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Abstract: Recent studies have shown that deep-learning-based models for processing Unmanned
Aerial Vehicle (UAV) remote sensing images are vulnerable to artificially designed adversarial
examples, which can lead to incorrect predictions of deep models when facing adversarial examples.
Previous adversarial attack methods have mainly focused on the classification and detection of UAV
remote sensing images, and there is still a lack of research on adversarial attacks for object tracking
in UAV video. To address this challenge, we propose an attention-enhanced one-shot adversarial
attack method for UAV remote sensing object tracking, which perturbs only the template frame
and generates adversarial samples offline. First, we employ an attention feature loss to make the
original frame’s features dissimilar to those of the adversarial frame, and an attention confidence
loss to either suppress or enhance different confidence scores. Additionally, by forcing the tracker to
concentrate on the background information near the target, a background distraction loss is used
to mismatch templates with subsequent frames. Finally, we add total variation loss to generate
adversarial examples that appear natural to humans. We validate the effectiveness of our method
against popular trackers such as SiamRPN, DaSiamRPN, and SiamRPN++ on the UAV123 remote
sensing dataset. Experimental results verify the superior attack performance of our proposed method.

Keywords: adversarial attack; one-shot attack; object tracking; UAV remote sensing

1. Introduction

Unmanned Aerial Vehicle (UAV) remote sensing [1] is widely employed in various
fields, such as marine environmental monitoring, land use survey, and water resource
development, due to its real-time image transmission, high resolution, and flexible ma-
neuvering. Deep learning has played a pivotal role in enhancing the performance of UAV
remote sensing image and video applications [2], encompassing tasks such as image clas-
sification [3], object detection [4], semantic segmentation [5], and single object tracking
(SOT) [6]. SOT is an important research direction in the field of UAV remote sensing [7],
and earlier approaches predominantly relied on traditional machine learning methods,
such as correlation filters, to achieve accurate and stable results. A significant advancement
in SOT was the introduction of the fully convolutional tracking model based on the Siamese
Network, proposed by Bertinetto et al. [8]. This structural modification yielded substantial
improvements in tracking performance. Subsequently, several Siamese-network-based
trackers, including SiamRPN [9], DaSiamRPN [10], and SiamRPN++ [11], have emerged
and have been extensively adopted for UAV remote sensing video object tracking, demon-
strating exceptional tracking efficacy and efficiency. Moreover, recent advancements have
witnessed the adoption of transformer-based architectures [12] as the backbone for object
trackers [13], resulting in impressive performance gains in this domain.

However, the improved performance of UAV remote sensing image processing also
entails security risks following the revelation by Goodfellow et al. [14] of the susceptibility
of neural networks to adversarial samples. Since then, researchers have discovered that
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convolutional neural networks are highly vulnerable to adversarial samples across various
tasks, leading to potential security threats to deep models. Adversarial examples are
created by introducing imperceptible perturbations to the original data. These perturbed
examples closely resemble the original data, yet they can cause unexpected and erroneous
outcomes. The existence of adversarial samples underscores the need for robustness and
security measures in UAV remote sensing image processing systems.

Since then, an increasing number of researchers have focused their attention on deep
learning security and have proposed adversarial attack methods for various tasks. The most
renowned among these are the fast gradient sign method (FGSM) [14], the project gradient
descent (PGD) [15], and the Carlini and Wagner (C&W) attack method [16]. Building upon
these classic approaches, subsequent researchers have introduced targeted adversarial
attack methods in diverse domains, including detection models [17–19] and segmentation
models [20–22]. More recently, there have been proposed adversarial attack methods
specifically designed for SOT tasks [23–27]. While there are some adversarial attack
methods for object tracking, the research on adversarial attacks in the context of UAV
remote sensing [28] has primarily focused on classification and object detection tasks,
with limited exploration of UAV remote sensing SOT. Attacking UAV remote sensing
SOT is a challenging task due to several factors. Firstly, in continuous video, unlike
classification and detection, the target is tracked by calculating the cross-correlation of
features, meaning that no pre-labeled video tracking is available. Given that the video
consists of a continuous sequence of image frames, the process of generating perturbations
on a frame-by-frame basis necessitates extensive computational resources. Consequently,
the attack method’s effectiveness is limited as it cannot execute real-time attacks due to
the substantial computational burden involved. Furthermore, the different heights of UAV
remote sensing video data acquisition lead to different sizes of targets in the image. Smaller
targets also present considerable challenges to attacking UAV remote sensing video.

To address the challenge of the adversarial attack in remote sensing object tracking
we mentioned above, we propose a novel one-shot adversarial attack method for remote
sensing object tracking, called attention-enhanced one-shot attack. Our proposed attack
method is optimized to generate a unique perturbation that can successfully attack the
tracker by only attacking the tracker’s template frame. The generated perturbation is
unique for each object tracking video. Only attacking the template frame can improve
the computational efficiency compared to generating the adversarial samples frame by
frame. Therefore, our proposed method is more practical in real-time attacks. In summary,
the main contributions of this paper are as follows:

• We propose a novel one-shot adversarial attack method to explore the robustness of
remote sensing object tracking models. Our attention-enhanced one-shot attack only
attacks the template frame of each video. It generates a unique perturbation for each
video which saves a batch of time and is more practical in real-time attacks.

• The effectiveness of our proposed attack method is verified on UAV remote sensing
video. Our method optimizes perturbation via attention feature loss to force the gener-
ated adversarial samples dissimilar to the raw image and attention confidence loss to
suppress or stimulate the different confidence scores, using these two loss functions to
optimize an imperceptible perturbation to fool the tracker into getting wrong results.

• In addition, considering the high-altitude shooting of UAV remote sensing video leads to
the characteristics of different sizes of targets, we also propose a background interference
loss, which forces the tracker to consider the background information around the target,
resulting in the tracker being interfered by redundant background features and unable
to track the correct target. We also use TV loss to make the generated adversarial image
more natural for the human eye.

We conduct experiments on UAV remote sensing benchmark datasets, e.g., UAV123 [28]
on popular trackers. We mainly target representative trackers based on Siamese networks,
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such as SiamRPN [9], DaSiamRPN [10] and SiamRPN++ [11]. The experimental results
illustrate our proposed method has a superior attack ability against the popular trackers.

The rest of the paper is organized as follows: Section 2 introduces recent adver-
sarial attack methods for SOT and adversarial attacks for UAV remote sensing images.
Section 3 explains the motivation and describes the details of our proposed attention-
enhanced one-shot attack. Section 4 provides and analyzes the experimental results of our
proposed attention-enhanced one-shot attack against popular trackers. Section 5 summa-
rizes the conclusions.

2. Related Work

This section provides an overview of the SOT tracker. Then, we outline classical
adversarial attacks for various visual tasks. Finally, we briefly analyze the adversarial
attack methods specific to UAV remote sensing images.

2.1. Visual Object Tracking

Since Bertinetto et al. [8] introduced the fully convolutional network into the object
tracking task, the performance of deep-learning-based trackers has been greatly improved.
The introduction of the fully convolutional network by Bertinetto et al. [8] has led to remark-
able advancements in deep-learning-based object tracking. This development has inspired
researchers to propose diverse trackers based on deep learning, with the Siamese-network-
based trackers emerging as prominent representatives. Inspired by this, researchers have
proposed a variety of trackers based on deep learning. Among them, the most representa-
tive one is the tracker based on the Siamese network. However, it has the shortcomings
of insufficient utilization of background information and limited use of specific field in-
formation. To address this issue, Li et al. [9] proposed SiamRPN, which combines the
RPN and Siamese network to improve the problem of insufficient background information
utilization. Furthermore, DaSiamRPN [10] addresses the limitation of distractors in the
online tracking process by learning distractor-aware features during the offline training
phase and suppressing distractors during inference. This approach improves tracking
performance and enables long-term tracking. Additionally, SiamRPN++ [11] introduces
a deep association layer and replaces the backbone network with a more robust feature
extractor, ResNet50 [29], which significantly improves tracking performance by breaking
the deep space limitation of deep networks. Recently, there have been notable explorations
in applying transformer-based architectures [13] to Visual Object Tracking (VOT) [12],
which have demonstrated exceptional performance. Despite the significant advancements
achieved through deep learning techniques, it is crucial to acknowledge the susceptibility
of these methods to adversarial samples, which presents a substantial security risk.

2.2. Adversarial Attacks

Despite the outstanding performance achieved by deep-learning¬-based trackers, they
still show vulnerability to adversarial attacks. Early adversarial attack methods can be
classified into gradient-based and optimization-based. Classic examples of gradient-based
methods include Fast Gradient Sign Method (FGSM) [14] and Project Gradient Descent
(PGD) [15]. These methods calculate the model’s derivative with respect to the input,
use the sign function to obtain the gradient direction, and apply single-step or multi-
step update perturbation. Although gradient-based methods are fast and efficient, they
may struggle when the update step is complex, such as when using momentum. The
Carlini and Wagner (C&W) attack [16] is an optimization-based approach that uses clipped
gradient descent to smooth the optimization process, accelerate convergence, and avoid
getting stuck in extreme regions. Researchers have extended adversarial attacks to various
fields. Xie et al. [21] proposed the DAG attack, which can fool both object detection and
segmentation tasks. Li et al. [30] proposed a method for generating universal perturbations
and analyzing their effects on different object detection models. Wang et al. [31] extended
adversarial attacks to the physical world by solving an optimization problem that minimizes
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the target object’s probability in the output of the object detection model, thereby hiding
the target object. Recent research has extended adversarial attacks to object-tracking tasks.
Cooling–shrinking attack, proposed by Yan et al. [32], interferes with the heatmaps by
cooling down the hot regions where the target may exist, leading to the tracker losing
the target. Guo et al. [33] used tracking video characteristics to propose a blurred attack.
Ding et al. [34] proposed the first physical attack using the maximum textural discrepancy
loss function to misguide visual trackers by de-matching the template and search frames at
hierarchical feature scales. These examples demonstrate that general vision deep learning
models are highly vulnerable to adversarial attacks, and UAV remote sensing image
processing tasks are also threatened by adversarial samples.

2.3. Adversarial Attacks in Remote Sensing

Since the seminal discovery of adversarial examples by Goodfellow et al. [14], the re-
search on adversarial attacks in remote sensing image processing has witnessed signif-
icant growth. These studies have contributed to the advancement of knowledge in the
field. In the domain of remote sensing, adversarial attacks have been explored exten-
sively. Ref. [35] introduced the artificial intelligence challenges and prospects in the field
of remote sensing.

Firstly, several studies have focused on adversarial attacks for classification tasks
in remote sensing. Czaja et al. [36] initially proposed targeted adversarial attacks on
RS data. Chen et al. [37] evaluated the vulnerability of models with different structures
trained on the same remote sensing dataset and found that the number of features affects
model vulnerability. Bai et al. [38] first proposed a target universal adversarial sample
generate method focused on white-box setting. Subsequently, Xu et al. [39] introduced
the first black-box universal adversarial example generation method for classification
in the remote sensing field. Additionally, defense methods against adversarial attacks
in remote sensing classification have been investigated, e.g., Xu et al. [40] first explored
targeted and untargeted attacks for remote sensing scene classification and investigated
adversarial training to improve the robustness of the classifier. Ref. [41] proposed a defense
method by comparing the confidence of the classifier output with the soft threshold of
the category to distinguish whether it is an adversarial sample and to train the classifier
to improve its robustness. Regarding object detection in remote sensing, Sun et al. [42]
first revealed the threats of patch attacks on object detection in remote sensing. The Patch–
Noobj framework [43] can interfere with remote sensing image target features, which can
mislead the results of detectors and reduce the confidence of the predicted bounding box.
Researchers also extended adversarial attacks to the physical world. Ref. [44] evaluated
the attack ability on different scales objects, they also perform physical adversarial attacks
on multi-scale objects. Rust-Style Patch [45] works on improving the natural and robust
adversarial patches by utilizing style transfer on remote sensing, and the authors conducted
experiments in both the digital and physical domains. Wei et al. [46] proposed a new way
to utilize pan-sharpened images to attack object detectors. While there have been studies
on adversarial attacks in the context of classification and detection tasks for remote sensing
images, there has been little research on adversarial attacks for UAV remote sensing video
for object tracking. Fu et al. [47] proposed an efficient attack approach that consists of
downsampling the original frame directly and upsampling using a super-resolution to
generate the adversarial frame. Therefore, To explore the robustness of object tracking
models for UAV remote sensing videos in an adversarial environment, we propose a novel
attention-enhanced one-shot adversarial attack method. Our proposed method generates
adversarial examples that can successfully fool the tracker while only attacking template
frames for each video. Our method is very efficient and can save a batch of time which is
more practical in real-time applications. The results indicate the security of object tracking
for UAV remote sensing videos should be the attention of researchers.
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3. Attention-Enhanced One-Shot Attack

In this section, we will introduce the working mechanism of our proposed attention-
enhanced one-shot attack method. Figure 1 shows the overview of our adversarial pertur-
bation training process. The generated perturbations are updated by optimizing attention
feature loss, attention confidence loss, TV loss, and background disturbance loss through
backpropagation. Additionally, we describe the attention mechanisms that we utilize to
generate the perturbation to enhance the attack power and loss functions.

TV Loss

cropx

cropz *
cropz

CNN

CNN

Original 
Rank

Adversarial 
Rank

Attention Feature loss Attention Confidence Loss

Background  Disturbance Loss

...

...

...
Classification

Branch

Regression

Branch

...

Figure 1. An illustration of the adversarial perturbation training process in our proposed attention-
enhanced one-shot attack method. δ is perturbation. xcrop and zcrop denote the search patch and
template patch, respectively. z∗crop is adversarial template patch.

3.1. Motivation

In the tracking process, the tracker always tracks the target similarly to the template
patch in the subsequent frame by comparing the cross-correlation information between
these two frames. Given a remote sensing video from UAV dataset as X , which can be
expressed as X = {xi, i = 0, 1, 2, · · · , I}, we input the template frame z = x0 and ground
truth Bi

gt to initialize the tracker first. Then, we feed the search frame {xi, i = 1, 2, 3, · · · , I}
to the tracker to get the search patch x̄.

In this paper, we mainly focus on popular trackers based on Siamese networks. These
trackers track the target by computing similarity maps between the template patch z
and the subsequent search region x̄ based on their respective feature representations.
Accordingly, we aim to attack the matching process between the template and search
features. Specifically, we simulate the tracking process exclusively within the template
frame and optimize the perturbations to effectively interfere with the feature-matching
mechanism of the tracker.

The tracker always uses Gaussian windows to suppress large displacements between
consecutive frames. Hence, only attacking the output features of the tracker may not
guarantee the desired attack effectiveness. To achieve a comprehensive attack, we consider
additional strategies to optimize the perturbations. The first strategy involves incorpo-
rating confidence loss and feature loss, while the second strategy involves introducing a
background disturbance loss. Since our attack method is designed based on remote sensing
object tracking, we find that remote sensing videos’ characteristics (e.g., presence of small
targets) may affect the attack ability of adversarial samples. To address this problem, we
design the background disturbance loss to consider the background information surround-
ing the target during perturbation generation. Consequently, during template initialization,
the interference caused by redundant background features hinders the accurate matching
of subsequent search frames’ features. To further enhance the attack strength, we introduce
an attention mechanism to both the feature loss and confidence loss. By combining all
these factors, we propose an attention-enhanced one-shot attack method, which will be
elaborated upon in detail in the subsequent section.
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3.2. Attention-Enhanced One-Shot Attack

The main purpose of our attention-enhanced one-shot attack method is to generate
a one-shot imperceptible perturbation that can deceive the tracker away from the correct
trajectory. Our method is efficient by only attacking the template frame of each video can
successfully attack the tracker; therefore, we train our adversarial perturbations in the
tracking process of the template frame. We define the adversarial example of attacking the
tracker as follows:

arg min L(z, z + δ)

s.t. ‖δ‖
∞
≤ ε

(1)

where ‖‖
∞

denotes `∞ norm, and we limit the maximum perturbation range of the per-pixel
value into the range [−ε, ε], ensuring the perturbation is imperceptible to human eyes. We
set ε to 16 in our experiments. δ represents the perturbation that we optimize to attack the
tracker. Lmeans the Ltotal which is detailed in Equation (10).

3.2.1. Attention Feature Loss

The primary objective of remote sensing object tracking is to track a target by compar-
ing the similarity of paired images, specifically the features extracted from the template
frame and the search frame. In our proposed method, we aim to attack all feature candidates
extracted from CNNs to interfere with matching the template features.

Let ϕ(·) represent the extracted feature map from CNNs. We maximize the Euclidean
distance between the clean template patch z̄ and the adversarial template patch to ensure
that the generated adversarial feature is dissimilar to the clean template patch feature. Thus,
the feature loss function is defined as follows:

L f = −
1

MN

M

∑
m=1

N

∑
n=1

(
ϕ(z∗)m,n − ϕ(z̄)m,n

)2
(2)

where M and N denote the dimensions of the confidence candidates.
To further enhance the attack effectiveness of our proposed method, we incorporate

attention mechanisms into the feature loss function. Specifically, we employ channel-wise
activation-guided attention to penalize the less crucial channels within the feature maps.
This operation not only aids in distinguishing the important channels but also strengthens
the attack capability. Moreover, Equation (2) can be reformulated as follows:

LA
f = − 1

MN

C

∑
j=1

M

∑
m=1

N

∑
n=1

(
wj

(
ϕj(z∗)m,n − ϕj(z̄)m,n

))2
(3)

The feature attention weight wi defined as:

wj =
1

a + b · tanh
(
c ·
(

ϕj(z)mean − ϕj(z)min−mean
)) (4)

where a, b and c are controlling hyper-parameters. (·)mean and (·)min−mean are each chan-
nel’s mean and minimum mean values, respectively.

3.2.2. Attention Confidence Loss

Only attacking the remote sensing object tracking by feature loss is not enough to apply
a successful attack. Therefore, we consider also attacking the confidence of the classification
branch outputs at the same time based on the attack features. Assume the tracking target
is present in the search patch z̄. After extracting the feature map of the template ϕ(z∗)
and the search patch ϕ(z̄), respectively, from CNNs, the tracker utilizes these features to
calculate the cross-correlation between the two images through the RPN. The RPN consists
of classification and regression branches. Specifically, the classification branch outputs the
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opposite and negative r confidence candidates. The opposite confidence of the r candidates
can be ranked toR1:r = {R1, · · · ,Rr} . To achieve the goal of activating the low-ranking
confidence candidates and suppressing high-confidence candidates, the confidence loss
function can be expressed as:

Lc = ∑
R1:r1

{F (ϕ(z∗), ϕ(z̄))} − ∑
Rr2:r3

{F (ϕ(z∗), ϕ(z̄))} (5)

whereR1:r1 denotes the ranking from 1st to r1,Rr2:r3 denotes the ranking from r2 to r3 in
the confidence candidates.

We also add attention mechanisms to confidence loss functions. The attention weight
wi can be used to distinguish candidates with different degrees of confidence, suppressing
high confidence to excite low confidence. Thus, Equation (5) also can be rewritten as:

LA
c = ∑

R1:r1

{wr · F (ϕ(z∗), ϕ(z̄))} − ∑
Rr2:r3

{F (ϕ(z∗), ϕ(z̄))} (6)

We define attention confidence weight wr as:

wr =
1

a′ + b′ · tanh(c′ · d(R1,Rr))
(7)

where a′, b′, c′ are controlling hyper-parameters. Specifically, a′ and b′ are use to constrain
the attention weight wr in the range

(
1

a′+b′ ,
1
a′

)
, c′ is shrinkage rate. d(R1,Rr) indicates

the distance between the r-th confidence candidateRr’s corresponding predicted bound-
ing box and the first confidence score’s corresponding predicted bounding box in the
confidence ranking.

3.2.3. Background Disturbance Loss

Considering that our attack method is specifically designed for remote sensing object
tracking, we have observed that the characteristics of remote sensing videos, such as the
presence of small targets, can impact the effectiveness of adversarial samples. To tackle
this issue, we have introduced background disturbance loss, which takes into account the
background information surrounding the target during the generation of perturbations.
This allows us to mitigate the influence of the background and enhance the attack capability
of the adversarial samples. We found that the regression branch of the tracker output
feature maps G(ϕ(z∗), ϕ(z̄)) that measure the distance between pre-generated anchors and
the corresponding ground truth. First, we select a set of K penalized scores of the predicted
bounding box PTopK. Then, we use the cosine window and PTopK to re-rank the proposals’
score to get the best one. In background disturbance loss, we selected bounding boxes set
from outputs of the regression branch {(H1, W1), · · · (HK, WK)}. We define the background
interference loss as:

Lb =
1
K

k

∑
k=1

(Hk + Wk) (8)

where Hk and Wk are outputs of the regression branch. They refer to the height and width
of the output candidate box, respectively.

3.2.4. Total Variation Loss

To optimize the generated perturbation to be imperceptive, we also introduce a total
variation (TV) loss [48] to constrain each pixel to be smooth. TV Loss is often used as a
regular term in the overall loss functions to constrain model learning, which can effectively
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promote the spatial smoothness of model output results. The TV loss can be represented as:

LTV =
1

MN

M

∑
m=1

N

∑
n=1

{
|z∗m+1,n − z∗m,n|2+ |z∗m,n+1 − z∗m,n|2

}1/2
(9)

where M and N denote the height and weight of the adversarial sample z∗, respectively.
The above formula is only for a single image, and z∗m,n represents a pixel in the input
image. We calculate each pixel z∗m,n of the horizontal direction (M and N) and vertical
direction (image height N). Then, we calculate the square of the difference between each
pixel and the next adjacent pixel z∗m+1,n, z∗m,n, as well as computing the square root and
sum of all pixels.

Through the combined use of the above loss functions, our proposed attention-
enhanced one-shot attack method can achieve the goal of quickly and efficiently generating
one-shot perturbations that are imperceptive to the human eye. The generated perturbation
is unique for each video. The total loss functions are as follows:

Ltotal = αLA
f + βLA

c + γLb + λLTV (10)

To date, the attention-enhanced one-shot attack proposed by us has been introduced.
As shown in Algorithm 1, by using our method, after iteratively optimizing Ltotal and
backpropagating the updated perturbation, we can obtain the final perturbation.

Algorithm 1 Attention-Enhanced One-Shot Attack Method

Input: Original template target patch z and template search patch z̄ of the UAV video,
Victim tracker (Siamese Network ϕ(·), classification branch F (·, ·) and regression
branch G(·, ·) of RPN), Iteration

Output: Adversarial template target patch z∗;
1: Initialize Adversarial template target patch z∗ = z, Iter = 0;
2: Feed z and z̄ to ϕ(·) to get the corresponding feature maps ϕ(z) and ϕ(z̄);
3: Feed ϕ(z) and ϕ(z̄) to F (·, ·) to get the original score rankROri

1:r ;
4: while Iter < Iteration do
5: Feed z∗ into ϕ(·) to get the corresponding feature maps ϕ(z∗);
6: Feed ϕ(z∗) and ϕ(z̄) to F (·, ·) to get the adversarial score rankR1:r;
7: ifR1:r[1] <ROri

1:r [45] then
8: Break;
9: else

10: Calculate attention feature loss LA
f by Equation (3) using ϕ(z∗) and ϕ(z);

11: Calculate attention confidence loss LA
c by Equation (6) using F (ϕ(z∗), ϕ(z̄));

12: Calculate background disturbance loss Lb by Equation (8) using G(ϕ(z∗), ϕ(z̄));
13: Calculate TV loss LTV by Equation (9) using z∗;
14: Calculate total loss Ltotal by Equation (10) and backward it to update z∗;
15: end if
16: Iter = Iter + 1;
17: end while

Since our attack only occurs on the template frame. By simulating the tracking process
in template frames, a unique perturbation for a certain video can be quickly generated with
no more than 100 iterations. Moreover, our proposed method can attack trackers offline,
which is more suitable for applications in real scenarios than online attacks. After the
perturbation is generated, we feed the perturbation back into the tracker. When the tracker
initializes the template frame, it inputs the perturbation of the corresponding video, which
interferes with the matching of the template frame and the subsequent search frame.
Eventually, it leads to the failure of tracking the target. The test of our offline perturbation
process is shown in Figure 2.
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Figure 2. An illustration of the one-shot attack process on victim trackers using well-trained adver-
sarial perturbations obtained by our proposed method.

4. Experiments

This section presents our experimental setup and the results of our attention-enhanced
one-shot attack on the UAV123 dataset. Next, we conduct ablation experiments to examine
the impact of different loss functions on our attack method. Finally, we compare our
method against classical attack methods.

4.1. Experimental Setup
4.1.1. Dataset

The UAV123 dataset [28] comprises 123 aerial UAV remote sensing video sequences
captured by UAV, containing over 110,000 labeled image frames with target attributes
and bounding boxes in each video sequence frame. The UAV123 dataset presents twelve
types of challenge points for target tracking tasks due to variations in target scale, ambient
illumination, and camera viewpoint across different video sequences, including target
aspect ratio change, background interference, sudden camera movement, rapid target
movement, complete target occlusion, illumination change, low resolution, target out of
camera field of view, partial target occlusion, similar targets, target scale change, and camera
viewpoint change. Furthermore, the dataset comprises various tracking targets in different
scenes (e.g., city, road, and beach), including cars, persons, boats, and more, as illustrated
in Figure 3.

bike bird boat building car

group person truck uav wakeboard

Figure 3. Sample images from different categories of videos in the UAV123 dataset.

4.1.2. Evaluation Metrics

Our proposed attention-enhanced one-shot attack method is evaluated based on two
widely used metrics, namely success rate and precision. The success rate is calculated by
measuring the intersection over union (IOU) between the predicted target bounding box
and the ground truth bounding box and is deemed successful when the IOU value exceeds
a pre-defined overlap threshold (default value of 0.5). Precision is measured by calculating
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the Euclidean distance between the center point coordinates of the predicted target frame
and those of the ground truth bounding box and is considered successful if the distance
is less than the set location error threshold (default is 20 pixels). The proposed method
is deemed more effective for the attack of the tracker if the success rate and precision
decrease more after the attack. Additionally, we utilize the one-pass evaluation (OPE)
method provided by the PySoT toolkit, which can be accessed at https://github.com/
StrangerZhang/pysot-toolkit (accessed on 20 July 2019). Specifically, we compare the
tracking success rate under different overlap thresholds and tracking precision under
different location error thresholds before and after the attack. Moreover, the PySOT toolkit
enables separate evaluation of success rate and precision for various challenge points, such
as illumination changes and low resolution, in the UAV123 dataset.

4.1.3. Implementation Details

The Adam [49] algorithm is used as a gradient descent optimizer to update the
adversarial samples of the template frame images in each UAV video. The hyper-parameters
a, b, and c used to calculate the feature attention weights (i.e., Equation (4)) are assigned
values of 2, −1, and 20, respectively. The hyper-parameters a′, b′, and c′ used to calculate
the confidence attention weights (i.e., Equation (7)) are assigned values of 0.5, 1.5, and 0.2,
respectively. In Equation (6), r1, r2, and r3 are set to 45, 90, and 145, respectively. The
maximum number of iterations is set to 2000 and the learning rate is set to 0.01 for the
adversarial example generation for each video. To maintain training stability, α and β
in Equation (10) are set to 0.01 and 10, respectively, for the first 200 iterations of each
adversarial sample optimization training. For the remaining iterations, α and β are set to
0.5 and 0.1, respectively. γ and λ in Equation (10) are fixed to 0.1 and 0.01, respectively.
We implement our proposed method using the Pytorch [50] framework with an NVIDIA
GeForce GTX 3090 GPU.

4.2. Quantitative Attack Results
4.2.1. Overall Comparison

The attention-enhanced one-shot attack method is evaluated on widely used trackers,
namely SiamRPN, DaSiamRPN, and SiamRPN++, employing diverse backbone networks,
including AlexNet [51], ResNet-50 [29], and MobileNet-V2 [52]. The performance of these
trackers is quantitatively assessed in terms of success rate and precision, as depicted in
Table 1. Notably, the attack significantly diminishes both the success rate and precision
of all the targeted trackers. Particularly, SiamRPN and DaSiamRPN are found to be more
vulnerable to adversarial samples, as their success rates plummet from 59.5% and 57.8%
to 17.6% and 26.7%, respectively. Additionally, their precision values also experience a
substantial decrease, dropping from 79.3% and 78.7% to 25.6% and 39.2%, respectively.
While SiamRPN++ exhibits a relatively lower susceptibility to the adversarial sample attack
due to its intricate network architecture compared to SiamRPN and DaSiamRPN, our
proposed method still exerts a significant influence on its tracking performance. Notably,
even for SiamRPN++ (ResNet50), which boasts the most complex structure among the
evaluated trackers, the success rate achieved after the attack remains below 40.0%.

Table 1. Overall comparison of the success rate and precision achieved by different trackers before
and after being attacked by our proposed method.

Precision (%) Success Rate (%)
Tracker Original Attack Original Attack

SiamRPN 79.3 25.6 59.5 17.6
DaSiamRPN 78.7 39.2 57.8 26.7

SiamRPN++(A) 77.4 42.6 58.0 29.0
SiamRPN++(R) 79.8 54.7 60.5 39.0
SiamRPN++(M) 79.3 57.4 59.8 37.6

https://github.com/StrangerZhang/pysot-toolkit
https://github.com/StrangerZhang/pysot-toolkit
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Figure 4 depicts the variation in success rate for each tracker, both before and af-
ter applying the attack, across different overlap thresholds. Additionally, it showcases
the precision variation at different location error thresholds. The results unequivocally
demonstrate a significant reduction in both the success rate and tracking precision of each
tracker when attacked by our proposed method. Notably, among the evaluated trackers,
SiamRPN exhibits the most substantial degradation in terms of tracking success rate and
precision, while DaSiamRPN ranks as the second most affected. For instance, at an overlap
threshold of 0.6, the attacked SiamRPN experiences a drastic decrease in tracking success
rate, declining from approximately 70% to around 10%. Similarly, the attacked DaSiamRPN
witnessed a significant decline in tracking precision, dropping from roughly 73% to about
17% when the location error threshold is set at 10 pixels.
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Figure 4. Comparison of the OPEs of various victim trackers before and after being attacked by our
proposed method using the PySoT toolkit. (Top) Comparison of success rate with different overlap
thresholds. (Bottom) Comparison of precision with different location error thresholds.
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4.2.2. Comparison in Terms of Per-Class Success Rate and Precision

Figure 5 illustrates a detailed quantitative analysis of SiamRPN++(A)’s tracking
success rate and precision for each video in the UAV123 dataset before and after the
attack. The blue and orange lines represent the tracking results of the original and at-
tacked SiamRPN++(A), respectively. The results indicate that the attack performance of
SiamRPN++(A) is significantly impacted across most video categories, with the attack’s
effect being more noticeable on videos such as UAVs, wakeboards, trucks, and groups,
and to a lesser extent on videos such as boats. The blue line, occupying a more significant
proportion of the plot, indicates that our attack method is generally effective in tracking
various types of videos.
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Figure 5. Per-video comparisons of the tracking (a) success rates and (b) precisions obtained by
SiamRPN++ (A) before and after being attacked.

4.2.3. Comparison in Terms of Different Challenge Points

The UAV123 dataset is constructed by identifying multiple challenge points that
encompass different aspects of the UAV remote video tracking task, as described in
Section 4.1.1. Here, we present the impact of the proposed attack method on the tracker
for each of these challenge points, as shown in Table 2. The results reveal that the pro-
posed approach significantly decreases the success rate and precision of the tracker for
all 12 challenge points. Notably, the attack the on camera motion has the most significant
impact, reducing the tracking success rate from 58.8% to 25.9% and precision from 78.2% to
37.0%. Similarly, the effect of the attack on illumination variation, low resolution, viewpoint
change, and other factors is also evident, with the tracking success rate decreasing from
the original 53.0% to 22.8%, and the precision decreasing from 72.3% to 33.4%. While the
impact of the attack on full occlusion is relatively smaller, the tracking success rate still
drops to nearly half of the original. In summary, the proposed attack method is effective
across the board and has a significant impact on different challenge points of the UAV
remote sensing video tracking task.
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Table 2. Comparison of the tracking success rate and accuracy achieved by SiamRPN++(A) for
various challenge points of UAV remote sensing target tracking in the UAV123 dataset, before and
after being attacked by our proposed method.

Challenge Point
Success Rate (%) Precision (%)

Original Attack Original Attack

Aspect Ratio Change 54.2 24.9 74.1 36.3
Background Clutters 41.9 16.7 61.5 30.0

Camera Motion 58.8 25.9 78.2 37.0
Fast Motion 49.0 20.9 67.7 30.9

Full Occlusion 32.9 18.3 54.9 37.8
Illumination Variation 53.0 22.8 72.3 33.4

Low Resolution 42.3 12.0 65.0 25.8
Out of View 51.3 27.8 69.4 41.7

Partial Occlusion 48.0 24.3 67.3 38.0
Scale Variation 55.5 27.5 74.6 40.3
Similar Object 50.8 27.5 71.1 43.7

Viewpoint Change 59.1 29.5 77.5 39.9

4.3. Visual Results

Figures 6 and 7 depict the visual tracking results of attacking SiamRPN++(A) using
our attention-enhanced one-shot method on the car and wakeboard videos, respectively.
The bounding boxes depicted in green represent the ground truth, while the blue bounding
boxes correspond to the predicted target bounding box. In the car video, the bounding
box predicted by the post-attack tracker deviates from the correct trajectory, sometimes
incorrectly tracking the car as an unspecified tracking target, and at other times incorrectly
predicting it as a non-target-related background area next to the highway. In addition,
possibly influenced by our proposed background interference loss, the post-attack tracker
mainly predicts the bounding box on the wave region around the labeled target in the wake-
board video. Overall, our proposed attack method can cause the tracker to underperform
significantly and effectively on the UAV remote sensing video target.

Original Attack Original Attack

Figure 6. Visual comparison of the tracking results of the car video using SiamRPN++ (A) before and
after being attacked by our proposed method. The green and blue boxes indicate the ground truth
bounding box and the bounding box predicted by the tracker, respectively.
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Original Attack Original Attack

Figure 7. Visual comparison of the tracking results of the wakeboard video using SiamRPN++ (A)
before and after being attacked by our proposed method. The green and blue boxes indicate the
ground truth bounding box and the bounding box predicted by the tracker, respectively.

Figure 8 provides a comparison between the heatmaps generated from the original
search frame images and the heatmaps obtained from the search frame images attacked by
our proposed method. The top row displays the original search frame images, while the
second row exhibits the corresponding heatmaps derived from these images. The bottom
row shows the adversarial heatmaps generated from the attacked search frame images. It is
evident that the resulting adversarial heatmaps exhibit minimal activity or relevance in the
target region, leading to the subsequent failure of the tracker. This observation highlights
the effectiveness of our attention-enhanced one-shot attack method in both perturbing
the search region and deceiving the tracker. By significantly reducing the heatmap values
within the target area, our approach successfully compromises the tracker’s ability to
accurately locate and track the intended target. This comparative analysis demonstrates
the improved performance of our attention-enhanced one-shot attack method in terms of
its impact on the search region and its ability to deceive the tracker, ultimately leading to
diminished tracking accuracy.

4.4. Ablation Studies

We perform a series of ablation experiments to assess the impact of each loss function
on our attack effectiveness, using SiamRPN++ (R) as the victim model. Table 3 presents
the results, which indicate that using only LA

f or Lb significantly reduces success rate and
precision. The success rates are reduced by 15.1% and 18.9%, respectively, and the precisions
are 62.2% and 57.4%, respectively. Moreover, Lb has shown better attack performance than
LA

f , suggesting that Lb has a stronger attack effect. Combining LA
c and LA

f also contributed
to a further reduction in precision and success rate. Our experiments reveal that using all
three loss functions simultaneously yields the best performance, further demonstrating
the effectiveness of our attention-enhanced one-shot attack. Additionally, we examine the
visual effect of LTV . Figure 9 illustrates the visual difference between adversarial samples
generated with and without LTV . In our preliminary experiments, it became evident that
the utilization of the L norm led to perturbations that exhibited a high degree of pixelation.
The presence of pixelation significantly impacted the natural appearance of the generated
adversarial samples. To address this issue, we investigated the application of LTV , as it
offered the potential for generating smoother perturbations. Figure 9 visually demonstrates
the impact of employing LTV in comparison to the adversarial sample without using LTV .
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In the first row of the figure, the adversarial samples generated without LTV are presented,
highlighting the presence of noticeable ripples, particularly in the building and person
images. Conversely, the second row of the figure showcases the same set of adversarial
samples that are optimized using LTV , resulting in significantly improved naturalness and
a reduction in the aforementioned ripples. These findings underscore the effectiveness of
employing LTV as a means to enhance the visual quality and authenticity of adversarial
samples, mitigating the issues associated with pixelation that arise when relying solely on
the L norm. Furthermore, the LTV has notably enhanced the visual quality while generally
preserving a slight reduction in attack effectiveness, as demonstrated in the final row
of Table 3.

Bike1 Boat9

Original

Image

Original 

Heatmap

Adversarial 

Heatmap

Figure 8. Heatmap comparison of SiamRPN++ (A) for tracking bike targets and boat targets, be-
fore and after being attacked by our proposed method.

bike boat building person

without TV loss

with TV loss

Figure 9. Effect of LTV on the visual appearance of adversarial examples generated by our pro-
posed method.

Table 3. Ablation comparison of LA
f , LA

c , Lb and LTV in our proposed method, in terms of their
impact on tracking success rate and precision.

SiamRPN++ (ResNet-50) Precision (%) Success Rate (%)

Original 79.8 60.5
Random Noise 77.1 58.3
Attack by L f 62.2 45.4
Attack by Lc 74.6 54.7
Attack by Lb 57.4 41.6

Attack by L f +Lc 59.4 43.1
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Table 3. Cont.

SiamRPN++ (ResNet-50) Precision (%) Success Rate (%)

Attack by L f +Lb 55.7 39.8
Attack by Lc+Lb 55.6 39.7

Attack by L f +Lc+Lb 54.5 38.4
Attack by L f +Lc+Lb+LTV 54.7 39.0

4.5. Comparison with SOTA Methods

To assess the attack capability of our attention-enhanced one-shot attack, we conducted
a comparative analysis with the classic algorithms FGSM and C&W. The evaluation was
performed on the UAV123 dataset, employing SiamRPN and SiamRPN++(R) as the victim
models. Table 4 presents the results of this comparative study, demonstrating the strong
attack performance of our proposed method. The success rates achieved 17.6% for SiamRPN
and 39.0% for SiamRPN++(R) by being attacked by our attention-enhanced one-shot
method. Notably, these success rates are lower than those attacked by FGSM and C&W.
Therefore, our method exhibits superior attack strength in comparison to the FGSM and
C&W algorithms. These findings underscore the effectiveness of our proposed method in
generating adversarial perturbations that can successfully evade the tracking capabilities
of the targeted SiamRPN and SiamRPN++(R) models.

Table 4. Comparison of tracking success rate and precision obtained by SiamRPN and SiamRPN++(R)
before and after being attacked by FGSM, C&W, and our proposed method.

SiamRPN SiamRPN++(R)
Method Precision (%) Success Rate (%) Precision (%) Success Rate (%)
Original 79.3 59.5 79.8 60.5
FGSM 56.2 45.7 71.8 51.4
C&W 47.9 44.8 59.3 43.6

Proposed 25.6 17.6 54.7 39.0

5. Conclusions

In this paper, we proposed a novel attention-enhanced one-shot attack on UAV remote
sensing images for generating template adversarial examples that can deceive trackers.
The proposed method generates optimized unique perturbations for each video by per-
turbing the features near templates and suppressing the confidence scores that activate the
tracker. The attention-enhanced one-shot attack mainly used the template frame to simulate
the tracking process and generated adversarial samples by injecting perturbations into the
template frame, causing the tracking of subsequent frames to fail. The experimental results
demonstrated that our attention-enhanced one-shot attack is more effective than classical
algorithms, can rapidly generate offline adversarial samples, and deceives the widely used
trackers such as SiamRPN, DasiamRPN, and SiamRPN++. In our future work, we plan to
study the adversarial attack on UAV remote sensing images of multiple tracking.
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