m DEM +
1 m GEI, and 30 m DEM + 1 m GEI) were all similar to the original 5 m DEM (reference data), which
provides a markedly increased level of terrain detail information when compared to the traditional
interpolation methods; (2) from the perspective of elevation accuracy, the 5 m DEMs reconstructed
by the three combinations have a high correlation (>0.9) with the reference data, while the vertical
accuracy of the 12.5 m DEM + 1 m GEI combination is obviously higher than that of the 30 m DEM +
1 m GEI combination; and (3) from the perspective of topographic factors, the distribution trends of
the reconstructed 5 m DEMs are all close to the reference data in terms of the extracted slope and
aspect. This study enhances the quality of open-source DEMs and introduces innovative ideas for
producing high-precision DEMs. Among the three combinations, we recommend the 12.5 m DEM +
1 m GEI combination for DEM reconstruction due to its relative high accuracy and open access. In
regions where a field survey of high-precision DEMs is difficult, open-source DEMs combined with
GEI can be used in high-precision DEM reconstruction.

Keywords: terrain reconstruction; GDEM; deep learning; Google Earth Image; the Loess Plateau
of China

1. Introduction

The terrain is a description of the earth’s surface, encompassing various geomor-
phic evolutionary processes. Moreover, the terrain reflects major crustal movements (i.e.,
geological changes) and minor change processes (i.e., soil erosion and water loss) [1,2].
Terrain modeling serves as the foundation for various scientific research and engineering
applications. These applications cover several areas, including meteorological analysis,
disaster prevention and control, hydrological analysis, crop cultivation, geological analysis,
feature construction, military battlefield simulations, and game modeling [3–10]. Over the
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years, scholars have proposed various terrain modeling approaches, which can be broadly
categorized into two types: physical terrain modeling based on field measurements and
virtual terrain modeling based on existing information and geological knowledge.

Physical terrain modeling primarily involves traditional geodetic surveying and
remote-sensing methods based on field measurements. Elevation values, which simulate
the physical terrain, are directly obtained from measuring instruments or from aerospace
satellite remote-sensing platforms, unmanned aerial vehicle (UAV) photogrammetry, and
Light Detection and Ranging (LIDAR) [11–14]. Modeling methods based on field mea-
surements are expensive despite their accuracy. For terrain simulation methods based
on known information, models are primarily constructed from known terrain and topo-
graphic knowledge, including constrained interpolation algorithms and the functionalized
terrain modeling method. The former has typical interpolation algorithms, such as inverse
distance weighting and cubic convolutional interpolation [15–18]. Meanwhile, the latter
is a technique that uses various surface parameters and input formulas to create terrain
output. This method uses fractal algorithms, physical modeling methods, meta-cellular
automata, and simulation algorithms utilized in fluid particle systems [19–23]. Modeling
methods based on existing data are direct. However, applying the generated terrain to
geomorphological simulation is difficult because terrain formation involves geomorphic
development processes and geographic laws. Describing surface details and reflecting
geomorphic development processes using a single-function approach are also complicated.

The difficulty in reconstructing terrain based on known information and topographic
knowledge lies in the complexity of the elevation pattern of the terrain slope; thus, estab-
lishing a global terrain model with certain formulas or constraints is difficult [24]. One of
the most effective methods for dealing with big data, deep learning, can autonomously
mine learning features for terrain modeling [25]. Consequently, deep-learning-based ter-
rain modeling has been developing, and preliminary research has been conducted on
Image Super-Resolution and image generation techniques. However, this direct scale-down
method lacks theoretical support and is inappropriate for complex terrain, demonstrating
poor interpretation, low stability, and limited model applicability based on the experience
of some scholars [26,27]. The image generation method conceptualizes the DEM in a regular
grid format as an image generation problem with feature elements, and the terrain features
significantly influence the topography. The CGAN is a prevalent deep-learning technique
for good-quality image generation [28,29]. Therefore, numerous researchers [30–32] in-
troduced a CGAN training method by utilizing high-precision DEM-extracted terrain
elements, which later created DEMs according to the trained networks. However, certain
drawbacks are still evident despite the modern technique used in this approach for terrain
modeling. On the one hand, obtaining a high-precision DEM is difficult in mountainous
and remote areas, and the dependence of this method on high-precision DEMs limits its
applicability. On the other hand, training to generate the corresponding high-precision
DEM has minimal practical importance due to the already existing high-precision DEMs.

Acquiring coarse-resolution DEM and image data for a large spatial extent is easy.
Meanwhile, a high-resolution DEM can be accessible through UAV photogrammetry. In
such cases, utilizing the available topographic information and accurate data from a sub-
region to train a model that can reconstruct elevations at the same geomorphic development
features in other parts is scientifically and practically valuable. A group of scholars utilized
global open-source Global Digital Elevation Models (GDEMs), including ALOS (Advanced
Land Observing Satellite) DEM, ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer) DEM, SRTM (Shuttle Radar Topography Mission) DEM, and other
GDEMs, due to their extensive coverage [11,33–36]. This study is valuable because it
employs the similarities of valley and ridge lines extracted by different DEM resolutions,
the high-resolution property of remote-sensing images, and the advancement of CGAN
technology [37]. The objectives of this study were as follows: (1) integrate topo- graphic
skeleton lines into deep learning for terrain reconstruction from Google Earth Image and
GDEM and (2) verify the effectiveness of two global open-source GDEMs and Google Earth
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Image for producing higher-resolution DEMs. This study also examined the potential
of multiple datasets in creating a 5 m high-precision DEM, enabling the prompt creation
of high-precision terrain modeling for various circumstances, such as engineering con-
structions, environmental assessments, and battlefield environment simulations, using the
pre-existing datasets.

2. Method
2.1. Basic Ideas

Topographic skeletons, such as ridges, valleys, and gully lines, are derived from
the terrain, representing the surface height and undulation, and are the basis for gener-
ating simulated terrain using deep-learning algorithms. A scale effect exists in a DEM,
wherein different-resolution DEMs are not only similar in expressing the spatial location of
mountains and river valleys but also the same length as the same catchment area [38–40].
Therefore, there is a certain conversion rule between the ridge and valley lines of different
resolution DEMs. The gully line is the boundary line of gully erosion [41–45] and separates
the water dispersion and convergence areas, distinguishing positive and negative land-
forms. To accurately convey the spatial location of the gully, it requires a higher-resolution
DEM, but global open-source DEMs do not fulfill this requirement. This study integrated
high-resolution GEI to produce accurate DEM reconstructions.

The current study designed three methods of topographic skeleton extraction (Table 1)
to compare the advantages and limitations of open-source topographic skeletons with
different resolutions.

Table 1. The experiments of terrain reconstruction by CGAN are based on different topographic
skeletons from different data sources.

Experiment Name Purpose of the Experiment

Terrain reconstruction experiment based on
5 m DEM + 1 m GEI

Evaluating the accuracy of the CGAN model as
a control group

Terrain reconstruction experiment based on
12.5 m DEM + 1 m GEI

Investigating the feasibility of the topographic
skeleton extracted from the 12.5 m DEM to

generate a 5 m DEM

Terrain reconstruction experiment based on 30
m DEM + 1 m GEI

Investigating the ability of the topographic
skeleton extracted from the 30 m DEM to

generate a 5 m DEM

The overall workflow is shown in Figure 1. Firstly, ridge and valley lines were extracted
using the original 5 m DEM, and gully lines were extracted using GEI. Moreover, ridge
lines, valley lines, and gully lines were fused to obtain the mapping relationship between
the DEM and the skeleton line, using CGAN. Then, ridge and valleys lines were extracted
using the 12.5 m and 30 m DEMs and were separately fused with gully lines extracted from
GEI. Finally, the 5 m DEM was reconstructed by merging three terrain datasets through
a created mapping relationship. A visual analysis, accuracy analysis, and terrain factor
analysis were carried out on the reconstructed DEM, as well as the original 5 m, 12.5 m,
and 30 m DEMs.
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Figure 1. Workflow of the study.

2.2. Data Description

The Loess Plateau in Shaanxi Province, China (Figure 2c), was selected as the study
area. The study area forms gullies and rugged landscapes due to the complex climate,
loose soil, wind, and rainfall erosion, thereby complicating terrain modeling [44,45]. This
selection allows the model to tackle complex terrain whilst confidently validating the
outcome. Multi-scene 5 m DEMs of the Loess Plateau were selected to address the large
volume of training samples needed (Figure 2c) and verified training effectiveness on the
DEMs of two scenes, the Ganquan County area (Figure 2a) and the Yanchuan County area
(Figure 2e), which were divided into 112 sample areas that represented the unique Hills
and Gullies terrain of the Loess Plateau, respectively. Only four sample areas are displayed
(Figure 2b) due to the limited size of the paper.

Three types of data were used in this study, as shown in Table 2. The high-precision 5 m
resolution DEM, obtained from the National Bureau of Surveying and Mapping of China,
was employed to study elevation sequences between high-precision skeleton lines and the
5 m DEM. The ALOS PALSAR RTC (Phase Array type L-band Synthetic Aperture Radar
Radiometric Terrain Correction) 12.5 m DEM and ASTER V3 30 m DEM were obtained
from open-source platforms, and the 1 m resolution GEI was obtained from Google Earth.

Maintaining spatial resolution, which is the critical attribute in the field of geography,
is essential to complying with the stringent input requirements of the CGAN. Therefore,
the training and validation data must undergo cropping. The training samples in this paper
were set as squares with a side length of 256 pixels, demonstrating an actual side length of
1.28 km for each sample. Consequently, the 12.5 m DEM, 30 m DEM, and 1 m GEI data were
all cropped to squares with a side length of 1.28 km. A total of 112 samples were obtained
after cropping the 5 m DEM and GEI of Ganquan (Figure 2a) and Yanchuan (Figure 2e),
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from which four were randomly selected as display samples for this study (Samples A, B,
C, and D in Figure 2b).

1 
 

 
 

 
Figure 2. Training area and validation area (a,c,e); paper display area (b); and physical geographic
environment of validation area, Yanchuan (d).

Table 2. Datasets used in this paper.

Data Time Source

5 m DEM 2000–2010 The National Administration of Surveying in China

12.5 m ALOS DEM 1 2006–2011 https://search.asf.alaska.edu/, accessed on 10 January 2008.

30 m ASTER GDEM 2000–2013 https://lpdaac.usgs.gov/products/astgtmv003/, accessed on 12 September 2010.

1 m Google Earth Image 2006 https://earthengine.google.com/, accessed on 6 March 2006.
1 The data source of ALOS PALSAR RTC is SRTM GL1. Although its spatial resolution reaches 12.5 m, the vertical
precision is very poor, but in this paper, we did not use the vertical precision information.

2.3. CGAN Based on Topographic Skeleton

A network model based on CGAN and pix2pix was used in this paper [29,30] (Figure 3).
CGAN comprises a generator and a discriminator, with the generator creating the image
and the discriminator determining the similarity between the image generated by the
generator and the original image. In addition to inputting random noise, CGAN differs in
that it also adds control conditions such as topographic skeletons to enhance terrain control.
The terrain is continuous; thus, terrain details must be preserved during down-sampling
to maintain the topographic skeleton. The generator uses the U-Net structure to input
the topographic skeleton into each layer of the down-sampling process [29] and adds a
skip-connection layer between the input and output matching codecs to enhance feature
maps and conditions. The computer vision technique generally processes RGB images.
However, the DEM is a single-band image matrix; therefore, the output must be modified
to one band in the final convolution layer of the generative model. The loss function of the
generator needs an error function to compare the generated DEM to the original, and the
total loss function of the generator is as follows:

lossG =
1
n
× (∑

[
− log

(
p f ake + ε

)]
×WGAN + lossL1 ×W f ake−real) (1)

lossL1 =
1
n
× (|y− y′|) (2)

https://search.asf.alaska.edu/
https://lpdaac.usgs.gov/products/astgtmv003/
https://earthengine.google.com/
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where lossG is the loss value of the generator, n is the number of samples, p f ake refers to
the probability that the generated DEM is judged to be true by the discriminator, ε is the
correction of error, WGAN is the weight of the original GAN, W f ake−real is the weight of the
difference between the fake and real, y is the original DEM, and y′ is the fake DEM.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 20 
 

 

256×256×3
grid:5m

128×128×64

64×64 ×128

16 ×16 ×512

32 ×32 ×256

8 ×8 ×512

4 ×4 ×512

2 ×2 ×512

128×128 ×64

64×64×128

32×32×256

16×16×512

8×8×512

4×4×512

2×2×512

1 ×1 ×512

256×256×1
grid:5m

encoderdecoder Splice by channel

real

fake

DwGw

coding

Training

real

Export

Generator Discriminator

128×128×64

64×64×128

32×32×256

31×31×512

30×30×1

0/1
optimizer

 
Figure 3. CGAN is based on the topographic skeleton. 

This article obtained about 2000 samples after cropping the existing 5 m DEM data 
of the Loess Plateau, set the batch size to 5, and used the Adam optimizer (with a learning 
rate of 0.002, a β1 of 0.5, and a β2 of 0.999), and the number of epochs was 600. Because 
DEM and the RGB images in computer vision are different, this article set the weight of 
the L1 loss in the generator loss function to 99. The generator’s loss function and the dis-
criminator’s loss function curve are shown in Figure 4. 

0 100 200 300 400 500 600 700 800
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 100 200 300 400 500 600 700 800
0.55

0.65

0.75

0.85

0.95

1.05
lossG lossD

epoch epoch
 

Figure 4. Training details of the generator and the discriminator. 

2.4. Similarity Transform of the Ridge and Valley Line 
This study selected the hydrological analysis method [46] to extract ridge and valley 

lines (Figure 5a). The hydrological analysis method uses pixel elevation and searches for 

Figure 3. CGAN is based on the topographic skeleton.

The discriminator operates by determining whether the input topographic skeleton
resembles the original DEM. The network structure of the discriminator is illustrated in
Figure 3, and this structure is comparable to that of the U-Net encoder in the generator,
except for the first and last two layers. The primary layer of the discriminator’s input data is
the topographic skeleton matrix alongside the corresponding original DEM after collocation.
Equation (3) demonstrates that the discriminator optimization objective function is identical
to the GAN loss function. The output of the loss function is then inputted into the generator
to adjust the loss function, thereby facilitating the objective of using the discriminator to
provide feedback to the generator.

lossD =
1
n
×∑

[
log
(

1− p f ake + ε
)
− log(preal + ε)

]
(3)

where lossD is the loss value of the discriminator, n is the number of samples, preal is the
probability that the generated DEM is judged to be false by the discriminator, ε is the
correction of error, and p f ake refers to the probability that the generated DEM is judged to
be true by the discriminator.

The overall loss function is the weighted sum of the generator and discriminator loss
functions. This function can be represented by Formula (4).

lossall = lossG + λlossD (4)

where λ is the weight of the loss function of the discriminator.
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This article obtained about 2000 samples after cropping the existing 5 m DEM data of
the Loess Plateau, set the batch size to 5, and used the Adam optimizer (with a learning
rate of 0.002, a β1 of 0.5, and a β2 of 0.999), and the number of epochs was 600. Because
DEM and the RGB images in computer vision are different, this article set the weight of
the L1 loss in the generator loss function to 99. The generator’s loss function and the
discriminator’s loss function curve are shown in Figure 4.
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2.4. Similarity Transform of the Ridge and Valley Line

This study selected the hydrological analysis method [46] to extract ridge and valley
lines (Figure 5a). The hydrological analysis method uses pixel elevation and searches for
the lowest value of raster element amongst the eight surrounding neighborhoods as the
outlet. The method involves puddle filling, flow direction calculation, flow accumulation
calculation, and river network classification. The extraction of the ridge line is similar to
the valley line of the inverse DEM. The extraction of the hydrological analysis method
depends on the flow accumulation. A substantially small threshold value for extracting
an excessive number of elements affects the network grading, whilst a substantially large
threshold inadequately represents the details. Li et al. [30] found that the extraction of ridge
and valley lines using a 5 m DEM threshold of 2000 (catchment pixels) has a superior effect
on topography control in the Loess Plateau. The valleys extracted by different-resolution
DEMs for the same number of catchment pixels vary significantly. From Figure 5, we see
that the lengths of valley extracted from the 5 m DEM with a threshold of 2000 are close to
those extracted from the 12.5 m DEM with a threshold of 300 and the 30 m DEM with a
threshold of 50. Therefore, in this paper, ridge and valley lines are extracted with the 5 m
DEM threshold of 2000, the 12.5 m DEM threshold of 300, and the 5 m DEM of 50. After
transforming the ridge and valley lines obtained from DEMs of different resolutions to the
same length, it is also necessary to convert the grid size to that of 5 m DEMs. The specific
method is as follows: extract the ridge and valley lines after threshold conversion, and then
resample the obtained skeleton lines to match the grid size of the training data.
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2.5. CGAN Input Data Production

The gully lines were extracted by using an object-oriented analysis method that
combines remote-sensing images and the DEM [47,48] in this study (Figure 6). In this
study, the software named eCognition from the Trimble company was used for multiscale
segmentation; we chose a multiscale segmentation scale of 120, a shape index of 0.1, and
a tightness of 0.5. The ridge and valley lines of the three-resolution DEM, as well as the
gully lines from the GEI, were combined into a three-band matrix. To meet the training
requirements of CGAN, the three-band matrix composed of the ridge, valley, and gully line
needed to be combined with the corresponding 5 m DEM in the training dataset.

2.6. Performance Evaluation

To evaluate the effectiveness of three deep-learning methods for reconstructing 5 m
DEMs from three data sources, this assessment is categorized into three aspects: (1) The
first is the analysis of the vision to determine whether the reconstructed 5 m DEM was
visually similar to the original 5 m DEM. (2) The correlation analysis, RMSE analysis,
and mathematical indicators of elevation examine the effect of the constructed DEM and
measure the disparity between the reconstructed and the original 5 m DEM. The RMSE
equation is provided as Equation (5) [49]. (3) The slope and aspect extracted from the
original 5 m DEM, as well as those from the original 12.5 m and 30 m DEM, are utilized
as reference models in this paper to compare the slope and aspect generated by various
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schemes and determine the differences in slope morphology between the generated and
original terrain.

RMSE =

√
1
n

n

∑
i=1

(Xi−Xi)2 (5)

where Xi in this paper refers to the comparison DEM pixel with 5 m DEM, and Xi is the
corresponding reconstructed 5 m high-precision DEM image value.
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3. Results
3.1. Visual Comparison

This paper proposes terrain-modeling methods and evaluates their performance
against traditional interpolation methods, as shown in Figure 7. The traditional interpola-
tion method used is ordinary Kriging and Cublic, the chosen semi-variogram model is the
Spherical model, and the search radius is set to 50 in the Kriging method. Deep-learning
methods generally outperform traditional interpolation methods in producing grayscale
maps and hillshade with better-reconstructed contours and shapes. Traditional interpola-
tion methods barely show any improvement when compared to the original 12.5 m and
30 m DEMs. Compared with the original DEM, the interpolation methods still lack the rich
information provided by the deep-learning method to identify and add terrain information
despite their improvement in smoothness and terrain detail. This limitation is attributed to
the limited amount of information provided by interpolation methods during high-to-low-
resolution conversion by utilizing the spatial autocorrelation law. By contrast, deep-learning
methods have created an information repository through supervised learning, which allows
them to obtain additional information. Therefore, the following discussion focuses solely
on comparing the terrain modeling results of the deep-learning method.

Comparing the original three-resolution DEMs with the reconstructed terrain based
on the deep-learning methods shows that the latter better reflects surface relief, especially
in gully areas. This finding indicates that the trained model can preserve a topographic
skeleton to the resultthat is comparable to the original 5 m DEM. Additionally, the re-
constructed 5 m DEM captures more information and details regarding the gully slope
than the original 5 m DEM due to the high-quality information and details provided by
the 1 m GEI. Nevertheless, the reconstructed details do not accurately display the end
of some branch gullies. This limitation is attributed to the threshold value selection of
the hydrological analysis method, which fails to extract small threshold values of branch
gullies, leading to a suboptimal reconstruction outcome. The comparison of the hillshade
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images reveals that the 5 m reconstructed DEM is smooth at the prominence of ridges, with
a substantially gradual slope change. This phenomenon may be induced by the mismatch
between the ridge line extracted from the 5 m DEM and the gully line extracted from the 1 m
GEI. In conclusion, compared with the original three-resolution DEMs and the traditional
interpolation method, the 5 m DEM reconstructed by deep-learning methods completely
outperforms the original 12.5 m DEM, the 30 m DEM, and the traditional interpolation
method in terms of the visual effects.
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Yanchuan County). (The red box shows the feature area for comparison of several methods).

3.2. Accuracy Analysis

This study presented experimental designs on the correlations amongst 112 sample
areas in two study fields to evaluate the efficacy of the elements extracted from three
distinct data sources in reconstructing a 5 m DEM and reducing the impact of randomness.
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Box plots of the correlation coefficients of 112 experiment samples were illustrated to
compare differences (Figure 8). The results show that the 5 m DEM combination of 1 m GEI
reconstructed the best 5 m DEM, followed by the 12.5 m combination and then the 30 m
combination for both research areas. Moreover, the reconstructed 5 m DEM from the three
data sources in the sample areas’ analyses reveals a correlation greater than 0.85, with a
median greater than 0.90, indicating the excellent reliability of the model output. Therefore,
this study proves that the quality and data information in the reconstructed 12.5 m DEM
and 30 m DEM data are remarkably superior; in some instances, they are equivalent to
the DEM reconstructed by 5 m elements. This method can potentially reconstruct selected
areas lacking high-resolution DEM by utilizing information from Google Earth Image
and GDEM.
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Figure 8. Accuracy evaluation. (a) The correlation between the DEM generated by three deep-
learning methods and the original 5 m DEM was calculated using 112 samples from two validation
areas. (b) Comparison analysis of the RMSE between the original 12.5 m and 30 m DEMs, interpolated
12.5 m and 30 m DEMs into 5 m, three deep-learning methods, and the original 5 m DEM.

This study collected all points after vectorizing four sample areas, using the original
5 m DEM elevation values as checkpoints for the vertical elevation accuracy of seven data
groups. The findings show that the ASTER 30 m DEM outperforms the ALOS 12.5 m
DEM in vertical accuracy. Whilst the interpolation method has a minimal impact on
vertical accuracy, deep-learning methods demonstrate different outcomes. Specifically,
the proposed method in this study has a more significant impact on improving the ALOS
12.5 m DEM vertical accuracy compared to the other methods. However, the proposed
method had a less significant effect on vertical accuracy for the 30 m DEM because the
RMSE of vertical accuracy from the 5 m DEM reconstructed by deep learning is between
10 and 20 m compared to the original 5 m DEM. Therefore, the 5 m DEM reconstructed
using other data by transferring methods does not exceed the original 5 m DEM. These
findings indicate that the proposed method can enhance the quality of the ALOS 12.5 m
DEM in horizontal and vertical dimensions. By contrast, this method can only improve
ASTER 30 m DEM horizontal geomorphological information.

Table 3 shows the mathematical statistics of the elevation of the four sample areas by
comparing the mean, maximum, minimum, and standard deviation of the raster elevation
of the three data sources, the two interpolation methods, and the three deep-learning
methods. It can be seen that the traditional interpolation methods have almost no change
for the mathematical properties of the data, only affecting the smoothing, and the deep-
learning methods have a greater improvement in the quality of the data. Among the
three deep-learning methods, the effect of utilizing the 12.5 m DEM with the 1 m GEI is
comparable to that of fusing the 5 m DEM with the 1 m GEI, but it is significantly better
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than that of fusing the 30 m DEM with the 1 m GEI. This indicates that utilizing the 12.5 m
DEM with the 1 m GEI can achieve comparable results to the original DEM reconstruction.

Table 3. The statistics of elevation.

Data Mean Maximum Minimum Standard
Deviation

A

5_origin 1325.92 1408 1220 39.43
12.5_origin 1298.16 1369 1205 36.39
30_origin 1322.08 1399 1229 35.33

Kriging_12.5 1298.24 1369 1205 36.33
Kriging_30 1322.35 1397 1231 34.52
Cublic_12.5 1298.13 1369 1205 36.43
Cublic_30 1322.09 1399 1229 35.14

CGAN_5+1 1317.21 1398 1224 41.52
CGAN12.5+1 1322.14 1403 1225 41.29
CGAN30+1 1320.18 1401 1223 39.42

B

5_origin 1322.70 1421 1232 39.40
12.5_origin 1297.29 1387 1218 37.26
30_origin 1331.76 1412 1244 37.18

Kriging_12.5 1297.17 1385 1219 36.89
Kriging_30 1331.56 1407 1249 35.38
Cublic_12.5 1297.34 1387 1218 37.26
Cublic_30 1331.66 1413 1244 37.07

CGAN_5+1 1322.43 1415 1235 40.77
CGAN12.5+1 1321.98 1415 1236 40.57
CGAN30+1 1322.39 1417 1234 45.89

C

5_origin 1119.31 1217 1005 51.31
12.5_origin 1085.52 1187 985 46.42
30_origin 1119.57 1215 1010 50.68

Kriging_12.5 1085.56 1187 985 46.41
Kriging_30 1119.61 1216 1010 50.64
Cublic_12.5 1085.51 1187 985 46.41
Cublic_30 1119.64 1216 1010 50.64

CGAN_5+1 1115.23 1215 1009 49.80
CGAN12.5+1 1120.34 1216 1009 49.83
CGAN30+1 1121.22 1216 1011 51.12

D

5_origin 1093.66 1207 1003 46.90
12.5_origin 1057.47 1177 979 42.77
30_origin 1085.73 1198 1008 42.25

Kriging_12.5 1057.29 1177 979 42.65
Kriging_30 1085.65 1198 1008 42.13
Cublic_12.5 1057.58 1177 979 42.84
Cublic_30 1085.55 1198 1008 42.07

CGAN_5+1 1090.75 1202 1008 42.89
CGAN12.5+1 1096.95 1199 1007 43.16
CGAN30+1 1097.45 1197 1007 43.48

3.3. Terrain Factors’ Analysis

This study compared the slope maps and spectra of the reconstructed DEMs with the
original 5 m DEM extracted using various methods, and the results are presented in Figure 9.
The analysis results of the slope of the original 5 m DEM and the reconstructed DEM at
three different resolutions revealed that all three deep-learning methods demonstrate a
superior performance in reconstructing the 5 m DEM compared to the 12.5 and 30 m DEMs’
reconstruction results, as depicted in Figure 9. The 5 m DEM’s reconstruction provides
a clearer and more detailed portrayal of the gully than that of the 12.5 and 30 m DEMs,
particularly in terms of detail.
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Figure 9. Slope comparison. Comparison of slope and slope spectrum generated by three deep-
learning methods and three data sources. R with 5_origin refers to the correlation between the slope
spectrum extracted from the original 5 m DEM and other data. ((A,B): two Validation Sample Areas
in Ganquan County; (C,D): two Validation Sample Areas in Yanchuan County).

The comparison results of the slope profiles of different datasets indicate that the
reconstructed slope trends of the 5 m DEM, which utilizes the deep-learning method,
are significantly consistent (as illustrated in Figure 9), and the correlation with the slope
curve of the 5 m DEM is high. All the reconstructed slopes propagate the same peak and
slope configurations as the extracted slope of the original 5 m DEM, whilst also displaying
higher slope reductions than the 12.5 and 30 m DEMs’ expressed slopes. In relatively
complete watershed areas, the slope histogram is approximately a Gaussian distribution.
Low-resolution DEMs fail to represent the small areas containing high slopes effectively
due to the effects of external natural aspects, such as wind and water forces. Therefore, the
slopes extracted from the 5 m DEMs obtained by the three deep-learning methods are close
to those extracted from the original 5 m DEM.

The aspect indicates the direction with the largest elevation change and helps deter-
mine the orientation of the terrain slope. Aspect information can be derived from sunlight,
which is critical for plant growth and temperature. In the geographical studies, the aspect
map is an image represented with element values ranging from −1 to 360. The aspect is
categorized into eight directional interval values. When the aspect graphs of the three sets
of original DEMs and the three sets of reconstructed DEM data were analyzed in eight
directions (as shown in Figure 10), the datasets demonstrated significant differences in
aspect expression, particularly those derived from the 30 m original DEM, compared to
other datasets. This finding suggests that the resolution has a significant influence on
the aspect. The aspect of the 5 m DEM extracted by the three deep-learning methods
was closest to the original 5 m DEM, with the same trend noted in the reconstructed 5 m
DEM. This finding demonstrates that this model works well for aspect expression and can
effectively recover the aspect information of the original DEM.
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Figure 10. Aspect comparison. Comparison of aspect map and aspect spectrum generated by three
deep-learning methods and three data sources. R with 5_origin refers to the correlation between the
aspect spectrum extracted from the original 5 m DEM and other data. ((A,B): two Validation Sample
Areas in Ganquan County; (C,D): two Validation Sample Areas in Yanchuan County).

4. Discussion
4.1. Effect of Similarity of Topographic Skeleton
4.1.1. Influence of the Topographic Skeleton Length

The ability to reconstruct the 5 m DEM from three different-resolution DEMs is primar-
ily determined by the topographic skeleton, specifically the extraction of the topographic
skeleton’s lines from the DEM. The gully line is used as a constant value in this experiment
for reconstructing the DEM from the three data sources. Therefore, the reconstruction effect
primarily depends on the ridge and valley lines. The extraction results of ridge and valley
lines depend on the chosen threshold of flow accumulation. Due to different resolutions,
the same threshold will cause significant differences in river network length, resulting in
severe distortion when reconstructing DEMs at other resolutions (Figure 11). Therefore,
a threshold transformation is needed to better enable other resolution DEMs to obtain an
approximation of training 5 m DEMs. Similar input terrain skeletons guarantee similar
output 5 m DEMs from the deep-learning network. From Figure 11, it can be seen that the
distortion is larger when the 12.5 m and 30 m DEMs are used with a threshold of 2000. The
ridge and valley lines of the 30 m DEM are missing when the threshold is too bad, resulting
in a loss of control over the terrain, causing great deformation. The reconstructed 5 m DEM
is less distorted compared to the original 5 m DEM after using the converted threshold
obtained from Section 2.4.
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lines from DEMs.

4.1.2. Influence of the DEM Grid Size

Although the ridge and valley lines at the same length constrain the generation of the
terrain, it can be seen through Figure 11 that the 12.5 m and 30 m DEMs are still greatly
distorted when utilizing the same length of skeleton lines as the 5 m DEM. Therefore,
further work is needed, which is performed by refining the skeleton lines extracted from
the 12.5 m DEM and 30 m DEM to obtain the same grid size of skeleton lines as that of
the 5 m DEM. Figure 12 illustrates the terrain reconstructed by CGAN with different DEM
resolutions at similar spatial locations and the same length of the river valley. When the
difference in image elements between the 5 m grid and the training image element is large,
the generated topography offset is high, resulting in a poor reconstruction effect. Therefore,
refining the topographic skeleton lines of other resolution DEMs to the same grid size as
the 5 m DEM is necessary.
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Figure 12. Influence of the grid size. Original topographic skeleton lines refer to extracting valley
lines from DEMs. Details refer to the pixel-level details of the DEM. CGAN-reconstructed DEM refers
to DEM reconstructed by inputting terrain skeleton into the CGAN network.

4.2. Difference with the Traditional Interpolation Method

The traditional interpolation method uses mathematical rules for inferring unknown
points’ values from the existing points. This method works well in the regions with flat
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terrain. The deep-learning method proposed in this paper is dependent on the terrain
skeleton, so it is more effective in regions where the terrain skeleton is obvious (i.e., moun-
tainous areas) but less effective in regions where the terrain skeleton is unobvious (i.e.,
a chain of undulating hills without obvious ridge and gully). The traditional interpola-
tion method makes it hard to increase the additional information into the original data,
while the deep-learning method has established a nonlinear fitting relationship through
a large number of training data, and can add information through the established map-
ping relationship between the terrain skeleton and the DEM, which makes it possible to
recover the terrain. This also explains the superior results of the deep-learning method.
Table 4 demonstrates the difference between the deep-learning method in this paper and
the interpolation method.

Table 4. The difference with traditional interpolation method.

Method Advantages Limitations

Traditional interpolation
method

Easy to use and works well for
low-relief areas

The accuracy is relatively low
in high-relief mountainous

areas

The proposed method

Works well for areas with a
distinct topographic skeleton

and can increase the
information contained in the

training data

Methods are complex and
require more priori data

4.3. Application of the Void Filling of DEM

Nowadays, the mainstream acquisition techniques of DEM are mainly optical pho-
togrammetry and radar interferometry; the former is susceptible to other factors, such as
clouds, fog, etc., and the latter is of poorer quality in complex areas, such as mountain-
ous regions, and prone to cause voids. The method proposed in this paper significantly
outperforms traditional interpolation methods. Thus, this method can utilize existing
data for training and extract topographic skeleton lines by GDEM to fill in voids in some
high-resolution DEMs. As illustrated in Figure 13, if we have a high-resolution DEM for
a certain study area but it contains missing data that need to be filled, we can utilize the
existing data for training to establish the relationship between terrain skeleton lines and
the DEM. Then, we can use an open-source GDEM to extract the terrain skeleton lines for
the missing parts and transform the same length and grid conversion. Finally, we put the
transformed terrain skeleton lines into the trained network to obtain terrain reconstruction.
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5. Conclusions

This paper presents a framework for reconstructing high-precision DEM, using GEI,
GDEM, and CGAN, which utilize feature-recovery details in computer vision. Topographic
skeletons (valley, ridge, and gully lines) were extracted from GDEM and GEI. These
elements are used as constraints to generate the DEM, using the CGAN model. Different
combinations of topographic skeletons extracted from 5 m, 12.5 m, and 30 m DEMs and
1 m GEI were compared for reconstructing 5 m DEMs. The generated DEM is evaluated on
the basis of its visual effect, accuracy analysis, and terrain factor analysis. The experiment’s
results show that the 5 m DEMs generated with the three deep-learning methods are all
similar to the original 5 m DEM (reference data), which provides a markedly increased level
of terrain detail information when compared to the traditional interpolation methods. From
the perspective of elevation accuracy, the correlation of reconstructed DEMs from three
deep-learning methods to the original 5 m DEMs exceeds 0.9, while the vertical accuracy
of the 12.5 m + 1 m combination is obviously higher than that of the 30 m DEM + 1 m
GEI combination. From the perspective of topographic factors, the distribution trends of
the reconstructed 5 m DEM are all close to the reference data in terms of the extracted
slope and aspect. This study enhances the quality of open-source DEM and introduces
innovative ideas for producing high-precision DEMs. In regions where the field survey of
high-precision DEMs is difficult, open-source DEMs combined with GEI can be used in
high-precision DEM reconstruction.

The difference in the effect of DEM generation from the extracted elements of different
datasets primarily stems from the accuracy of the topographic skeleton extraction. Ex-
tracting topographic skeletons from open-source DEMs and GEI yielded a similar effect
to the extraction of such elements from a high-precision DEM. Consequently, modeling
DEMs based on open-source DEMs and GEI produces results that are similar to those of
the original high-precision DEM.
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