Regional Gravity Field Modeling Using Band-Limited SRBFs: A Case Study in Colorado
Abstract
:1. Introduction
2. Theory and Methods
3. Gravity Data Processing and Analysis
3.1. Area of Interest
3.2. Datasets Used for Modeling
3.3. Data Preprocessing
3.4. Remove Procedure
4. Gravity Field Modeling
4.1. Model Configuration
4.1.1. Types of SRBFs
4.1.2. The Location of the SRBFs
4.1.3. The Extensions of the Target, Observation, and Computation Area
4.1.4. Maximum and Minimum Expansion Degree of SRBFs
4.2. Residual and A Priori Accuracy Comparative Analysis Method
4.3. Gravity Field Modeling with SRBFs
5. Evaluation of the Combined Solution
5.1. Comparison to Models with Different Expanding Degrees of SRBFs
5.2. GSVS17 Comparisons
5.3. Area Comparison of Geoid Grids
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Varga, M.; Pitoňák, M.; Novák, P.; Bašić, T. Contribution of GRAV-D airborne gravity to improvement of regional gravimetric geoid modelling in Colorado, USA. J. Geod. 2021, 95, 53. [Google Scholar] [CrossRef]
- Forsberg, R.; Tscherning, C.C. The use of height data in gravity field approximation by collocation. J. Geophys. Res. 1981, 86, 7843–7854. [Google Scholar] [CrossRef]
- Novák, P.; Heck, B. Downward continuation and geoid determination based on band-limited airborne gravity data. J. Geod. 2002, 76, 269–278. [Google Scholar] [CrossRef]
- Hwang, C.; Hsiao, Y.S.; Shih, H.C.; Yang, M.; Chen, K.H.; Forsberg, R.; Olesen, A.V. Geodetic and geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment. J. Geophys. Res. 2007, 112, B04407. [Google Scholar] [CrossRef]
- Willberg, M.; Zingerle, P.; Pail, R. Integration of airborne gravimetry data filtering into residual least-squares collocation: Example from the 1 cm geoid experiment. J. Geod. 2020, 94, 75. [Google Scholar] [CrossRef]
- Li, X. Using radial basis functions in airborne gravimetry for local geoid improvement. J. Geod. 2017, 92, 471–485. [Google Scholar] [CrossRef]
- Tscherning, C.C. Geoid determination by 3D least-squares collocation. In Geoid Determination; Sansò, F., Sideris, M.G., Eds.; Lecture Notes in earth System Sciences; Springer: Berlin, Germany, 2013; Volume 110, pp. 311–336. [Google Scholar] [CrossRef]
- Kern, M.; Schwarz, K.K.P.P.; Sneeuw, N. A study on the combination of satellite, airborne, and terrestrial gravity data. J. Geod. 2003, 77, 217–225. [Google Scholar] [CrossRef]
- Shih, H.C.; Hwang, C.; Barriot, J.P.; Mouyen, M.; Corréia, P.; Lequeux, D.; Sichoix, L. High-resolution gravity and geoid models in Tahiti obtained from new airborne and land gravity observations: Data fusion by spectral combination. Earth Planets Space 2015, 67, 124. [Google Scholar] [CrossRef]
- Simons, F.J.; Dahlen, F.A. Spherical Slepian functions and the polar gap in geodesy. Geophys. J. Int. 2006, 166, 1039–1061. [Google Scholar] [CrossRef]
- Wittwer, T. Regional Gravity Field Modelling with Radial Basis Functions; Delft University of Technology: Delft, The Netherlands, 2009; Available online: https://ncgeo.nl/downloads/72Wittwer.pdf (accessed on 12 September 2014).
- Schmidt, M.; Fengler, M.; Mayer-Gürr, T.; Eicker, A.; Kusche, J.; Sánchez, L.; Han, S.-C. Regional gravity modeling in terms of spherical base functions. J. Geod. 2007, 81, 17–38. [Google Scholar] [CrossRef]
- Klees, R.; Tenzer, R.; Prutkin, I.; Wittwer, T. A data-driven approach to local gravity field modelling using spherical radial basis functions. J. Geod. 2008, 82, 457–471. [Google Scholar] [CrossRef]
- Eicker, A. Gravity Field Refinement by Radial Basis Functions from In-Situ Satellite Data; Universität Bonn: Bonn, Germany, 2008. [Google Scholar]
- Bentel, K.; Schmidt, M.; Denby, C.R. Artifacts in regional gravity representations with spherical radial basis functions. J. Geod. Sci. 2013, 3, 173–187. [Google Scholar] [CrossRef]
- Lieb, V.; Schmidt, M.; Dettmering, D.; Börger, K. Combination of various observation techniques for regional modeling of the gravity field. J. Geophys. Res. Solid Earth 2016, 121, 3825–3845. [Google Scholar] [CrossRef]
- Bucha, B.; Janák, J.; Papčo, J.; Bezděk, A. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data. Geophys. J. Int. 2016, 207, 949–966. [Google Scholar] [CrossRef]
- Klees, R.; Slobbe, D.; Farahani, H. A methodology for least-squares local quasi-geoid modelling using a noisy satellite-only gravity field model. J. Geod. 2018, 92, 431–442. [Google Scholar] [CrossRef]
- Slobbe, C.; Klees, R.; Farahani, H.H.; Huisman, L.; Alberts, B.; Voet, P.; De Doncker, F. The Impact of Noise in a GRACE/GOCE Global Gravity Model on a Local Quasi-Geoid. J. Geophys. Res. Solid Earth 2019, 124, 3219–3237. [Google Scholar] [CrossRef]
- Liu, Q.; Schmidt, M.; Sánchez, L.; Willberg, M. Regional gravity field refinement for (quasi-) geoid determination based on spherical radial basis functions in Colorado. J. Geod. 2020, 94, 99. [Google Scholar] [CrossRef]
- Liu, Y.; Lou, L. Unified land–ocean quasi-geoid computation from heterogeneous data sets based on radial basis functions. Remote Sens. 2022, 14, 3015. [Google Scholar] [CrossRef]
- Freeden, W.; Gervens, T.; Schreiner, M. Constructive Approximation on the Sphere with Applications to Geomathematics; Oxford University Press on Demand: New York, NY, USA, 1998. [Google Scholar]
- Heiskanen, W.A.; Moritz, H. Physical Geodesy; W.H. Freeman and Company: San Francisco, CA, USA, 1967. [Google Scholar]
- Koch, K.-R.; Kusche, J. Regularization of geopotential determination from satellite data by variance components. J. Geod. 2002, 76, 259–268. [Google Scholar] [CrossRef]
- Hutchinson, M.F. A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat.-Simul. Comput. 1990, 19, 433–450. [Google Scholar] [CrossRef]
- Flury, J.; Rummel, R. On the geoid–quasigeoid separation in mountain areas. J. Geod. 2009, 83, 829–847. [Google Scholar] [CrossRef]
- Wang, Y.M.; Li, X.; Ahlgren, K.; Krcmaric, J. Colorado geoid modeling at the US National Geodetic Survey. J. Geod. 2020, 94, 106. [Google Scholar] [CrossRef]
- Grigoriadis, V.N.; Vergos, G.S.; Barzaghi, R.; Carrion, D.; Koç, Ö. Collocation and FFT-based geoid estimation within the Colorado 1 cm geoid experiment. J. Geod. 2021, 95, 52. [Google Scholar] [CrossRef]
- Wang, Y.M.; Holmes, S.; Li, X.; Ahlgren, K. NGS Annual Experimental Geoid Models–xGEOID17: What Is New and the Results; IAG-IASPEI: Kobe, Japan, 2017. [Google Scholar]
- GRAV-D Team. Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Project, Airborne Gravity Data; Block MS05. 2017. Available online: http://www.ngs.noaa.gov/GRAV-D/data_MS05.shtml (accessed on 15 November 2022).
- van Westrum, D.; Ahlgren, K.; Hirt, C.; Guillaume, S. A Geoid Slope Validation Survey (2017) in the rugged terrain of Colorado, USA. J. Geod. 2021, 95, 9. [Google Scholar] [CrossRef]
- Rebischung, P.; Griffiths, J.; Ray, J.; Schmid, R.; Collilieux, X.; Garayt, B. IGS08: The IGS realization of ITRF2008. GPS Solut. 2012, 16, 483–494. [Google Scholar] [CrossRef]
- Moritz, H. Geodetic Reference System 1980. J. Geod. 2000, 74, 128–133. [Google Scholar] [CrossRef]
- NGS. Technical Details for GEOID18B. 2018. Available online: https://geodesy.noaa.gov/GEOID/GEOID18.shtml (accessed on 12 May 2023).
- Torge, W. Gravimetry; Walter de Gruyter: Berlin, Germany, 1989. [Google Scholar]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. 2012, 117, B04406. [Google Scholar] [CrossRef]
- Zingerle, P.; Pail, R.; Gruber, T.; Oikonomidou, X. The Experimental Gravity Field Model XGM2019e; GFZ: Potsdam, Germany, 2019. [Google Scholar]
- Liang, W.; Li, J.; Xu, X.; Zhang, S.; Zhao, Y. A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008. Engineering 2020, 6, 860–878. [Google Scholar] [CrossRef]
- Pail, R.; Fecher, T.; Barnes, D.; Factor, J.F.; Holmes, S.A.; Gruber, T.; Zingerle, P. Short Note: The Experimental Geopotential Model XGM2016. J. Geod. 2018, 92, 443–451. [Google Scholar] [CrossRef]
- Gilardoni, M.; Reguzzoni, M.; Sampietro, D. GECO: A Global Gravity Model by Locally Combining GOCE Data and EGM2008. Stud. Geophys. Geod. 2015, 60, 228–247. [Google Scholar] [CrossRef]
- Pail, R.; Bruinsma, S.; Migliaccio, F.; Förste, C.; Goiginger, H.; Schuh, W.-D.; Höck, E.; Reguzzoni, M.; Brockmann, J.M.; Abrikosov, O.; et al. First GOCE Gravity Field Models Derived by Three Different Approaches. J. Geod. 2011, 85, 819–843. [Google Scholar] [CrossRef]
- Wu, Y.; He, X.; Luo, Z.; Shi, H. An Assessment of Recently Released High-Degree Global Geopotential Models Based on Heterogeneous Geodetic and Ocean Data. Front. Earth Sci. 2021, 9, 749611. [Google Scholar] [CrossRef]
- Rexer, M.; Hirt, C.; Claessens, S.; Tenzer, R. Layer-based modelling of the Earth’s gravitational potential up to 10-km scale in spherical harmonics in spherical and ellipsoidal approximation. Surv. Geophys. 2016, 37, 1035–1074. [Google Scholar] [CrossRef]
- Hirt, C.; Kuhn, M.; Claessens, S.; Pail, R.; Seitz, K.; Gruber, T. Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model. Comput. Geosci. 2014, 73, 71–80. [Google Scholar] [CrossRef]
- Freeden, W.; Schneider, F. An integrated wavelet concept of physical geodesy. J. Geod. 1998, 72, 259–281. [Google Scholar] [CrossRef]
- Reuter, R. Über Integralformeln der Einheitssphäre und Harmonische Splinefunktionen; RWTH Aachen University: Aachen, Germany, 1982. [Google Scholar]
- Naeimi, M.; Flury, J.; Brieden, P. On the regularization of regional gravity field solutions in spherical radial base functions. Geophys. J. Int. 2015, 202, 1041–1053. [Google Scholar] [CrossRef]
- Naeimi, M. Inversion of Satellite Gravity Data Using Spherical Radial Base Functions; Leibniz Universität Hannover: Hannover, Germany, 2013; Available online: https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-711.pdf (accessed on 20 July 2016).
- Saleh, J.; Li, X.; Wang, Y.; Roman, D.; Smith, D. Error analysis of the NGS’ surface gravity database. J. Geod. 2013, 87, 203–221. [Google Scholar] [CrossRef]
- Işık, M.S.; Erol, B.; Erol, S.; Sakil, F.F. High-resolution geoid modeling using least squares modification of stokes and hotine formulas in Colorado. J. Geod. 2021, 95, 49. [Google Scholar] [CrossRef]
- Jiang, T.; Dang, Y.M.; Zhang, C.Y. Gravimetric geoid modeling from the combination of satellite gravity model, terrestrial and airborne gravity data: A case study in the mountainous area, Colorado. Earth Planets Space 2020, 72, 189. [Google Scholar] [CrossRef]
- Wang, Y.M.; Sánchez, L.; Ågren, J.; Huang, J.; Forsberg, R.; Abd-Elmotaal, H.A.; Ahlgren, K.; Barzaghi, R.; Bašić, T.; Carrion, D.; et al. Colorado geoid computation experiment: Overview and summary. J. Geod. 2021, 95, 127. [Google Scholar] [CrossRef]
- Zilkoski, D.B.; Richards, J.H.; Young, G.M. Results of the general adjustment of the North American Vertical Datum of 1988. Surv. Land. Inf. Syst. 1992, 52, 133–149. [Google Scholar]
Data | Max (mGal) | Min (mGal) | Mean (mGal) | STD (mGal) |
---|---|---|---|---|
207.88 | −146.36 | 0.35 | 38.72 | |
137.40 | −151.34 | −5.64 | 22.40 | |
75.328 | −135.86 | 0.76 | 6.90 | |
123.24 | −43.88 | 7.33 | 29.56 | |
68.25 | −43.06 | 0.06 | 8.16 | |
19.01 | −18.97 | 0.10 | 3.35 |
Model | Max (cm) | Min (cm) | Mean (cm) | STD (cm) | |||
---|---|---|---|---|---|---|---|
Model I | 5600 | 5600 | 0 | 93.6 | 79.6 | 88.6 | 3.1 |
Model II | 5600 | 5600 | 720 | 92.0 | 80.8 | 87.1 | 2.6 |
Model III | 5200 | 5200 | 0 | 94.0 | 80.5 | 89.1 | 3.1 |
Model IV | 5200 | 5200 | 720 | 91.8 | 81.1 | 87.0 | 2.6 |
Model V | 5200 | 1530 | 720 | 91.9 | 80.4 | 87.2 | 2.5 |
Model VI | 5200 | 1840 | 720 | 91.9 | 80.0 | 87.3 | 2.3 |
Model | Institution | Max (cm) | Min (cm) | Mean (cm) | STD (cm) | Range (cm) |
---|---|---|---|---|---|---|
ColFFTW2020 | AUTh | 3.4 | −10.7 | −1.0 | 2.5 | 14.1 |
ColSRBF2019 | DGFI | 5.0 | −10.8 | −0.6 | 3.0 | 15.8 |
ColUNBSH2019 | GSI | 3.8 | −9.6 | −0.7 | 3.2 | 13.4 |
ColRLSC2019 | IAPG | 4.1 | −12.4 | −0.9 | 3.1 | 16.5 |
ColWLSC2020 | Polimi | 7.9 | −14.9 | 0.7 | 3.9 | 22.8 |
ColSRBF2023 | HUEL | 4.9 | −6.4 | 0.3 | 2.3 | 11.3 |
Model | Institution | Max (cm) | Min (cm) | Mean (cm) | STD (cm) | RMS (cm) | Range (cm) |
---|---|---|---|---|---|---|---|
ColSRBF2019 | DGFI | 11.7 | −34.0 | −0.9 | 2.8 | 3.0 | 45.7 |
ColUNBSH2019 | GSI | 24.1 | −24.0 | 0. 3 | 3.0 | 3.0 | 48.1 |
ColRLSC2019 | IAPG | 10.3 | −31.5 | −1.3 | 2.6 | 2.9 | 41.8 |
ColSRBF2023 | HUEL | 11.9 | −19.9 | 0.1 | 2.4 | 2.4 | 31.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Yang, M.; Liu, J. Regional Gravity Field Modeling Using Band-Limited SRBFs: A Case Study in Colorado. Remote Sens. 2023, 15, 4515. https://doi.org/10.3390/rs15184515
Ma Z, Yang M, Liu J. Regional Gravity Field Modeling Using Band-Limited SRBFs: A Case Study in Colorado. Remote Sensing. 2023; 15(18):4515. https://doi.org/10.3390/rs15184515
Chicago/Turabian StyleMa, Zhiwei, Meng Yang, and Jie Liu. 2023. "Regional Gravity Field Modeling Using Band-Limited SRBFs: A Case Study in Colorado" Remote Sensing 15, no. 18: 4515. https://doi.org/10.3390/rs15184515
APA StyleMa, Z., Yang, M., & Liu, J. (2023). Regional Gravity Field Modeling Using Band-Limited SRBFs: A Case Study in Colorado. Remote Sensing, 15(18), 4515. https://doi.org/10.3390/rs15184515