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Abstract: During the process of maneuvering target tracking, the measurement may be disturbed
by outliers, which leads to a decrease in the state estimation performance of the classic interacting
multiple-model (IMM) filter. To solve this problem, a weighted maximum correntropy criterion
(WMCC)-based IMM filter is proposed. In the proposed filter, the fusion state is used as the input
of each sub-model to reduce the computational complexity of state interaction and the WMCC
is adopted to derive the sub-model state update and state fusion to improve the state estimation
performance under outlier interference. Through principal analysis, the superiority of the proposed
filter over the classic IMM filter in fusion strategy is revealed. The specific form of the proposed filter
in radar maneuvering target tracking is provided. Two experimental cases of maneuvering target
tracking are tested to illustrate the effectiveness of the proposed filter.

Keywords: outlier interference; interactive multiple model; weighted maximum correntropy criterion;
maneuvering target tracking

1. Introduction

The state estimation problem has received widespread attention because of its existence
in various fields such as target tracking [1], navigation and positioning [2], and signal
processing [3]. For target tracking, the state estimation is the most important step in its
implementation process. When the maneuvering ability of the target is weak, its motion
characteristics can be modeled by using the constant velocity (CV) model [4] or the constant
turn (CT) model [5]. The Kalman filter (KF) or the extended Kalman filter (EKF) can be
used to solve its state estimation problem. The KF is an optimal Bayesian state estimator of
the single-model linear system in the Gaussian noise environment [6–8], and the EKF is an
approximate KF applied to the single-model nonlinear system. Both of these filters assume
that the process noise and the measurement noise follow the Gaussian distribution, which
means that the estimation performance of both filters will decrease in the non-Gaussian
noise environment.

When the target has strong maneuverability, the single model methods have limited
estimation ability and the multiple model methods need to be used for state estimation.
Unfortunately, the optimal filter for a multiple-model linear system does not exist because
the computational process of analytical solutions is very difficult. As a pseudo-Bayesian sub-
optimal algorithm, the interactive multiple-model (IMM) filter [9–11] is the most frequently
used approach to solve the problem of multiple-model state estimation. Similar to the KF
and EKF, the classic IMM filter [9–11] also models the noise as the Gaussian distribution,
which also causes its estimation performance to deteriorate under the non-Gaussian noise.

In practical applications, due to the low cost and instability of the sensor, the measure-
ment is susceptible to outliers, which leads its noise to follow the non-Gaussian distribution.
To improve the robustness, some filters based on the variational Bayesian (VB) method are
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proposed, such as the IMM-VB filter, the Gaussian–Pearson type VII mixture model-based
robust VB-KF, and the inverse gamma model and generalized hyperbolic skew Student’s t
model-based VB-KF [12–14]. Although the IMM-VB filter can effectively improve the state
estimation accuracy of the multiple-model system under a non-Gaussian measurement
noise environment, the computational burden is large, and an accurate non-Gaussian noise
model needs to be required. Recently, a maximum correntropy criterion (MCC) method [15]
has been widely used to solve the problem of state estimation under outlier interference.
Compared with the VB, the MCC has higher computational efficiency and does not need an
accurate noise model. To solve the problem of state estimation under outlier interference,
the MCC-based KF (MCCKF) [16], cubature Kalman filter (MCCCKF) [17], and unscented
Kalman filter (MCCUKF) [18] are successively proposed. Based on these filters, Ref. [19]
proposes an improved MCCCKF, which can adaptively estimate the kernel bandwidth to
improve the positioning performance of a cooperative localization system. Ref. [20] pro-
poses an improved MCCUKF to overcome the problem of numerical instability under large
shot noise, and Ref. [21] proposes a distributed MCCKF to improve estimation performance
in the presence of impulsive noise. In addition, a novel MCC-based Rauch–Tung–Striebel
smoother [22] is proposed to solve the state estimation problem under non-Gaussian process
and measurement noises. For the maneuvering target tracking, the multiple-model-based
filter is currently the mainstream method [23–25]. Unfortunately, the above MCC-based
filters are designed based on a single model, and they cannot solve the multiple-model state
estimation problem under outlier interference. How to design multiple-model filters based
on the maximum entropy criterion to improve the state estimation accuracy of maneuvering
targets under outlier interference needs to be solved.

Currently, an MCC-based filter, which is called the IMM-MCC filter [26], is designed
based on the multiple model, and this filter can be considered as a combination of the IMM
filter and MCCKF. To further improve the state estimation accuracy of a maneuvering target
under outlier interference, a weighted MCC-based IMM (WMCC-IMM) filter is proposed.
The proposed filter is also designed based on the multiple model. The main contributions
of this article are as follows.

(1) Different from the IMM-MCC filter, the proposed filter adopts another Gaussian
kernel function [20] to construct the cost function. Based on this Gaussian kernel
function, the weighted maximum correntropy criterion is defined, and a new cost
function is given.

(2) The sub-model state update and state fusion steps are derived under the framework
of WMCC, and the previous fusion state is used as the input of each sub-model to
simplify the state interaction step.

(3) The difference between the IMM-MCC filter and WMCC-IMM filter is discussed,
which reveals the superiority of the proposed filter in fusion strategy.

(4) To solve the state estimation problem of a maneuvering target in a radar system, the
specific steps of the WMCC-IMM filter in radar maneuvering target tracking is given.

(5) The effectiveness of the WMCC-IMM filter is tested using a set of simulation data
and a set of actual test data. Simulation results show that the WMCC-IMM filter has
better state estimation performance than the IMM-MCC filter. The great feedback
from actual test data indicates that the proposed filter has potential value for practical
engineering applications.

The structure of this article is as follows. In Section 2, the problem under consideration
is formulated, and the IMM filter is introduced. In Section 3, the main results are presented,
where the WMCC is defined, the WMCC-IMM filter is derived, the difference between the
IMM-MCC filter and WMCC-IMM filter is discussed, and the specific steps of the WMCC-
IMM filter in radar maneuvering target tracking is given. In Section 4, two maneuvering
target tracking cases are tested to verify the effectiveness of the WMCC-IMM filter. Lastly,
the conclusion is drawn in Section 5.
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2. Problem Formulation

The discrete linear multiple-model system at time k + 1 can be represented by the
following equations:

xk+1 = Fi
kxk + wi

k (1)

zk+1 = Hi
k+1xk+1 + vi

k+1 (2)

where Equations (1) and (2) are the state transition equation and measurement equation,
respectively. xk+1 ∈ Rn×1 and zk+1 ∈ Rm×1 represent the state vector and measurement
vector, respectively. Fi

k ∈ Rn×n and Hi
k+1 ∈ Rm×n (n > m) represent the state transition

matrix and the measurement matrix of the i-th sub-model, respectively. It is assumed that
the total number of sub-models is M. wi

k and vi
k+1 represent the process noise and the mea-

surement noise, respectively. Qi
k ∈ Rn×n and Ri

k+1 ∈ Rm×m represent the corresponding
nominal covariance matrix, respectively. For the above-mentioned system, the IMM filter
can be used to implement the state estimation, and the IMM filter is divided into four steps:

2.1. State Interaction

It is assumed that the mean and covariance of state from the i-th sub-model at time k
are xi

k|k and Pi
k|k, respectively. µi

k|k is its weight, and π is the Markov transition matrix. The

input state xi,0
k|k and covariance Pi,0

k|k of the i-th sub-model are formulated as

xi,0
k|k =

l

∑
j=1

µ
ij
k|kxj

k|k (3)

Pi,0
k|k =

l

∑
j=1

µ
ij
k|k(P

j
k|k + (xj,0

k|k − xj
k|k)(x

j,0
k|k − xj

k|k)
T
) (4)

µ
ij
k|k =

πijµ
j
k|k

l
∑

j=1
πijµ

j
k|k

(5)

where l is the total number of sub-models, µ
ij
k|k is the transfer weight from j-th sub-model

to i-th sub-model, and πij is the Markov transition probability from j-th sub-model to
i-th sub-model.

2.2. Sub-Model State Update

It is assumed that the state prior information and noises follow the Gaussian dis-
tribution. Using the KF to calculate the state posterior information, the state posterior
information still follows the Gaussian distribution, and the following five equations can
be obtained.

xi
k+1|k = Fi

kxi,0
k|k (6)

Pi
k+1|k = Fi

kPi,0
k|k(F

i
k)

T
+ Qi

k (7)

xi
k+1|k+1 = xi

k+1|k + Ki
k+1(zk+1 −Hi

k+1xi
k+1|k) (8)

Ki
k+1 = Pi

k+1|k(H
i
k+1)

T
(Hi

k+1Pi
k+1|k(H

i
k+1)

T
+ Ri

k+1)
−1

(9)

Pi
k+1|k+1 = Pi

k+1|k −Ki
k+1Hi

k+1Pi
k+1|k (10)
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where xi
k+1|k and Pi

k+1|k are the predicted state and covariance of the i-th sub-model,

respectively. xi
k+1|k+1 and Pi

k+1|k+1 are the update state and covariance of the i-th sub-

model, respectively. Ki
k+1 is the Kalman gain matrix.

2.3. Model Probability Update

Using the innovation ∆zi
k+1 and covariance Si

k+1 of the i-th sub-model to calculate the
likelihood function Λi

k+1. ∆zi
k+1, Si

k+1 and Λi
k+1 are formulated as

∆zi
k+1 = zk+1 −Hi

k+1xi
k+1|k (11)

Si
k+1 = Hi

k+1Pi
k+1|k(H

i
k+1)

T
+ Ri

k+1 (12)

Λi
k+1 = (2π)−m/2

∣∣∣Si
k+1

∣∣∣−0.5
exp

(
−0.5tr[(Si

k+1)
−1

∆zi
k+1(∆zi

k+1)
T
]
)

(13)

Using Λi
k+1 to update the model weight, the model weight µ

j
k+1|k+1 is formulated as

µ
j
k+1|k+1 =

Λi
k+1

l
∑

j=1
πijµ

j
k|k

l
∑

m=1
(Λm

k+1

l
∑

j=1
πijµ

j
k|k)

(14)

2.4. State Fusion

The weighted fusion method is used to process the state and weight of each sub-model.
The fusion state xk+1|k+1 and covariance Pk+1|k+1 are formulated as

xk+1|k+1 =
l

∑
i=1

µi
k+1|k+1xi

k+1|k+1 (15)

Pk+1|k+1 =
l

∑
i=1

µi
k+1|k+1(P

i
k+1|k+1 + (xk+1|k+1 − xi

k+1|k+1)(xk+1|k+1 − xi
k+1|k+1)

T
) (16)

Due to the IMM filter, it is assumed that the process noise and measurement noise
both follow the Gaussian distribution. Therefore, when the measurement is disturbed
by outliers, the estimation performance of the IMM filter is degraded because of the
mismatch of measurement noise modeling. How to design a robust filter to improve
the state estimation accuracy of multiple-model systems under outlier interference is the
purpose of this article.

3. Main Results
3.1. Weighted Maximum Correntropy Criterion

Due to the fact that the Gaussian kernel function of the IMM-MCC filter [21] ignores
the covariance of uncertain variables, to make full use of statistical information, another
Gaussian kernel function [20] is adopted in this article. Based on this function, the MCC
realizes the calculation of uncertain variables by maximizing the following cost function.

θ̂ = argmax
θ

{
N

∑
i=1

Gσ(e(θ, θi), Σi)

}
(17)

Gσ(e(θ, θi), Σi) = exp(−e(θ, θi)
TΣ−1

i e(θ, θi)/2σ2) (18)
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where e(θ, θi) represents the error vector, σ is the kernel bandwidth, and θi and Σi are the
mean and covariance of the uncertain variable θ. Gσ(e(θ, θi), Σi) is the Gaussian kernel
function. It can be found from Equation (17) that the cost function of the MCC has the
same weight for each Gaussian kernel function. When the system favors a certain set
of statistical information, it is a simple and effective way to weigh each Gaussian kernel
function to construct the cost function. Because of this, the WMCC is proposed to realize
the calculation of θ.

θ̂ = argmax
θ

{
N

∑
i=1

µiGσ(e(θ, θi), Σi)

}
(19)

where µi represents the weight of Gσ(e(θ, θi), Σi), and
N
∑

i=1
µi = 1. In the state fusion step, the

multiple-model system’s degree of dependence on the state statistics information obtained
by each sub-model is different. At this time, the WMCC is more flexible than the MCC.
Because of this, a novel IMM filter is derived under the framework of the WMCC to solve
the multiple-model state estimation problem under outlier interference.

3.2. WMCC-IMM Filter

To improve the robustness of the multiple-model filter under outlier interference, in
the initial plan, we intend to improve all four steps of the IMM filter in the framework
of the WMCC. However, in the process of derivation, we find that there is reliable state
information that can be used as the input of each sub-model in the state interaction step.
Compared with using the WMCC to calculate the input of each sub-model, this way can
effectively improve the computational efficiency. In addition, uncertain variables are not
involved in the model probability update step. Therefore, the proposed WMCC-IMM filter
only uses the WMCC in the sub-model state update and state fusion steps. The derivation
process of the WMCC-IMM filter is as follows.

3.2.1. State Interaction

When the IMM filter is effective, the fusion state is close to the real state. Because of
this, the fusion state can be used as reliable information for each sub-model. Therefore, in
the WMCC-IMM filter, we directly use the fusion state as the input of each sub-model. This
approach effectively improves the computational efficiency of state interaction because it
avoids the calculation of the input of each sub-model. At this time, the input state xi,0

k|k is
formulated as

xi,0
k|k = xk|k (20)

where xk|k is the fusion state and covariance at time k. The input covariance Pi,0
k|k can be

calculated by using Equation (4).

3.2.2. Sub-Model State Update

For each sub-model, based on the state transition equation, the predicted state xi
k+1|k

and covariance Pi
k+1|k can be calculated. Therefore, the following two sets of Gaussian

kernel functions based on the state space system can be obtained.{
G1 = Gσ(xk+1 − xi

k+1|k, Pi
k+1|k)

G2 = Gσ(zk+1 −Hi
k+1xk+1, Ri

k+1)
(21)

where xi
k+1|k and Pi

k+1|k are formulated as xi
k+1|k = Fi

kxi,0
k|k = Fi

kxk|k

Pi
k+1|k = Fi

kPi,0
k|k(F

i
k)

T
+ Qk

(22)
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where xi
k+1|k and zk+1 are the useful information of state. Therefore, the Gaussian kernel

functions from Equation (21) can be used to calculate the state. In Equation (21), xk+1 is
an unknown variable, and it will be calculated by using the WMCC. zk+1 can be obtained
through actual devices, therefore zk+1 is known. According to Equations (18) and (21),
it can be found that G1 represents the likelihood of state and predicted information and
G2 represents the likelihood of state and measurement information. It is assumed that
the dependence of the sub-model on the state transition and measurement equations is
the same. Based on the WMCC, the state update of each sub-model can be realized by
maximizing the following cost function.

xi
k+1|k+1 = argmax

xk+1
{aG1 + (1− a)G2} (23)

where a is the weight parameter. Firstly, the partial derivative of xk+1 in Equation (23)
is considered to obtain the extreme point. The corresponding equation is as follows.
In the sub-model state update step, the WMCC is essentially a maximum likelihood
estimation method:

∂(aG1 + (1− a)G2)/∂xk+1

= aG1(Pi
k+1|k)

−1
(xk+1 − xi

k+1|k)/σ2−(1− a)G2(Hi
k+1)

T
(Ri

k+1)
−1

(zk+1 −Hi
k+1xk+1)/σ2 (24)

Let ∂(aG2 + (1− a)G2)/∂xk+1 = 0, then we have

xk+1 = xi
k+1|k + (aG1(Pi

k+1|k)
−1

+ (1− a)G2(Hi
k+1)

T
(Ri

k+1)
−1

Hi
k+1)

−1

×(1− a)G2(Hi
k+1)

T
(Ri

k+1)
−1

(zk+1 −Hi
k+1xi

k+1|k)
(25)

Using xi
k+1|k to approximate xk+1 to calculate G1 and G2, it can be found that the

number of extreme points is one. Since Equation (23) is continuously differentiable and has
the maximum value, the unique solution in Equation (25) is xi

k+1|k+1, and we have

xi
k+1|k+1 = xi

k+1|k + Ki
k+1(zk+1 −Hi

k+1xi
k+1|k) (26)

Ki
k+1 = ((Pi

k+1|k)
−1

+ (Hi
k+1)

T
(aRi

k+1/(G3(1− a)))
−1

Hi
k+1)

−1
(Hi

k+1)
T
(aRi

k+1/(G3(1− a)))
−1

= Pi
k+1|k(H

i
k+1)

T
((Hi

k+1Pi
k+1|k(H

i
k+1)

T
+ (aRi

k+1/(G3(1− a))))
−1 (27)

G3 = Gσ(zk+1 −Hi
k+1xi

k+1|k, Ri
k+1) (28)

The derivation of Ki
k+1 is shown in Appendix A. According to Equation (26), the state

estimation error x̃i
k+1 is formulated as

x̃i
k+1 = xk+1 − xi

k+1|k+1 = (I −Ki
k+1Hi

k+1)(xk+1 − xi
k+1|k)−Ki

k+1vi
k+1 (29)

According to Equations (26), (27), and (29) and the framework of KF, it can be found
that the measurement noise covariance of a sub-model is modified as aRi

k+1/(G3(1− a)),
and the estimation error covariance Pi

k+1|k+1 is formulated as

Pi
k+1|k+1 = (I−Ki

k+1Hi
k+1)P

i
k+1|k (30)

Remark 1. According to Equations (21)–(30), it can be seen that the WMCC-based filter has the
following features:
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(a) The proposed filter is equivalent to the KF with Gaussian measurement noise co-
variance aRi

k+1/(G3(1− a)). When outlier interference occurs, the measurement
usually deviates from the measurement prediction center Hi

k+1xi
k+1|k. At this time,

the proposed filter will reduce the trust degree of measurement and increase the mea-
surement noise covariance. This is the main reason why the WMCC-based filter has
better robustness than the KF under outlier interference. However, if the prediction
center has bad estimation performance, the G3 will be incorrect, which leads to further
increase in the estimation error of state. Therefore, before using the WMCC-IMM
filter, the target motion characteristics need to be accurately modeled.

(b) The different weight parameter a means that the proposed filter works in different
modes. When a = 0.5, the WMCC-based filter becomes the MCC-based filter. When
a = 1, the WMCC-based filter only implements the state prediction step. When
a = 0, the WMCC-based filter only uses the measurement to realize the sub-model
state update.

(c) In terms of parameter setting, since G3 is still less than 1 when the measurement is not
disturbed by outliers, a value slightly less than 0.5 can be assigned to a to compensate
for the measurement noise covariance.

3.2.3. Model probability update

The model probability update step of the WMCC-IMM filter is similar to that of the
IMM filter; the only difference is that the innovation covariance Si

k+1 is changed as

Si
k+1 = Hi

k+1Pk+1|k(H
i
k+1)

T
+ aRi

k+1/(G3(1− a)) (31)

3.2.4. State Fusion

In the process of state fusion, the Gaussian kernel function can be obtained based on
the state information sub-model as follows.

G4i = Gσ(xk+1 − xi
k+1|k+1, Pi

k+1|k+1) (32)

According to Equation (32), the WMCC realizes the state fusion by maximizing the
following cost function.

xk+1|k+1 = argmax
xk+1

{
M

∑
i=1

µi
k+1|k+1G4i

}
(33)

where G4i = Gσ(xk+1 − xi
k+1|k+1, Pi

k+1|k+1), µi
k+1|k+1 is the updated weight of sub-model i.

The partial derivative of xk+1 in Equation (33) is considered to obtain the extreme point.
The corresponding equation is as follows.

∂
M

∑
i=1

µi
k+1|k+1G4i/∂xk+1 = (

M

∑
i=1

µi
k+1|k+1G4i(Pi

k+1|k+1)
−1

(xk+1 − xi
k+1|k+1))/σ2 (34)

Using
M
∑

i=1
µi

k+1|k+1xi
k+1|k+1 to approximate xk+1 to calculate G4i, based on the similar

principle from the sub-model state update step, xk+1|k+1 is formulated as

xk+1|k+1 = (
M

∑
i=1

(G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
))

−1 M

∑
i=1

(G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
xi

k+1|k+1) (35)

G5i = Gσ(
M

∑
i=1

µi
k+1|k+1xi

k+1|k+1 − xi
k+1|k+1, Pi

k+1|k+1) (36)
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According to Equation (35), the fusion state estimation error x̃k+1 is formulated as

x̃k+1 = xk+1 − xk+1|k+1 = (
M

∑
i=1

(G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
))

−1 M

∑
i=1

(G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
(xk+1 − xi

k+1|k+1)) (37)

Using Equation (37), we can obtain that

M

∑
i=1

(G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
)x̃k+1 =

M

∑
i=1

(G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
(xk+1 − xi

k+1|k+1)) (38)

According to Equation (38), the fusion state estimation error covariance Pk+1|k+1
satisfies the following equation.

(
M
∑

i=1
(G5iµ

i
k+1|k+1(P

i
k+1|k+1)

−1
))Pk+1|k+1(

M
∑

i=1
(G5iµ

i
k+1|k+1(P

i
k+1|k+1)

−1
))

T

=
M
∑

i=1
(G5iµ

i
k+1|k+1(P

i
k+1|k+1)

−1
(xk+1 − xi

k+1|k+1)(
M
∑

i=1
(G5iµ

i
k+1|k+1(P

i
k+1|k+1)

−1
(xk+1 − xi

k+1|k+1)))
T)

(39)

The state statistical information
{

xi
k+1|k+1, Pi

k+1|k+1

}
from the i-th sub-model is used

to calculate the i-th component of the right formula in Equation (39). At this time, we have

(
M
∑

i=1
(G5iµ

i
k+1|k+1(P

i
k+1|k+1)

−1
))Pk+1|k+1(

M
∑

i=1
(G5iµ

i
k+1|k+1(P

i
k+1|k+1)

−1
))

T

= (
M
∑

i=1
G5iµ

i
k+1|k+1)(

M
∑

i=1
(G5iµ

i
k+1|k+1(P

i
k+1|k+1)

−1
))T

(40)

According to Equation (40), Pk+1|k+1 is formulated as

Pk+1|k+1 = (
M

∑
i=1

G5iµ
i
k+1|k+1)(

M

∑
i=1

(G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
))

−1

(41)

Remark 2. It is worth noting that the fusion state statistics information
{

xIMM
k+1|k+1, PIMM

k+1|k+1

}
obtained by the IMM filter can also be used to calculate Pk+1|k+1. However, due to the existence

of a large amount of cross-covariance information in PIMM
k+1|k+1, the corresponding computational

complexity is large, while using the statistical information of sub-models to calculate Pk+1|k+1 can
ignore the cross-covariance information and effectively improves the computational efficiency. At
the same time, it can be found that due to the fact that the WMCC does not have the same constraint
for the weights of each Gaussian kernel function, it can also be applied to the state fusion step, while
the MCC cannot be used in this step

It is assumed that the total time is L. For clarity, the pseudo-code of the WMCC-IMM
filter is summarized in Algorithm 1.

3.3. Principle Analysis

In this section, the difference of state fusion between the WMCC-IMM filter and IMM-
MCC filter is briefly discussed. The solution forms of the WMCC and MCC for state can be
further summarized.
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Algorithm 1: The pseudo-code of the WMCC-IMM filter

for k = 0:L − 1
Input: xk|k, Pk|k, Fi

k, Qi
k, Hi

k+1, zk+1, Ri
k+1, a

Using Equations (4) and (5) to calculate Pi,0
k|k

Using Equation (22) to calculate xi
k+1|k and Pi

k+1|k
Using Equations (26)–(28) and (30) to calculate xi

k+1|k+1 and Pi
k+1|k+1

Using Equations (11), (13), (14) and (31) to calculate µi
k+1|k+1

Using Equations (35), (36), and (41) to calculate xk+1|k+1 and Pk+1|k+1
Output: xk+1|k+1, Pk+1|k+1
end

Theorem 1. According to Equation (35), the WMCC can be regarded as obtaining the fusion state
by minimizing the following cost function.

xk+1|k+1 = argmin
xk+1

{
M

∑
i=1

G5iµ
i
k+1|k+1(xk+1 − xi

k+1|k+1)(P
i
k+1|k+1)

−1
(xk+1 − xi

k+1|k+1)
T
}

(42)

Proof . Calculate the partial derivative of xk+1 from Equation (42) to obtain the following
equation. �

∂
l

∑
i=1

G5iµ
i
k+1|k+1(xk+1 − xi

k+1|k+1)(P
i
k+1|k+1)

−1
(xk+1 − xi

k+1|k+1)
T

∂xk+1
=

l

∑
i=1

2G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
(xk+1 − xi

k+1|k+1) (43)

Based on Equation (43) to calculate the extreme point, the following equation can
be obtained.

l
∑

i=1
2G5iµ

i
k+1|k+1(P

i
k+1|k+1)

−1
(xk+1 − xi

k+1|k+1) = 0n

⇒ xk+1 = (
l

∑
i=1

G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
)
−1 l

∑
i=1

(G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
xi

k+1|k+1)

(44)

Since the loss function in (42) is continuously differentiable and has a minimum value,
the only extreme point obtained in Equation (44) is xk+1|k+1.

xk+1|k+1 = (
l

∑
i=1

G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
)

−1 l

∑
i=1

(G5iµ
i
k+1|k+1(P

i
k+1|k+1)

−1
xi

k+1|k+1) (45)

According to Equations (35) and (45), Theorem 1 is proven. It can be found from
Equation (42) that the WMCC in the state fusion is equivalent to an adaptive weighted least
square method.

Theorem 2. The IMM-MCC filter can be considered to obtain the fusion state by minimizing the
following cost function

xk+1|k+1 = argmin
xk+1

{
M

∑
i=1

µi
k+1|k+1(xk+1 − xi

k+1|k+1)(xk+1 − xi
k+1|k+1)

T
}

(46)
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Proof . Calculate the partial derivative of xk+1 from Equation (46) to obtain the following
equation. �

∂
l

∑
i=1

µi
k+1|k+1(xk+1 − xi

k+1|k+1)(xk+1 − xi
k+1|k+1)

T

∂xk+1
=

l

∑
i=1

2µi
k+1|k+1(xk+1 − xi

k+1|k+1) (47)

Based on Equation (47) to calculate the extreme point, the following equation can
be obtained.

l

∑
i=1

2µi
k+1|k+1(xk+1 − xi

k+1|k+1) = 0n ⇒ xk+1 =

l
∑

i=1
µi

k+1|k+1xi
k+1|k+1

l
∑

i=1
µi

k+1|k+1

=
l

∑
i=1

µi
k+1|k+1xi

k+1|k+1 (48)

Since the loss function in (46) is continuously differentiable and has a minimum value,
the only extreme point obtained in Equation (48) is xk+1|k+1.

xk+1|k+1 =
l

∑
i=1

µi
k+1|k+1xi

k+1|k+1 (49)

According to the state fusion of the IMM and Equation (49), Theorem 2 is proven. It
can be found that the IMM-MCC filter adopts the weighted average method to realize the
state fusion.

Remark 3. According to Equations (18), (36), and (45), when the kernel bandwidth σ from
G5i tends to infinity and P1

k+1|k+1 = P2
k+1|k+1 = · · · = PM

k+1|k+1, the WMCC in state fusion
becomes the weighted average method. In summary, the state fusion strategy adopted by the
IMM-MCC filter is a special form of state fusion strategy adopted by the WMCC-IMM filter,
which means that the data fusion strategy of the WMCC-IMM filter is a better choice than that
of the IMM-MCC filter.

3.4. WMCC-IMM Filter Applied to Radar Maneuvering Target Tracking

In radar maneuvering target tracking, the state transition equation of a multiple-model
system at time k + 1 is the same as Equation (1), and the state of target consists of position,
velocity, and acceleration in the North-East-Down coordinate system, where the initial
position of the radar is its origin. Therefore, the specific form of the target state from the
radar system is as follows.

xk+1 = [xt
k+1,

.
xt

k+1,
..
xt

k+1, yt
k+1,

.
yt

k+1,
..
yt

k+1, zt
k+1,

.
zt

k+1,
..
zt

k+1]
T

(50)

where (xt
k+1, yt

k+1, zt
k+1), (

.
xt

k+1,
.
yt

k+1,
.
zt

k+1), and (
..
xt

k+1,
..
yt

k+1,
..
zt

k+1) are the position, velocity,
and acceleration of the target in the North-East-Down coordinate system, respectively.

Based on the detection principle of radar, the geometric relationship of the target and
radar is shown in Figure 1. The measurement of the radar consists of radial distance, radial
velocity, azimuth, and elevation. The measurement equation is formulated as
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zk+1 =


r
α
β
v

+ vk+1 = h(xk+1, xr
k+1) + vk+1

=



√
(xt

k+1 − xr
k+1)

2
+ (yt

k+1 − yr
k+1)

2
+ (zt

k+1 − zr
k+1)

2

arctan(
yt

k+1−yr
k+1

xt
k+1−xr

k+1
)

−arcsin(
zt

k+1−zr
k+1√

(xt
k+1−xr

k+1)
2
+(yt

k+1−yr
k+1)

2
+(zt

k+1−zr
k+1)

2
)

((xt
k+1−xr

k+1)(
.
xt

k+1−
.
xr

k+1)+(yt
k+1−yr

k+1)(
.
yt

k+1−
.
yr

k+1)+(zt
k+1−zr

k+1)(
.
zt

k+1−
.
zr

k+1))√
(xt

k+1−xr
k+1)

2
+(yt

k+1−yr
k+1)

2
+(zt

k+1−zr
k+1)

2


+ vk+1

(51)

xr
k+1 = [xr

k+1,
.
xr

k+1,
..
xr

k+1, yr
k+1,

.
yr

k+1,
..
yr

k+1, zr
k+1,

.
zr

k+1,
..
zr

k+1]
T

(52)

where xr
k+1 is the state of the radar at time k+1. (xr

k+1, yr
k+1, zr

k+1) and (
.
xr

k+1,
.
yr

k+1,
.
zr

k+1)
are the position and velocity of the radar in the North-East-Down coordinate system,
respectively. vk+1 is the measurement noise of the radar, and Rk+1 ∈ R4×4 is defined as its
nominal covariance matrix. The state of the radar can be obtained through the navigation
information. Based on this measurement equation, the Gaussian kernel function G2 from
the sub-model state update step is changed as

G2 = Gσ(zk+1 − h(xk+1), Rk+1) (53)
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According to Equation (53), Equation (24) is changed as

∂(aG1 + (1− a)G2)/∂xk+1

= aG1(Pi
k+1|k)

−1
(xk+1 − xi

k+1|k)/σ2−(1− a)G2(
∂h(xk+1)

∂xk+1
)

T
(Rk+1)

−1(zk+1 − h(xk+1))/σ2 (54)
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Let ∂(aG1 + (1− a)G2)/∂xk+1 = 0, then we have

aG1(Pi
k+1|k)

−1
xk+1 = aG1(Pi

k+1|k)
−1

xi
k+1|k + (1− a)G2(

∂h(xk+1)

∂xk+1
)

T

(Rk+1)
−1(zk+1 − h(xk+1)) (55)

Based on the Taylor’s first-order expansion formula, h(xk+1) can be approximated as

h(xk+1) ≈ h(xi
k+1|k) + Hi

k+1|k(xk+1 − xi
k+1|k) (56)

Hi
k+1|k =

∂h(xk+1)

∂xk+1

∣∣∣∣∣
xk+1=xi

k+1|k

(57)

According to Equations (55)–(57), xk+1 is formulated as

(aG1(Pi
k+1|k)

−1
+ (1− a)G2(Hi

k+1|k)
T
(Rk+1)

−1Hi
k+1|k)(xk+1 − xi

k+1|k)

= (1− a)G2(Hi
k+1|k)

T
(Rk+1)

−1(zk+1 − h(xi
k+1|k))

⇒ xk+1 = xi
k+1|k + (aG1(Pi

k+1|k)
−1

+ (1− a)G2(Hi
k+1|k)

T
(Rk+1)

−1Hi
k+1|k)

−1

×(1− a)G2(Hi
k+1|k)

T
(Rk+1)

−1(zk+1 − h(xi
k+1|k))

(58)

According to Equations (25) and (58), it can be found that the update state of i-th
sub-model from a radar system can be obtained by using Hi

k+1|k and h(xi
k+1|k) to replace

Hi
k+1 and xi

k+1|k in Equations (26) and (27). Based on this, xi
k+1|k+1 is formulated as

xi
k+1|k+1 = xi

k+1|k + Ki
k+1|k(zk+1 − h(xi

k+1|k)) (59)

Ki
k+1|k = Pi

k+1|k(H
i
k+1|k)

T
((Hi

k+1|kPi
k+1|k(H

i
k+1|k)

T
+ (aRi

k+1/(G3(1− a))))
−1

(60)

G3 = Gσ(zk+1 − h(xi
k+1|k), Rk+1) (61)

According to Equation (59), x̃i
k+1 is formulated as

x̃i
k+1 = xk+1 − xi

k+1|k+1 = (xk+1 − xi
k+1|k)−Ki

k+1|k(h(xk+1)− h(xi
k+1|k))−Ki

k+1|kvi
k+1

≈ (xk+1 − xi
k+1|k)−Ki

k+1|kHi
k+1|k(xk+1 − xi

k+1|k)−Ki
k+1|kvi

k+1

= (I−Ki
k+1Hi

k+1|k)(xk+1 − xi
k+1|k)−Ki

k+1|kvi
k+1

(62)

Similarly, the measurement noise covariance of a sub-model is modified as
aRk+1/(G3(1− a)), and the estimation error covariance Pi

k+1|k+1 is formulated as

Pi
k+1|k+1 = (I−Ki

k+1Hi
k+1|k)P

i
k+1|k (63)

In the model probability update step, the innovation error ∆zi
k+1 and covariance Si

k+1
is formulated as

∆zi
k+1 = zk+1 −Hi

k+1|kxi
k+1|k (64)

Si
k+1 = Hi

k+1|kPk+1|k(H
i
k+1|k)

T
+ aRk+1/(G3(1− a)) (65)
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Finally, the fusion state xk+1|k+1 and covariance Pk+1|k+1 can be calculated by using
Equations (35), (36), and (41). In summary, the pseudo-code of the WMCC-IMM filter in a
radar system is summarized in Algorithm 2.

Algorithm 2: The pseudo-code of the WMCC-IMM filter in a radar system

for k = 0:L − 1
Input: xk|k, Pk|k, Fi

k, Qi
k, zk+1, Ri

k+1, a

Using Equations (4) and (5) to calculate Pi,0
k|k

Using Equation (22) to calculate xi
k+1|k and Pi

k+1|k
Using Equation (57) to calculate Hi

k+1|k
Using Equations (60) and (61) to calculate Ki

k+1|k
Using Equations (59) and (63) xi

k+1|k+1 and Pi
k+1|k+1

Using Equations (64), (65), (13), and (14) (13), (14), (64) and (65) to calculate µi
k+1|k+1

Using Equations (35), (36), and (41) to calculate xk+1|k+1 andPk+1|k+1
Output: xk+1|k+1, Pk+1|k+1
end

4. Experimental Results
4.1. Case 1. Maneuvering Target Tracking Simulation Experiment

In this section, a maneuvering target tracking example [27] is used to verify the
effectiveness of the proposed filter. The target moves in a two-dimensional plane, and
the target state consists of position and velocity. The number of sub-models is 2. The
state transition equation of each sub-model is a constant turn (CT) model [27], and the
measurement consists of the position information. The turning rate w1 and w2 are set
as −π/40rad/s and π/40rad/s, respectively. The initial true state x0 and covariance
Pi

0|0(i = 1, 2) are set as [100 m, 5 m/s, 100 m, 5 m/s] and diag([100 m2, 25 m2/s2, 100 m2,

25 m2/s2]), respectively. The actual motion of the target follows the CT model. For 1–50 s,
the turning rate is w1. For 51–100 s, the turning rate is w2. The initial state xi

0|0(i = 1, 2) of

each sub-model is chosen from N (xi
0|0; x0, Pi

0|0). The total time L is 100 s, and the number

of Monte Carlo runs is 100. The Markov transition matrix π is set as
[

0.95 0.05
0.05 0.95

]
. The

initial weight of each sub-model is 0.5. The process noise follows the Gaussian distribution,
while the measurement noise follows the Gaussian mixture distribution [12]. At this time,
wi

k+1 and vi
k+1 (i = 1, 2) are formulated as

wi
k ∼ N (wi

k; 0, Qi
k) (66)

vi
k+1 ∼ 0.9N (vi

k+1; 0, Ri
k+1) + 0.1N (vi

k+1; 0, 100Ri
k+1) (67)

The process noise covariance matrix Qi
k (i = 1, 2) and measurement noise covariance

matrix Ri
k+1 (i = 1, 2) are set as

Qi
k = q


1/3 1/2 0 0
1/2 1 0 0

0 0 1/3 1/2
0 0 1/2 1

 (68)

Ri
k+1 =

[
100m2 0

0 100m2

]
(69)

where q = 1 m2/s3. The root mean square error (RMSE) and the time-averaged RMSE
(TRMSE) are used as performance evaluating criteria. The IMM [9], IMM-VB [12], and IMM-
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MCC [21] filters are used to compare with the WMCC-IMM filter. For a fair comparison,
the kernel function from the IMM-MCC filter is the same as that from the WMCC-IMM
filter, and the kernel bandwidths from the IMM-MCC and WMCC-IMM filters are set as 5.
The degree of freedom parameter and iteration times from the IMM-VB filter [12] are set as
1 and 3, respectively.

Figures 2 and 3 and Table 1 show the computational time in the one-step state update
process and the RMSEs and TRMSEs of position and velocity from the IMM, IMM-VB, IMM-
MCC, and WMCC-IMM filters. It can be found that the computational time of the WMCC-
IMM filter is close to that of the IMM and IMM-MCC filters, and the IMM-VB filter has the
highest computational complexity among these four filters. The estimation performance of
the IMM filter is the worst, and the IMM-VB filter has the best state estimation performance.
When a is set to a value slightly smaller than 0.5, the WMCC-IMM filter has better state
estimation performance. When a = 0.5, the WMCC-IMM filter becomes the MCC-IMM
filter, which means that simplifying the state interaction and using the MCC to realize the
state fusion is an effective way to improve the state estimation performance. In addition,
under the condition of this parameter setting, the IMM-VB filter improves the estimation
accuracy of position and velocity by 5.6% and 6%, respectively, compared with the WMCC-
IMM filter, but its computational time is increased by 19.2%. Therefore, it can be considered
that when the hardware has limited computational performance, the WMCC-IMM filter is
a better choice for state estimation of the multiple-model system under outlier interference.

Table 1. The computational time in the one-step state update process and the TRMSEs from
different filters.

Filters Pos/m Vel/(m/s) Time/ms

IMM 18.19 5.26 0.308
IMM-VB 10.28 3.74 0.392

IMM-MCC 16.46 4.71 0.318
WMCC-IMM (a = 0.6) 11.88 4.27 0.329
WMCC-IMM (a = 0.5) 10.89 3.98 0.329
WMCC-IMM (a = 0.4) 10.28 3.78 0.329
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To test the effect of kernel bandwidth for the IMM-MCC and WMCC-IMM filters,
Table 2 shows the TRMSEs of position and velocity from these two filters under different
kernel bandwidths. It can be found that when the kernel bandwidth is too small, the
IMM-MCC filter will be singular, resulting in its failure to work, while the WMCC-IMM
filter can be used normally. With the increase of kernel bandwidth, the WMCC-IMM filter
still has better state estimation performance than the IMM-MCC filter [26].

Table 2. The TRMSEs from the IMM-MCC and WMCC-IMM filters under different kernel bandwidths.

Kernel Bandwidth
IMM-MCC WMCC-IMM (a = 0.5)

Pos/m Vel/(m/s) Pos/m Vel/(m/s)

σ = 1 NaN NaN 13.22 4.46
σ = 3 18.06 5.08 9.67 3.77
σ = 5 16.46 4.71 10.89 3.98
σ = 7 17.28 4.88 11.58 4.08

4.2. Case 2. Maneuvering Target Tracking Actual Test Experiment

In case 2, a set of maneuvering target tracking actual test data is used to test the state
estimation performance of different filters. The relative situation of radar and target is
shown in Figure 4.

The motion model set consists of the CV model, the constant acceleration (CA) model,
and the current statistics (CS) model [28]. The Markov transition matrix π is set as0.8 0.1 0.1

0.1 0.8 0.1
0.1 0.1 0.8

. Since the true state of the target cannot be obtained in the actual target

tracking process, the initial state of each sub-model is set by using the initial measurement,
and it can be calculated as
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The initial covariance Pi
0|0(i = 1, 2, 3) of each sub-model is set as

Pi
0|0 = diag

([
640000m2, 800m2/s2, 0, 640000m2, 800m2/s2, 0, 640000m2, 800m2/s2, 0

])
(71)

The initial weight of each sub-model is 0.33. The process noise covariance matrix
Qk,CV, Qk,CA, Qk,CS and measurement noise covariance matrix Rk+1 are set as

Qk,CV =



0.25T4 0.5T3 0 0 0 0 0 0 0
0.5T3 T2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0.25T4 0.5T3 0 0 0 0
0 0 0 0.5T3 T2 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.25T4 0.5T3 0
0 0 0 0 0 0 0.5T3 T2 0
0 0 0 0 0 0 0 0 0


(72)
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Qk,CA =



0.05T5 0.125T4 0.167T3 0 0 0 0 0 0
0.125T4 0.33T3 0.5T2 0 0 0 0 0 0
0.167T3 0.5T2 T 0 0 0 0 0 0

0 0 0 0.05T5 0.125T4 0.167T3 0 0 0
0 0 0 0.125T4 0.33T3 0.5T2 0 0 0
0 0 0 0.167T3 0.5T2 T 0 0 0
0 0 0 0 0 0 0.05T5 0.125T4 0.167T3

0 0 0 0 0 0 0.125T4 0.33T3 0.5T2

0 0 0 0 0 0 0.167T3 0.5T2 T


(73)

Qk,CS =



q11 q12 q13 0 0 0 0 0 0
q12 q22 q23 0 0 0 0 0 0
q13 q23 q33 0 0 0 0 0 0
0 0 0 q11 q12 q13 0 0 0
0 0 0 q12 q22 q23 0 0 0
0 0 0 q13 q23 q33 0 0 0
0 0 0 0 0 0 q11 q12 q13
0 0 0 0 0 0 q12 q22 q23
0 0 0 0 0 0 q13 q23 q33


(74)

Rk+1 =


6400m2 0 0 0

0 6.85× 10−6(rad2) 0 0
0 0 6.85× 10−6(rad2) 0
0 0 0 4m2/s2

 (75)

where 

q11 =
1−4bTe−bT−e−2bT2

+2bT−2b2T2+ 2b3T3
3

2b5

q12 = 1+(2bT−2)e−bT+e−2bT2−2bT+b2T2

2b4

q13 = 1−2e−bT+e−2bT2

2b3

q22 = −3+2bT+4e−bT−e−2bT2

2b3

q23 = 1−2e−bT+e−2bT2

2b2

q23 = 1+e−2bT2

2b

b = 0.1

(76)

Based on the measurement noise covariance, the probability distribution of Gaussian
measurement noise and actual noise is shown in Figure 5. It can be seen that the actual
noise does not follow the Gaussian distribution. The measurements of radial distance and
radial velocity have more outliers.

During the process of actual maneuvering target tracking to assist the subsequent
guidance mission, the estimation performance of each dimension from state is given more
attention rather than the overall estimation performance of state, and the combat platform
has stringent requirements for the estimation accuracy of position and velocity. Because of
this, the estimation accuracy of different filters in position and velocity is compared. The
RMSEs of position and velocity in the North-East-Down coordinate system from different
filters are shown in Figures 6–11, and the corresponding TRMSEs are shown in Table 3.
It can be seen that when a = 0.4, the WMCC-IMM filter exhibits the best estimation
performance in terms of north position, north velocity, east position and down velocity. On
the other hand, the IMM-VB filter demonstrates the best estimation performance in terms
of down position and east velocity. Based on the RMSEs of position and velocity in the
North-East-Down coordinate system from different filters, when a = 0.4, the computed
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results of the RMSEs of position and velocity from the WMCC-IMM filter are 343.85 m and
21.11 m/s, respectively. The computed results of the RMSEs of position and velocity from
the IMM-VB filter are 385.06 m and 30.68 m/s, respectively. Therefore, the WMCC-IMM
filter has better estimation performance than the IMM-VB filter.
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Table 3. The TRMSEs from different filters in case 2.

Filters PosN/m PosE/m PosD/(m) VelN/(m/s) VelE/(m/s) VelD/(m/s)

IMM 311.34 82.32 152.22 26.65 1.42 5.53
IMM-VB 355.36 82.86 123.18 30.33 1.4 4.55

IMM-MCC 314.62 81.11 174.55 27.02 1.46 4.69
WMCC-IMM

(a = 0.6) 401.77 83.47 143.54 41.14 0.93 6.42

WMCC-IMM
(a = 0.5) 329.91 82.14 169.97 28.12 1.43 4.81

WMCC-IMM
(a = 0.4) 273.84 80.53 191.82 20.84 1.74 3.19

In addition to position and velocity, the entry angle [29] is another crucial parameter
of interest for the combat platform because the entry angle can be used to discern the threat
level of the target. The estimation error of entry angle ∆eak is formulated as

∆eak = arctan(
.
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where
.
x

t
k and

.
y

t
k are the true north velocity and east velocity of the target at time k, re-

spectively.
.
x

r
k and

.
y

r
k are the true north velocity and east velocity of the radar at time k,

respectively. αk is the true azimuth at time k. It can be seen that estimation error of entry
angle is influenced by the estimation errors of azimuth, target’s north velocity, and target’s
east velocity. Using ∆eak, the RMSE of entry angle can be obtained.

To further compare the estimation performance of different filters, the estimation
accuracy of entry angle from different filters is tested. Figure 12 shows the RMSEs of entry
angle from different filters, and Table 4 shows the TRMSEs of entry angle from different
filters. Since the estimation error of east velocity from different filters is small and the
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estimation error of north velocity from different filters is large, the filter that has the best
estimation performance of north velocity tends to exhibit superior performance in entry
angle estimation. Therefore, the WMCC-IMM filter, wherein a is set as 0.4, has better
estimation performance of entry angle than other filters. In conclusion, when a = 0.4, the
WMCC-IMM filter has better state estimation performance than the IMM, IMM-VB, and
IMM-MCC filters under non-Gaussian measurement noise.
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Table 4. The TRMSEs from different filters in case 2.

Filters Entry Angle/◦

IMM 4.37
IMM-VB 5.06

IMM-MCC 4.45
WMCC-IMM (a = 0.6) 6.97
WMCC-IMM (a = 0.5) 4.65
WMCC-IMM (a = 0.4) 3.41

5. Conclusions

In this article, a novel WMCC-based IMM filter is proposed to solve the state estimation
problem in maneuvering target tracking under outlier interference. Different from the
IMM-VB and IMM-MCC filters, the WMCC-IMM filter uses the previous fusion state to
simplify the state interaction step and adopts the WMCC to realize the state estimation and
fusion steps. The specific steps of the WMCC-IMM filter in a radar system are also outlined.
The experimental test results show that the WMCC-IMM filter has better state estimation
performance than the IMM, IMM-VB, and IMM-MCC filters under outlier interference.
The accuracy of the target motion model greatly affects the estimation performance of the
proposed filter. Therefore, in future work, we need to further study the modeling of the
target motion characteristics to improve the estimation performance of the proposed filter
for high-maneuvering targets, such as a hypersonic vehicle.
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Appendix A. The Derivation of Ki
k+1

In the derivation process of Ki
k+1, the matrix inversion formula needs to be used. The

matrix inversion formula is formulated as

(A + UCV)−1 = A−1U(C−1 + VA−1U)
−1

VA−1 (A1)

Using Equation (A1), Ki
k+1 is formulated as
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