A Five-Component Decomposition Method with General Rotated Dihedral Scattering Model and Cross-Pol Power Assignment
Abstract
:1. Introduction
2. Methodology
2.1. General Rotated Dihedral Scattering Model for Oriented Urban Areas
2.2. Five-Component Decomposition with General Rotated Dihedral Scattering Model
2.3. A Simple Branch Condition with Explicit Physical Meaning
2.4. Assignment of Cross-Pol Power
2.5. Inversion of Model Parameters
3. Experimental Results and Analysis
3.1. Data Description
3.2. Decomposition Results for Radarsat−2 C Band Data
3.3. Decomposition Results for UAVSAR L Band Data
4. Discussion
4.1. The Importance and Feasibility of Cross-Pol Power Assignment
4.2. The Importance of General Rotated Dihedral Scattering Model
4.3. The Validity of the Proposed Branch Condition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Sato, M. Tsunami Damage Investigation of Built-Up Areas Using Multitemporal Spaceborne Full Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 2012, 51, 1985–1997. [Google Scholar] [CrossRef]
- Yamaguchi, Y. Disaster Monitoring by Fully Polarimetric SAR Data Acquired With ALOS-PALSAR. Proc. IEEE 2012, 100, 2851–2860. [Google Scholar] [CrossRef]
- Fan, H.; Quan, S.; Dai, D.; Wang, X.; Xiao, S. Refined Model-Based and Feature-Driven Extraction of Buildings from PolSAR Images. Remote Sens. 2019, 11, 1379. [Google Scholar] [CrossRef]
- Quan, S.; Zhang, T.; Wang, W.; Kuang, G.; Wang, X.; Zeng, B. Exploring Fine Polarimetric Decomposition Technique for Built-up Area Monitoring. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5204719. [Google Scholar] [CrossRef]
- Xiang, D.; Tang, T.; Hu, C.; Fan, Q.; Su, Y. Built-up Area Extraction from PolSAR Imagery with Model-Based Decomposition and Polarimetric Coherence. Remote Sens. 2016, 8, 685. [Google Scholar] [CrossRef]
- Cui, X.C.; Tao, C.S.; Su, Y.; Chen, S.W. PolSAR Ship Detection Based on Polarimetric Correlation Pattern. IEEE Geosci. Remote Sens. Lett. 2021, 18, 471–475. [Google Scholar] [CrossRef]
- Pan, X.; Wu, Z.; Yang, L.; Huang, Z. Ship Detection Method Based on Scattering Contribution for PolSAR Image. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A Three-Component Scattering Model for Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-Component Scattering Model for Polarimetric SAR Image Decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Arii, M.; Zyl, J.J.v.; Kim, Y. A General Characterization for Polarimetric Scattering from Vegetation Canopies. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3349–3357. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Hame, T. Volume Scattering Modeling in PolSAR Decompositions: Study of ALOS PALSAR Data Over Boreal Forest. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3838–3848. [Google Scholar] [CrossRef]
- Sato, A.; Yamaguchi, Y.; Singh, G.; Park, S. Four-Component Scattering Power Decomposition with Extended Volume Scattering Model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 166–170. [Google Scholar] [CrossRef]
- Wang, Y.; Ainsworth, T.L.; Lee, J.S. Disk-Shaped Random Scatterers with Application to Model-Based PolSAR Decomposition. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1961–1965. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, Q.; Jiao, J. An Adaptive Decomposition Approach with Dipole Aggregation Model for Polarimetric SAR Data. Remote Sens. 2021, 13, 2583. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Yajima, Y.; Yamada, H. A Four-Component Decomposition of PolSAR Images Based on the Coherency Matrix. IEEE Geosci. Remote Sens. Lett. 2006, 3, 292–296. [Google Scholar] [CrossRef]
- Hajnsek, I.; Pottier, E.; Cloude, S.R. Inversion of Surface Parameters from Polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 2003, 41, 727–744. [Google Scholar] [CrossRef]
- Jiehong, C.; Zhang, H.; Wang, C. An Improved Four-Component Decomposition with Distributed Double-Bounce Scattering Model. In Proceedings of the 2012 International Conference on Computer Vision in Remote Sensing, Xiamen, China, 16–18 December 2012; pp. 344–349. [Google Scholar]
- Lee, J.; Ainsworth, T.L.; Wang, Y. Generalized Polarimetric Model-Based Decompositions Using Incoherent Scattering Models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2474–2491. [Google Scholar] [CrossRef]
- Moriyama, T.; Uratsuka, S.; Umehara, T.; Maeno, H.; Satake, M.; Nadai, A.; Nakamura, K. Polarimetric SAR Image Analysis Using Model Fit for Urban Structures. IEICE Trans. Commun. 2005, 88, 1234–1243. [Google Scholar] [CrossRef]
- Zhang, L.; Zou, B.; Cai, H.; Zhang, Y. Multiple-Component Scattering Model for Polarimetric SAR Image Decomposition. IEEE Geosci. Remote Sens. Lett. 2008, 5, 603–607. [Google Scholar] [CrossRef]
- Hong, S.; Wdowinski, S. Double-Bounce Component in Cross-Polarimetric SAR from a New Scattering Target Decomposition. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3039–3051. [Google Scholar] [CrossRef]
- Xiang, D.; Ban, Y.; Su, Y. Model-Based Decomposition with Cross Scattering for Polarimetric SAR Urban Areas. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2496–2500. [Google Scholar] [CrossRef]
- Quan, S.; Xiong, B.; Xiang, D.; Hu, C.; Kuang, G. Scattering Characterization of Obliquely Oriented Buildings from PolSAR Data Using Eigenvalue-Related Model. Remote Sens. 2019, 11, 581. [Google Scholar] [CrossRef]
- Singh, G.; Mohanty, S.; Yamazaki, Y.; Yamaguchi, Y. Physical Scattering Interpretation of POLSAR Coherency Matrix by Using Compound Scattering Phenomenon. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2541–2556. [Google Scholar] [CrossRef]
- Lee, J.; Ainsworth, T.L.; Chen, K. The Effect of Orientation Angle Compensation on Polarimetric Target Decompositions. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. IV-849–IV-852. [Google Scholar]
- An, W.; Xie, C.; Yuan, X.; Cui, Y.; Yang, J. Four-Component Decomposition of Polarimetric SAR Images with Deorientation. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1090–1094. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Sato, A.; Boerner, W.; Sato, R.; Yamada, H. Four-Component Scattering Power Decomposition with Rotation of Coherency Matrix. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2251–2258. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Li, Q.; Wu, G.; Chen, J. Mitigation of Reflection Symmetry Assumption and Negative Power Problems for the Model-Based Decomposition. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7261–7271. [Google Scholar] [CrossRef]
- An, W.; Lin, M. A Reflection Symmetry Approximation of Multilook Polarimetric SAR Data and Its Application to Freeman–Durden Decomposition. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3649–3660. [Google Scholar] [CrossRef]
- Kumar, A.; Das, A.; Panigrahi, R.K. Hybrid-Pol Based Three-Component Scattering Model for Analysis of RISAT Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 5155–5162. [Google Scholar] [CrossRef]
- Mascolo, L.; Cloude, S.R.; Lopez-Sanchez, J.M. Model-Based Decomposition of Dual-Pol SAR Data: Application to Sentinel-1. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–19. [Google Scholar] [CrossRef]
- Maurya, H.; Panigrahi, R.K. Investigation of Branching Conditions in Model-Based Decomposition Methods. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1224–1228. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, X.; Jiang, J. Three-Component Decomposition for Polarimetric SAR Images Based on Coherency Matrix. In Proceedings of the PIERS Proceedings, Guangzhou, China, 25–28 August 2014. [Google Scholar]
- Chen, S.W.; Ohki, M.; Shimada, M.; Sato, M. Deorientation Effect Investigation for Model-Based Decomposition Over Oriented Built-Up Areas. IEEE Geosci. Remote Sens. Lett. 2013, 10, 273–277. [Google Scholar] [CrossRef]
- Chen, S.W.; Wang, X.S.; Sato, M. PolInSAR Complex Coherence Estimation Based on Covariance Matrix Similarity Test. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4699–4710. [Google Scholar] [CrossRef]
- Malik, R.; Singh, G.; Dikshit, O.; Yamaguchi, Y. General Five-Component Scattering Power Decomposition with Unitary Transformation (G5U) of Coherency Matrix. Remote Sens. 2023, 15, 1332. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Hou, W. Five-Component Decomposition Methods of Polarimetric SAR and Polarimetric SAR Interferometry Using Coupling Scattering Mechanisms. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 6662–6676. [Google Scholar] [CrossRef]
ROI | Method | Surface | Double-Bounce | Volume | Helix 1 | Rotated Dihedral 2 |
---|---|---|---|---|---|---|
ROI 1 | H4D | 5.85 | 19.35 | 66.95 | \ | 7.85 |
X5D | 6.62 | 4.68 | 64.82 | 4.27 | 19.61 | |
Q5D | 12.46 | 5.00 | 67.32 | 4.31 | 10.91 | |
G5U | 9.60 | 23.32 | 58.31 | 4.61 | 4.16 | |
W5D | 19.73 | 10.02 | 45.06 | 14.65 | 10.54 | |
Proposed | 34.72 | 9.18 | 4.35 | 4.02 | 47.73 | |
ROI 2 | H4D | 32.97 | 41.65 | 25.39 | \ | 0.00 |
X5D | 32.56 | 39.17 | 25.80 | 2.46 | 0.01 | |
Q5D | 33.22 | 38.52 | 25.80 | 2.46 | 4.76 × 10−3 | |
G5U | 36.29 | 47.68 | 11.63 | 2.03 | 2.37 | |
W5D | 37.76 | 44.80 | 1.98 | 13.62 | 1.85 | |
Proposed | 32.44 | 42.87 | 18.65 | 2.46 | 3.58 | |
ROI 3 | H4D | 22.53 | 5.69 | 70.56 | \ | 1.22 |
X5D | 26.79 | 1.75 | 66.19 | 2.45 | 2.82 | |
Q5D | 26.18 | 1.75 | 68.63 | 2.51 | 0.94 | |
G5U | 29.28 | 8.86 | 53.02 | 4.35 | 4.49 | |
W5D | 29.46 | 4.91 | 54.92 | 3.76 | 6.95 | |
Proposed | 27.77 | 2.01 | 64.35 | 2.50 | 3.37 | |
ROI 4 | H4D | 93.89 | 1.73 | 4.38 | \ | 0.00 |
X5D | 94.01 | 1.70 | 4.12 | 0.17 | 0.00 | |
Q5D | 94.01 | 1.70 | 4.12 | 0.17 | 0.00 | |
G5U | 94.30 | 2.16 | 2.74 | 0.45 | 0.35 | |
W5D | 94.07 | 1.87 | 3.66 | 0.08 | 0.31 | |
Proposed | 94.01 | 1.70 | 4.12 | 0.17 | 1.71 × 10−5 |
ROI | Method | Surface | Double-Bounce | Volume | Helix 1 | Rotated Dihedral 2 |
---|---|---|---|---|---|---|
ROI 1 | H4D | 32.89 | 20.30 | 46.81 | \ | 4.12 × 10−3 |
X5D | 32.67 | 19.08 | 46.83 | 1.26 | 0.15 | |
Q5D | 32.87 | 18.98 | 46.78 | 1.26 | 0.10 | |
G5U | 29.90 | 29.46 | 37.18 | 1.88 | 1.59 | |
W5D | 35.55 | 27.11 | 26.92 | 6.41 | 4.01 | |
Proposed | 47.75 | 26.19 | 2.57 | 1.26 | 22.23 | |
ROI 2 | H4D | 25.25 | 63.84 | 10.91 | \ | 0.00 |
X5D | 26.65 | 63.84 | 8.03 | 1.48 | 0.00 | |
Q5D | 27.20 | 63.29 | 8.03 | 1.48 | 0.00 | |
G5U | 28.47 | 65.93 | 3.63 | 0.51 | 1.46 | |
W5D | 28.20 | 65.22 | 2.58 | 1.98 | 2.01 | |
Proposed | 26.13 | 65.06 | 6.63 | 1.48 | 0.70 | |
ROI 3 | H4D | 41.20 | 16.04 | 42.76 | \ | 0.00 |
X5D | 41.64 | 15.91 | 41.63 | 0.82 | 0.00 | |
Q5D | 41.64 | 15.91 | 41.63 | 0.82 | 0.00 | |
G5U | 42.00 | 19.79 | 34.75 | 1.42 | 2.04 | |
W5D | 44.75 | 19.78 | 28.51 | 2.99 | 3.97 | |
Proposed | 46.58 | 16.51 | 30.55 | 0.82 | 5.54 | |
ROI 4 | H4D | 95.66 | 1.57 | 2.77 | \ | 0.00 |
X5D | 96.71 | 1.58 | 0.64 | 1.07 | 0.00 | |
Q5D | 96.71 | 1.58 | 0.64 | 1.07 | 0.00 | |
G5U | 96.15 | 1.72 | 2.13 | 0.00 | 0.00 | |
W5D | 95.65 | 1.57 | 2.78 | 0.00 | 0.00 | |
Proposed | 96.71 | 1.58 | 0.64 | 1.07 | 1.06 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Quan, S.; Fan, H.; Xu, Z.; Xiao, S. A Five-Component Decomposition Method with General Rotated Dihedral Scattering Model and Cross-Pol Power Assignment. Remote Sens. 2023, 15, 4512. https://doi.org/10.3390/rs15184512
Duan Y, Quan S, Fan H, Xu Z, Xiao S. A Five-Component Decomposition Method with General Rotated Dihedral Scattering Model and Cross-Pol Power Assignment. Remote Sensing. 2023; 15(18):4512. https://doi.org/10.3390/rs15184512
Chicago/Turabian StyleDuan, Yancui, Sinong Quan, Hui Fan, Zhenhai Xu, and Shunping Xiao. 2023. "A Five-Component Decomposition Method with General Rotated Dihedral Scattering Model and Cross-Pol Power Assignment" Remote Sensing 15, no. 18: 4512. https://doi.org/10.3390/rs15184512
APA StyleDuan, Y., Quan, S., Fan, H., Xu, Z., & Xiao, S. (2023). A Five-Component Decomposition Method with General Rotated Dihedral Scattering Model and Cross-Pol Power Assignment. Remote Sensing, 15(18), 4512. https://doi.org/10.3390/rs15184512