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Abstract: The use of spherical radial basis functions (SRBFs) in regional gravity field modeling
has become popular in recent years. However, to our knowledge, their potential for combining
gravity data from multiple sources, particularly for data with different spectrum information in
the frequency domain, has not been extensively explored. Therefore, band-limited SRBFs, which
have good localization characteristics in the frequency domain, were taken as the main tool in
this study. To determine the optimal expansion degree of SRBFs for gravity data, a residual and a
priori accuracy comparative analysis method was proposed. Using this methodology, the expansion
degrees of terrestrial and airborne data were determined to be 5200 and 1840, respectively, and then a
high-resolution geoid model called ColSRBF2023 was constructed for use in Colorado. The results
indicated that ColSRBF2023 had a standard deviation (STD) of 2.3 cm with respect to the GSVS17
validation data. This value was 2–6 mm lower than models obtained using different expansion
degrees for gravity data and models from other institutions considered in this study. Furthermore,
when comparing it with the validation geoid model on a 1′ × 1′ grid, ColSRBF2023 exhibited an STD
value of 2.4 cm, which was also the best among the examined models. These findings highlight the
importance of determining the optimal expansion degree of gravity data, particularly for constructing
high-resolution gravity field models in rugged mountainous areas.

Keywords: regional gravity field modeling; band-limited SRBFs; the residual and a priori accuracy
comparative analysis method; gravity data combination; Colorado

1. Introduction

Gravity data are crucial for studying the Earth’s gravity field and establishing the
International Height Reference System (IHRS). Currently, global gravity field models
(GGMs) are routinely used to provide long wavelength information for regional gravity
field modeling. Apart from GGMs, terrestrial gravity data are the most widely used data
type. However, in areas that are challenging to access (e.g., polar regions, mountains,
forests, coastal areas, oceans) or in very large areas (e.g., >10,000 km2), airborne gravity
practically becomes the only option [1]. In 2017, the Joint Working Group (JWG) 2.1.2 of
the International Association of Geodesy (IAG) launched the Colorado geoid experiment
(the 1 cm geoid experiment). The goal of this experiment is to assess the repeatability
of gravity potential values as IHRS coordinates using different geoid modeling methods.
In this context, the National Geodetic Survey (NGS) agreed to provide terrestrial gravity
data, airborne gravity data, GPS/leveling data, and a digital terrain model for an area of
approximately 500 km × 800 km in Colorado, which allowed the comparison of different
methods for geoid computation using the same input dataset.
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However, when using terrestrial and airborne gravity for local geoid refinement, there
are several challenges that need to be addressed. First, terrestrial and airborne gravity data
differ not only in spatial distribution and spectral content but also in their error charac-
teristics. Therefore, a major challenge for geoid modeling is the proper combination of
terrestrial and airborne gravity data. Second, both terrestrial and airborne gravity observa-
tions are unevenly distributed, leading to uncertainty in their spectral information. The
spectral information of gravity data is closely related to their spatial resolution. However,
determining the appropriate resolution of both terrestrial and airborne gravity data is
difficult. The terrestrial gravity data resolution relies heavily on topographic heights, the
distribution of which are usually extremely uneven, while the resolution of airborne gravity
observations is influenced by factors such as the flight altitude, speed, and data correlation.
All of these factors pose significant challenges in determining the optimal spectrum of
gravity data. Third, for airborne gravity data, a downward continuation process is typically
required [2–4]. However, the downward continuation process is an unstable procedure that
amplifies high-frequency noise, leading to a reduction in the quality of airborne data. More-
over, a series of filtering and estimation techniques are usually required for airborne gravity
data, which further exacerbate the uncertainty of the spectral information for airborne
gravity data. It has been observed that using gravity signals beyond their corresponding
spherical harmonic (SH) degree can introduce modeling errors [5]. Therefore, finding and
modeling the useful information provided by gravity data has become a critical issue in
local geoid enhancement [6].

Several methods can be employed to refine the regional geoid model, such as the
well-known least squared collocation (LSC) method [7], least squares spectral combination
method [8,9], and Slepian functions [10]. In this study, we chose to use band-limited
spherical radial basis functions (SRBFs) for local geoid refinement. The justifications for this
choice are as follows. First, the band-limited SRBFs can be adjusted flexibly based on the
spectral information of the gravity data, which allows for better adaptation to the spectral
characteristics of the gravity data. Second, band-limited SRBFs can express almost all types
of gravity data, which form the basis for combining multisource gravity data to build a
high-resolution regional gravity field model. Third, the band-limited SRBF expression
includes a continuation factor, allowing the establishment of observation equations directly
at scattered points of observation without the need for gridding or downward continuation.
This feature enables the assignment of observation errors to specific observables in space.
Li utilized a set of band-limited SRBFs to model gravity data and demonstrated that the
SRBF method could effectively recover the gravity field while exhibiting filtering properties
due to its design in the frequency domain. Additionally, experiments have shown that
SRBFs are computationally efficient and do not require a covariance model such as the LSC
method, which is sometimes time-consuming [11]. Other examples and explanations of
SRBFs can also be found in [12–21] and the references therein.

In this study, our main focus is on refining the regional geoid model in Colorado using
band-limited SRBFs. To determine the optimal spectral information of the gravity data, we
propose a residual and a priori accuracy comparative analysis method. The organization of
this work is as follows. In Section 2, we present the fundamental concepts of SRBFs and the
parameter estimation procedure. This includes the formulation of observation equations,
estimation of unknown coefficients, and calculation of gravitational functionals. In Section 3,
we introduce the study area in Colorado and describe the available data. We also outline
the procedure for data preprocessing. In Section 4, we explain the computation procedure,
which involves the RCR procedure, the residual and a priori accuracy comparative analysis
method, and how we combine different datasets. Section 5 presents our models as well
as the validation of the results. Finally, Section 6 provides the conclusions and presents
potential future research directions.
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2. Theory and Methods

A residual harmonic function Tres(x) outside a sphere of radius R can be written as a
finite sum of band-limited SRBFs:

Tres(x) =
N

∑
i=n

αiΨi(x, xi) (1)

where x = r·r = r[cosϕcosλ, cosϕsinλ, sinϕ]T is the position vector of the observation point
P, λ is the spherical longitude, ϕ is the spherical latitude, and r = R + h, with h being the
spherical height of P above sphere ΩR with radius R. xi = R·ri are the position vectors of
the SRBFs. N is the number of SRBFs, Tres(x) is the residual disturbing potential, and αi is
the unknown coefficient. Ψ(x, xi) is a band-limited SRBF, the specific expression for which
is [22]

Ψ(x, xi) =
nmax

∑
nmin

kn
2n + 1

4π

(
R
r

)n+1
Pn

(
rTri

)
(2)

where kn is the kernel function that defines the spectral properties of the SRBFs, R is the
mean radius of Earth, Pn is the Legendre polynomial of degree n, and rTri is the spherical
distance between x and xi. nmin and nmax are the minimum and maximum degrees of
expansion, respectively. The SRBF in Equation (2) is band-limited since the kernel functions
are zero for each degree beyond nmax or below nmin.

The general expression of Equation (2) needs to be adapted to describe different gravi-
tational functionals. We use observations that are given in terms of gravity disturbances
δg, which can be expressed as the gradient of the disturbing potential T. In the spherical
approximation, the magnitude of the gravity disturbance can be written as [23]

δg = −∂T
∂r

(3)

From the SRBF expression for the disturbing potential (Equation (1)), the residual
terrestrial gravity disturbances at the Earth’s surface and the residual airborne gravity
disturbances at flight altitude can be written as

δgter
res(xter) =

N
∑

i=1
αi

nter
∑

nmin

kn
(n+1)

rter

(2n+1)
4π

(
R

rter

)n+1
Pn
(
rT

terri
)
=

N
∑

i=1
αiΨδg(xter, xi)

δgair
res(xair) =

N
∑

i=1
αi

nair
∑

nmin

kn
(n+1)

rair

(2n+1)
4π

(
R

rair

)n+1
Pn
(
rT

airri
)
=

N
∑

i=1
αiΨδg(xair, xi)

. (4)

where xter and xair represent the position vectors of terrestrial and airborne gravity distur-
bances, respectively. nter and nair are the maximum degrees of expansion of the terrestrial
and airborne gravity disturbances, respectively.Ψδg(x, xi) are the adapted SRBFs of δg(x).

For terrestrial gravity observations, it is difficult to obtain a more appropriate expan-
sion degree due to their uneven distribution. For airborne gravity data, however, due
to their high altitudes and the low-pass filtering process, it is also not a simple task to
determine optimal spectral information. In this study, we provide a way to determine the
optimal degree of series expansion for gravity data (nter and nair), which will be introduced
in Section 4.2.

In Equation (4), terrestrial gravity disturbances and airborne gravity disturbances
have the same SRBF coefficients αi(i = 1, . . . , N), and we can thus combine them to form
the observation equations (Gauss–Markov model)[

y1
y2

]
=

[
A1

A2

]
α+

[
e1

e2

]
(5)

where y1 and y2 are the vectors of the terrestrial and airborne gravity disturbances,
and A1 and A2 are the design matrices. α are the unknown SRBF coefficients, and e1
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and e2 are the vectors of observation errors with expectation E{e} = 0 and dispersion
D{e} = C. C = diag(C1, C2) is the variance-covariance matrix of the observed error and
meets Cl = σ2

l P−1
l (l = 1, 2); P1 and P2 are the observation weight matrices for group

l (l = 1, 2).
Usually, the normal equation matrix of Equation (5) is ill conditioned, and stabilization

is needed to make the computation of a solution possible. Moreover, since the true accuracy
of the two datasets is not exactly known, it is especially necessary to determine reasonable
variance factors when building the gravity field model by combining terrestrial and airborne
gravity data. All of these requirements can be met using the variance component estimation
method (VCE) [24][

1
σ2

1
AT

1 P1A1 +
1
σ2

2
AT

2 P2A2 +
1

σ2
µ

I

]
α =

1
σ2

1
AT

1 P1y1 +
1
σ2

2
AT

2 P2y2 (6)

where σ2
1 and σ2

2 are the variance factors of terrestrial and airborne gravity disturbances,
respectively. σ2

µ is the variance factor of unknown coefficients, which is also a regularization
parameter, and I is the unit matrix. The variance factors are usually determined based
on an iterative method. Specifically, the initial variance factors σ2

1,0, σ2
2,0, and σ2

µ,0 are first
given, and then the initial SRBF coefficients are estimated with the least squares estimation
method. Then, the residuals of the least square values of the observations are further
obtained, and the new variance factors can be calculated by

σ2
l,i =

êT
l,iPl êl,i

rl,i
(7)

σ̂2
µ,i =

êT
µ,iPµêµ,i

rµ,i
(8)

where êT
l,i and êµ,i are the residuals after the ith iteration, σ̂2

l,i are the variance factors of
the lth group of observations after the ith iteration, and σ̂2

µ,i is the variance factor of the
unknown coefficients. rl,i and rµ,i are redundant numbers, which can be expressed as

rl,i = nl −
1

σ2
l,i

tr
(

AT
l,iPlAl,iN

−1
i

)
= nl −

1
σ2

l,i
tr
(

Nl,iN
−1
i

)
(9)

rµ,i = u− 1
σ2

µ
tr
(

PµN−1
i

)
(10)

where nl represents the number of gravity observations of group l (l = 1, 2), u is the number
of coefficients of SRBFs, Al,i is the design matrix at the ith iteration, Nl,i is the matrix of the
normal equation at the ith iteration, and Ni is the total normal equation matrix at the ith
iteration. tr stands for trace operation. For the computation of the partial redundancies in
Equations (9) and (10), the inverse matrix N−1

i of normal equations is needed. We use the
stochastic trace estimation theorem proposed by Hutchinson [25].

After the new variance factors are calculated, the next loop is entered until the conver-
gence condition of the following equation is satisfied:

max
|σ̂ 2

l,i − σ̂2
l,i−1

∣∣∣
σ̂2

l,i
≤ τ (l = 1, 2) (11)

where τ is the convergence threshold, and we set τ = 0.01 in this study.
Applying the least squares method to Equation (6), the unknown coefficients are

estimated as
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α̂ =

[
1
σ2

1
AT

1 P1A1 +
1
σ2

2
AT

2 P2A2 +
1

σ2
µ

I

]−1[
1
σ2

1
AT

1 P1y1 +
1
σ2

2
AT

2 P2y2

]
(12)

Inserting the coefficients of Equation (12) back into Equation (1), we can obtain the
residual disturbing potential Tres(x).

The residual height anomaly is related to the residual disturbing potential Tres(x) by

ζres(x) =
Tres(x)

γ
(13)

where γ is the normal gravity defined at the telluroid and ζres(x) is the residual height anomaly.
Then, during the recovery procedure, we add back the height anomaly component

of the GGM and the topographic effects, and a full-wavelength height anomaly ζ(x) can
be obtained.

Finally, the geoid undulation can be obtained by the following conversion:

N(x) = ζ(x) +
∆gB

γ
H, (14)

where H is the orthometric height, N(x) is the geoid undulation, and ∆gB is the simple
Bouguer anomaly. Higher-order terms of the separation term [26] are not considered here,
to be consistent with previously published procedures.

3. Gravity Data Processing and Analysis
3.1. Area of Interest

The Colorado geoid computation experiment is a collaborative effort involving the
international geodetic community [27]. The study region is located between −110◦ and
−102◦ longitude and between 35◦ and 40◦ latitude, primarily within the state of Colorado,
USA. The area is characterized by mostly rugged terrain, which is evident in the topographic
map displayed in Figure 1a. The average elevation in this region is approximately 2017 m.
The highest peak reaches an elevation of 4376 m, while the lowest point is at 932 m. The
St. Louis Valley, which is an extensive depositional basin, is situated in the central part of the
study area. It covers an approximate area of 21,000 km2. To the west of the St. Louis Valley are
the San Juan Mountains, which comprise a rugged mountain range of the Rocky Mountains.
The eastern part of the study area consists of a plateau where the terrain is relatively flatter
compared to other regions. This geographical information is important in understanding the
challenges of the study area in refining the regional geoid model in Colorado.
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3.2. Datasets Used for Modeling

The available data for the Colorado geoid computation experiment include terrestrial
and airborne gravity data, GSVS17 GPS/leveling data, and GGMs. The terrestrial gravity
data were provided by the National Geodetic Survey (NGS) and consist of 59,303 values
obtained from over 137 survey campaigns, covering the entire area of the Colorado geoid
project (see Figure 1b). Grigoriadis et al. studied the spatial density of the point values for
the area, and the results found that only 21.25% of the total cells of the 1′ grid contain at
least 1 point value, and approximately 50% of the cells of the 2′ grid contain at least one
value [28]. Therefore, it is more reasonable to build a geoid model with a resolution of less
than 2′ × 2′.

The raw airborne data use the Gravity for the Redefinition of the American Vertical
Datum (GRAV-D) Block MS05. The east-west track spacing is 10 km, while the north-south
cross-track spacing is 80 km. The mean flight altitude is approximately 6200 m. Figure 1b
illustrates the distributions of the survey lines in the area. As shown in Figure 1b, the lines
are relatively evenly distributed and cover most of the study area. However, the coverage of
airborne and terrestrial gravity data does not overlap completely. The airborne gravity data
cover the latitudes between 35◦ ≤ ϕ ≤ 38.3 and longitudes between −109◦ ≤ λ ≤ −102◦.
There are no airborne data available for latitudes between 38.3◦ < ϕ ≤ 40◦ and longitudes
between −110◦ ≤ λ < −109◦ (Figure 1b). Moreover, the raw gravity data from MS05
are subject to biases between different tracks. Therefore, data from MS05 were debiased
using the maximum median technique [29] and then resampled to 1 Hz. Finally, a dataset
consisting of 283,716 data points was obtained. In addition, the GRAV-D Team defines the
Fourier wavelength of the smallest recoverable feature as [30]

λ f = 3.08× Zc (15)

where Zc is the height of the measurement point above the center of the spherical body
that causes the anomaly. In this study, the average altitude of the aircraft is 6.2 km, and the
average topographic height is approximately 2 km; then, the distance of Zc is approximately
4.2 km. By substituting Zc = 4.2 into Equation (15), the minimum resolvable wavelength is
calculated to be 12.9 km, corresponding to a spherical harmonic degree of approximately
1530. However, this is only a rough estimate of the resolution since the study area is
mountainous and the topographic heights vary significantly.

Additionally, a total of 222 benchmarks of Geoid Slope Validation Survey 2017 (GSVS17)
profile data [31] were provided by NGS. These benchmarks are spaced approximately
1.6 km along Highway US 160 from Durango to Walsenburg. The accuracy of the geoid
undulations inferred from the GPS-based ellipsoidal heights and the leveling-based or-
thometric heights is estimated to be approximately 1.5 cm. In addition to the GSVS17
GPS/leveling data, a mean geoid model on a 1′ × 1′ grid based on all models submitted
to ISG is used as a validation model to assess the performance of geoid models over the
entire area. Furthermore, the reference frame used for the 3-D positioning of all three types
of data (terrestrial gravity, airborne gravity, and GSVS17) is the IGS Reference Frame 2008
(IGS08) [32] on the Geodetic Reference System 1980 (GRS80) ellipsoid [33].

3.3. Data Preprocessing

In the original terrestrial data, there are cases in which several gravity observations
are located at the same position, for which we only use the first of these observations
(1090 points deleted). However, if the points share the same location but have a height
difference of more than 3 m or a gravity difference of more than 2 mGal, then these points
are both removed. Hence, 1215 points in total are excluded from the dataset (see Figure 1b).
Finally, a total of 58,088 terrestrial gravity observations in the modeling area are obtained.
Moreover, since the measurements are provided in orthometric heights H, we transform
them to ellipsoidal heights using the geoid model GEOID18B [34]. This geoid model is a
hybrid model specifically designed to convert GPS observations given in NAD83 ellipsoid
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heights to orthometric heights that are consistent with NAVD88. The airborne data have
a dense distribution, resulting in a large design matrix. To simplify the computations,
the sampling interval is reduced from 1 Hz to 1/8 Hz, and an average spatial interval of
approximately 1 km along-track is obtained. This results in a total of 31,069 airborne gravity
observations in the modeling area.

Then, for both types of observations, the following data preprocessing steps
are performed.

1© The observations are converted from absolute gravity g to gravity disturbances δg0
by subtracting the normal gravity γ at the ellipsoidal height h of the observations.

δg0 = g− γ (16)

2© The atmospheric corrections δgATM are calculated using the method proposed by
Torge [35].

δgATM = 0.874− 9.9× 10−5H × 3.56× 10−9H2 (17)

3© Atmospheric corrections are added to the gravity disturbances δg0.

δg = δg0 + δgATM (18)

3.4. Remove Procedure

Gravity data obtained in a limited area cannot resolve long wavelengths in the gravity
field. Therefore, the remove–compute–restore (RCR) procedure is usually utilized to
remove the low-frequency and high-frequency signals of gravity data before modeling.
However, when applying the RCR procedure, it is important to assess the performance of
the GGMs, as the error of the GGMs accumulates as the expansion degrees increase. In
this study, five combined GGMs are investigated: EGM2008 [36], XGM2019e_2159 [37],
SGG-UGM-2 [38], XGM2016 [39], and GECO [40]. These models were chosen because they
have relatively high accuracies and better spatial resolutions compared to other GGMs. The
error degree variance offers insight into the error of a GGM, and it supplies a rudimentary
quality assessment [41]. Figure 2 shows the degreewise accumulated geoid errors of the
five GGMs. EGM2008 exhibits a relatively large error, which rapidly increases from degrees
30 to 220, reaching approximately 7.3 cm at degree 220, and then slowly increases to 8.2 cm
at the highest degree. On the other hand, models such as XGM2019e_2159, SGG-UGM-2,
and GECO, which have similar expansion degrees, show reduced errors of approximately
3.1 cm, 1.9 cm, and 4.3 cm, respectively. The significant error in EGM2008 in the frequency
bands between degrees 30 and 220 is mainly due to the lack of data from the gravity field
and steady-state GOCE satellite. In contrast, the other three models are developed using
GOCE data, resulting in better quality in these frequency bands. Among the investigated
models, XGM2016 exhibits the minimum cumulative geoid height error. Up to degree
719, the cumulative geoid height error of XGM2016 is approximately 1.1 cm, which is
significantly lower than the corresponding values of the other four GGMs. Therefore, the
XGM2016 model up to degree 719 is chosen for the RCR procedure. It is important to note
that the error degree variance only provides a global mean of the internal error and cannot
be considered as a realistic error estimate [42].

Another important factor that influences the performance of geoid modeling is topo-
graphic effects, which play a key role in mountainous areas since they can smooth the input
observations and are of the utmost importance in obtaining a good least squares fit. The
topographic model dV_ELL_Earth2014 [43] from degree 720 to degree 2159 and a residual
terrain model ERTM2160 [44] from degree 2160 to degree ~80,000 are removed from the
terrestrial data. Similarly, for the airborne data, the effect of dV_ELL_Earth2104 from
degree 720 to degree nair is removed. Notably, we use two different topographic models
above degree 720 for the terrestrial and airborne data, which is reasonable because both
the dV_ELL_Earth2014 and ERTM2160 models are derived from the same original data
and contain the same signal. This approach ensures consistency and avoids introducing
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additional errors due to the use of different models. Notably, for airborne data, the effect of
dV_ELL_Earth2104 from degree 720 to degree nair is removed. In contrast, previous studies
have utilized different degrees for the removal of topographic contributions in airborne
data. However, we believe that removing topographic effects with degrees exceeding the
optimal expansion degree of the gravity data may introduce modeling errors. Therefore, in
this study, we only remove the topographic contributions up to the expansion degree of the
airborne data.
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Figure 3 illustrates the distributions of the terrestrial and airborne gravity disturbances
before and after the removal of the GGM and topographic effects. Figure 3a shows that
the terrestrial gravity data have full coverage over the whole study area, but they are not
evenly distributed. The dataset exhibits higher density in the central parts of the region
and lower density in the eastern, northwestern, and southwestern parts. In contrast, the
airborne data have relatively uniform coverage, although they do not cover the entire study
area (Figure 3b). Figure 3c,d clearly show that the gravity disturbances become significantly
smoother after subtracting the contributions of the GGM and topographic effects.

Table 1 presents the statistical results of the gravity observations. The standard
deviations of the terrestrial and airborne gravity disturbances are reduced from 38.72
to 6.90 mGal and from 29.56 to 3.35 mGal, respectively. The standard deviation of the
terrestrial data is reduced by 42.15% after subtracting the GGM and further reduced by
82.18% after including the topographic effects. Similarly, the airborne observations are
reduced by 72.40% after subtracting the GGM and further reduced by 88.67% after including
the topographic effects. The significant reduction in STD indicates that the removal of
the GGM and topographic effects leads to a smoother gravity field, enabling a better least
squares fit in the gravity field modeling using SRBFs. Notably, the smoothing effects are
more pronounced in the terrestrial observations compared to the airborne observations after
including the topographic model (Table 1). This is because the short-wavelength signal of
the gravity field decreases with height, and the airborne gravity data are less sensitive to the
short-wavelength part compared to the terrestrial gravity data. Consequently, subtracting
the topographic effects has a greater influence on the terrestrial gravity data compared to
the airborne gravity data. Illustrating the smoothing effects and quantifying the reduction
in STD demonstrates the importance of removing the GGM and topographic contributions
in obtaining a good least squares fit for gravity field modeling.
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Figure 3. (a,b) Gravity observations (δg); (c,d) remaining parts after both the GGM and topographic
reduction (δg− δgGGM − δgRTM) for the terrestrial data (left column) and airborne data (right column).

Table 1. Statistics of the gravity observations.

Data Max (mGal) Min (mGal) Mean (mGal) STD (mGal)

Terrestrial δg 207.88 −146.36 0.35 38.72
Terrestrial δg− δgGGM 137.40 −151.34 −5.64 22.40

Terrestrial δg− δgGGM − δgRTM 75.328 −135.86 0.76 6.90
Airborne δg 123.24 −43.88 7.33 29.56

Airborne δg− δgGGM 68.25 −43.06 0.06 8.16
Airborne δg− δgGGM − δgRTM 19.01 −18.97 0.10 3.35

4. Gravity Field Modeling

In gravity field modeling based on band-limited SRBFs, several parameters and
procedures are considered.

1© Geocentric gravitational constant (GM): 3.986 004 415 × 1014 m3/s2.
2© Average density of topographic masses (ρ0): 2670 kg/m3.
3© Geoid computations are performed in the tidefree system. GRS80 is used as the

reference ellipsoid, and the conventional constants are taken from Moritz (2000).
Apart from these fundamental parameters, four important factors that influence the

performance of SRBFs are also accounted for, namely (1) the type of the SRBFs; (2) the
location of the SRBFs; (3) the extensions of the observation area, computation area, and
target area; and (4) the maximum and minimum expansion degree of the SRBFs. Consid-
ering these parameters and procedures helps to ensure an effective and accurate gravity
field modeling process based on band-limited SRBFs. Next, we introduce the model
configuration for gravity field modeling based on band-limited SRBFs.
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4.1. Model Configuration
4.1.1. Types of SRBFs

There are many types of SRBFs that can be used for gravity field modeling, such as the
Shannon functions, the Blackman functions, the Poisson functions, and the cubic polyno-
mial functions. The Shannon function is a reproducing kernel of the space spanned by all
solid spherical harmonics of degrees n = nmin . . . nmax [45]. As a result, it does not smooth
the gravity signal in this spectral band. However, other types of SRBFs (e.g., Blackman
functions, Poisson functions, and cubic polynomial functions) with nonconstant kernel
functions might smooth some gravity field harmonics. Although some harmonic properties
still remain in the recovered signal, they might be significantly suppressed. Therefore,
one has to be careful when interpreting results based on the SRBFs with smoothing kernel
functions. Moreover, Bentel et al. studied the performance of different types of SRBFs,
and the results show that the Shannon SRBFs lead to the same results as with spherical
harmonics both in theory and in practice. Therefore, in this study, the Shannon kernel
functions are used, the specific form of which is

kn =

{
1 nε[nmin, nmax]
0 else

(19)

4.1.2. The Location of the SRBFs

The location of the SRBFs depends on the type of grid. There are many types of
grids that can be used for regional gravity field modeling, such as the Driscoll–Healy grid,
the triangle vertex grid, and the Reuter grid [46]. Eicker analyzed the advantages and
disadvantages of different types of grids, and the results show that both the Reuter grids
and the triangle vertex grids are suitable for gravity field modeling with SRBFs. Bentel et al.
noted that different types of grids do not differ significantly, especially compared to the
other three factors that influence the modeling results. In addition, the control parameter
β of the Reuter grids is related to the maximum expansion degree of SRBFs, which also
facilitates gravity field modeling. We set β = nmax, where nmax is the maximum degree of
the series expansion of SRBFs.

4.1.3. The Extensions of the Target, Observation, and Computation Area

In regional gravity modeling, the extension of the target area ∂ΩT, the observation
area ∂ΩO, and the computation area ∂ΩC needs to be defined carefully. At the edge of the
observation area ∂ΩO, the unknown coefficients cannot be appropriately estimated, which
provokes edge effects. In general, the target area ∂ΩT should be smaller than the observation
area ∂ΩO, and the computation area ∂ΩC should be larger than the observation area
∂ΩO [47]. Therefore, to minimize the edge effects in the computation, ∂ΩT ⊂ ∂ΩO ⊂ ∂ΩC
should be satisfied. In addition, the margin size η needs to be defined between the three
areas. In our case, the target area ∂ΩT is given to be between −109◦ and −103◦ and 36◦

and 39◦. Therefore, the margin size ηT,O between ∂ΩT and ∂ΩO is fixed to 1◦.
The determination of the margin size ηC,O between ∂ΩC and ∂ΩO follows the empirical

formula described by Liu et al.:

ηC,O ≈
360

nmaxcos(|ϕmax|)
(20)

where ϕmax is the maximum latitude value of the study area. In this study, nmax ≈ 5200
(see Section 4.3). By substituting this value into formula (20), the value ηC,O ≈ 0.1◦

follows. Figure 4 visualizes the target area, the observation area, the computation area, and
the margins.
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4.1.4. Maximum and Minimum Expansion Degree of SRBFs

The maximum degree of expansion of SRBFs is usually determined by high-resolution
gravity data, which can be determined by empirical rules [48]

nmax ≤
πR

Resol
(21)

where Resol represents the resolution of the gravity data. In this study, the spatial resolution
of terrestrial data is higher than that of airborne data. Therefore, the maximum expansion
degree of the SRBFs is mainly determined by terrestrial data. Moreover, Liu et al. claimed
that the average spatial interval of terrestrial gravity data is approximately 3.5 km, so they
expanded the SRBFs to degree 5600. However, the maximum expansion degree determined
by Liu et al. may be inappropriate, since Grigoriadis et al. stated that only approximately
50% of the cells in the 2′ × 2′ grid contained at least one value, which suggests that the data
distribution may not be suitable to support such a high maximum degree of expansion.
Therefore, we suggest expanding the SRBFs for terrestrial gravity data to a degree of
less than 5400. However, determining the optimal spectral range for both terrestrial and
airborne gravity data is difficult. To address this issue, we propose the residual and a priori
accuracy comparative analysis method, which will be discussed in detail in Section 4.2.

For the minimum degree of expansion, Bucha et al. noted that there is still useful
gravity information below the cutoff degree of the GGM. They concluded that starting the
series expansion of SRBFs at a lower degree, such as 0, can help to capture this useful part of
the signal. This method has been commonly used in local gravity field modeling. However,
it seems that this method is not always effective. In this study, since the contributions of
XGM2016 up to degree 719 have been removed from the original signals, we set nmin = 720.
By using this minimum degree starting from 720 instead of 0, we obtain better results, at
least in the Colorado region of this study.

4.2. Residual and A Priori Accuracy Comparative Analysis Method

To efficiently use the gravity data for gravity field modeling, the residual and a priori
accuracy comparative analysis method is proposed to determine the optimal expansion
degree of the gravity data. The procedure is as follows.

Step 1: Within a large search interval, certain degrees with a large step size are selected
as the maximum expansion degrees of the gravity data. Terrestrial-only and airborne-only
SRBF models are then built using these maximum expansion degrees. Finally, the model
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with the smallest difference between the RMS value of the modeling residuals and the
a priori accuracy of the gravity data is taken as the initial model, and its corresponding
expansion degree is identified as the initial degree.

Step 2: A smaller range around the initial degree is defined with a smaller degree step
size, and new SRBF models are constructed within this range. The differences between
these models and the GSVS17 data are calculated to obtain the STD value for each model.
Finally, the model that has the smallest STD value is determined, and the corresponding
expansion degree is considered the optimal expansion degree of the gravity data.

It is important to note that Step 1 helps to reduce the calculation time and improve the
efficiency. Due to the large amount of gravity data, calculating the STD value for the geoid
height differences for each model would require significant computational time. By initially
selecting a larger degree range, the computational effort is reduced. In Step 2, external data
(GSVS17) are used to assess the quality of the SRBF model within a smaller range. This is
because there is some uncertainty in the a priori accuracy of both terrestrial and airborne
data. By incorporating external data within a smaller degree range, the computational
effort is further reduced.

4.3. Gravity Field Modeling with SRBFs

We combine the terrestrial and airborne data using the Gauss–Markov model (Equa-
tion (5)). Saleh et al. studied the qualities of the terrestrial gravity database of NGS, and the
results show that the accuracy of terrestrial data is approximately 2.2 mGal [49]. Moreover,
Varga et al. estimated the accuracy of terrestrial gravity data assuming that the errors are
uncorrelated and obtained accuracy of 2.6 mGal. In addition, other scholars have estimated
terrestrial gravity data at 1 mGal [50] or 3 mGal [51]. However, it seems that the accuracy
of 1 mGal may be overstated, while the accuracy of 3 mGal may be understated. Therefore,
we set the a priori accuracy of the terrestrial gravity data to 2.2 mGal, which is essentially
consistent with the results of Saleh et al. Moreover, the a priori accuracy of the airborne
gravity data is approximately 1.6–2 mGal [52], and we take the median value of 1.8 mGal
as its a priori accuracy.

The determination of the optimal expansion degree of terrestrial and airborne gravity
data is conducted using the residual and a priori accuracy comparative analysis method.
Figure 5 illustrates the procedure to determine the optimal expansion degree of the gravity
data. To fully demonstrate the differences caused by the different expansion degrees of
SRBFs, the STD values of the geoid height differences between each model and GSVS17
are also calculated. Figure 5a shows that a search range of 3000 to 5400, with a step size
of 300, is selected for the terrestrial gravity data in Step 1. For the airborne gravity data, a
search range of 1600 to 3000, with a step size of 100, is chosen. When the expansion degrees
of the terrestrial and airborne data are 5100 and 1800, respectively, the RMS values of the
residuals closely match the a priori accuracy of the gravity data. Hence, these degrees are
set as the initial values of expansion for the terrestrial and airborne gravity data (depicted
by the black line in Figure 5a,b). Then, in Step 2, smaller search intervals of 4800 to 5400
(with a step size of 100) and of 1800 to 1850 (with a step size of 10) are selected for the
terrestrial and airborne data, respectively. When the expansion degrees of the terrestrial
and airborne data are 5200 and 1840, respectively, the geoid height differences reach their
minimum values (depicted by the red lines in Figure 5a,b).

In addition, as shown in Figure 5, although the residuals of the gravity disturbances
decrease with increasing expansion degree, the corresponding geoid accuracy does not
exhibit the same trend. In fact, the increase in the expansion degree only improves the
agreement between the recovered signal and the original signal, but it can also lead to
overfitting of the input gravity data when the expansion degree exceeds the optimal
expansion degree of the SRBFs. Thus, the quality of the geoid does not always improve with
increasing expansion degree. Additionally, the RMS value of the geoid height differences for
airborne gravity data rapidly increases after the expansion degree surpasses 2200, whereas
the corresponding change for terrestrial gravity data is not as significant. This indicates that
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the expansion degree of airborne gravity data may be more sensitive than that of terrestrial
gravity data. In addition, according to Equation (15), the spherical harmonic degree of
airborne gravity data is approximately 1530, whereas the optimal degree detected in our
study is 1840. The resolution of the airborne data explored in this study is approximately
10.6 km, which is smaller than that of the NGS at 12.9 km. However, in terms of the STD of
the combined geoid model with respect to GSVS17 (Table 2), the resolution determined for
the airborne data in this study seems to be more reliable than the aforementioned approach.
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Table 2. Comparison of the combined models based on different expansion degrees of SRBFs.

Model nter nair nmin Max (cm) Min (cm) Mean (cm) STD (cm)

Model I 5600 5600 0 93.6 79.6 88.6 3.1
Model II 5600 5600 720 92.0 80.8 87.1 2.6
Model III 5200 5200 0 94.0 80.5 89.1 3.1
Model IV 5200 5200 720 91.8 81.1 87.0 2.6
Model V 5200 1530 720 91.9 80.4 87.2 2.5

Model VI 5200 1840 720 91.9 80.0 87.3 2.3

5. Evaluation of the Combined Solution

In this section, we compute two sets of output gravity functionals. The first is the
geoid heights at the GSVS17 benchmarks, at which fourteen groups have provided geoid
height results. The second is a grid model from 36◦ to 39◦ and −109◦ to −103◦ with a
resolution of 1′ × 1′. Fourteen groups have provided the geoid height grid model, and the
comparison between our models and the mean of all the models is given.

5.1. Comparison to Models with Different Expanding Degrees of SRBFs

According to Equation (6), there are two variables that need to be determined: the
relative weight ω between the two types of observations and the regularization parameter
λ. Both of these variables are determined through the VCE method, which is an iterative
process to estimate the variance factors of different observation types and the prior infor-
mation. Figure 6 illustrates how the variance factors of the gravity data change during the
iteration process.
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As seen from Figure 6, the iteration starts with the initial values of σ2
1,0 = 6.25 mGal2,

σ2
2,0 = 3.24 mGal2, and σ2

µ,0 = 1× 10−13, and, after approximately four iterations, the
variance factors tend to stabilize, and convergence is reached. The result of the finally
obtained variance factors is σ2

1 = 5.56 mGal2, σ2
2 = 4.15 mGal2, and σ2

µ = 1.17× 10−13,
respectively. The relative weight ω between the airborne data and the terrestrial data
is approximately 1.34:1, and the regularization parameter λ is approximately 4752 upon
converting mGal to m/s2 (1 mGal = 1× 10−5m/s2). Notably, this result differs from that
of Liu et al., who obtained variance factors of σ2

1 = 6.13 mGal2, σ2
2 = 1.61 mGal2, and

σ2
µ = 8.17× 10−14. Such a result is possible if both the terrestrial and airborne gravity data

are expanded to the same higher degree of 5600. Since the standard deviation of the residual
airborne gravity data is small, the fitting effect is definitely better than that of terrestrial
gravity data. However, it should be noted that the estimated variance factors actually
represent the quality of the least squares fit rather than the accuracy of the data themselves.

To assess how our geoid model benefits from the residual and a priori accuracy
comparative analysis method, our optimal computed model is compared to the model
obtained with different expansion degrees of gravity data. Each model is then compared to
the GSVS17 validation data, and the geoid height differences between the models and the
GSVS17 validation data are recorded in Table 2.

The results reveal that the geoid models that are obtained with nter = 5600, nair = 5600
and nmin = 0 (Model I) and nter = 5200, nair = 5200 and nmin = 0 (Model III) for both
terrestrial and airborne gravity data perform the worst, with an STD value of 3.1 cm.
However, when the minimum degree of expansion is 720 (Models II and IV), the STD is
reduced to 2.6 cm. This suggests that the accuracy of the XGM2016 model up to a degree of
719 is higher than the residual components of the gravity data. Consequently, including
the residual signals from degrees 0 to 719 does not contribute to improving the quality
of the geoid model. This finding highlights the importance of considering the minimum
expansion degree in regional gravity field modeling based on SRBFs. We note that this
factor has often been overlooked in previous studies.

The optimal model is Model VI, which is obtained with nter = 5200, nair = 1840, and
nmin = 720. When compared to the GSVS17 validation data, the geoid height differences
have an STD value of approximately 2.3 cm, which is the smallest among all six selected
models (Table 2). The improved performance of Model VI can be attributed to the intro-
duction of the residual and a priori accuracy comparative analysis method, as well as the
special treatment of the minimum expansion degree of the SRBFs. Comparing Model VI
to Model II and Model V, which have the same expansion degree of terrestrial data but
different expansion degrees of airborne data, we find that Model II has an STD of 2.6 cm,
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while Model V has an STD of 2.5 cm, which are increased by 3 mm and 2 mm, respectively,
compared to the STD value of Model VI. Therefore, when aiming at constructing a geoid
model with accuracy of 1 cm, it is necessary to consider the potential impact of different
expansion degrees of the gravity data.

5.2. GSVS17 Comparisons

To further evaluate the quality of the optimal geoid model (hereinafter referred to
as ColSRBF2023), five geoid models are downloaded from the International Service for
the Geoid (ISG). The five models are ColFFTW2020 from Aristotle University of Thessa-
loniki (AUTh), ColSRBF2019 from the Deutsches Geodätisches Forschungsinstitut (DGFI),
ColUNBSH2019 from the Geospatial Information Authority of Japan (GSI), ColRLSC2019
from the Institute for Astronomical and Physical Geodesy (IAPG), and ColWLSC2020
from the Politecnico di Milano (Polimi). The reason for choosing these five models is that
they all follow the same RCR procedure. For example, they all use the same reference
gravity field model (XGM2016 up to degree 719) and the same methods for removing the
topographic effects. Therefore, the above models can better reflect the differences caused by
different modeling methods. Importantly, there is a bias of approximately 87 cm between
the geopotential value of the reference level and that defined by the NAVD88 datum, which
is tied to the tide gauge at Rimouski [53]. This bias has been subtracted in the comparison.
Figure 7 shows the geoid height differences of each model along the GSVS17 profile, and
Table 3 lists the statistics of the geoid height differences.
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subtracted from the models.

Figure 7 shows that the differences between each model and GSVS17 generally follow
a similar trend. The STD values of the geoid height differences range from 2.3 cm to
3.9 cm, as listed in Table 3. The model with the smallest STD value is ColSRBF2023, which
has a value of approximately 2.3 cm. Table 3 also provides the range of geoid height
differences for each model relative to GSVS17. The ranges of differences change from
11.3 cm for the ColSRBF2023 model to 22.8 cm for ColWLSC2020, with an average value of
15.7 cm. These values are quite significant considering the target accuracy of 1 cm for geoid
modeling. However, considering the uneven distribution of observations, the result is still
quite satisfactory.
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Table 3. Statistics of geoid height differences on the GSVS17 benchmarks (NModel − NGSVS17). Here,
87 cm is subtracted from the models.

Model Institution Max (cm) Min (cm) Mean (cm) STD (cm) Range (cm)

ColFFTW2020 AUTh 3.4 −10.7 −1.0 2.5 14.1
ColSRBF2019 DGFI 5.0 −10.8 −0.6 3.0 15.8

ColUNBSH2019 GSI 3.8 −9.6 −0.7 3.2 13.4
ColRLSC2019 IAPG 4.1 −12.4 −0.9 3.1 16.5
ColWLSC2020 Polimi 7.9 −14.9 0.7 3.9 22.8
ColSRBF2023 HUEL 4.9 −6.4 0.3 2.3 11.3

Note: HUEL stands for Henan University of Economics and Law, China.

In addition, as shown in Figure 7, the differences are clear around the point numbers
(Nos.) of 100 and 200, with maximum and minimum deviations of 7.9 cm and −14.9 cm,
respectively. This may be attributed to the scarcity of terrestrial gravity data in this section
(see Figure 1). Notably, around Nos. 100 and 200, the terrain changes are more significant,
and the ColSRBF2023 model is significantly improved compared with the other five models,
which indicates the effectiveness of the residual and a priori accuracy comparative analysis
method proposed in this study.

5.3. Area Comparison of Geoid Grids

Since GSVS17 is located in a relatively flat area, comparison with GSVS17 may not
reflect the quality of the model for the entire study area. Therefore, we employ the average
value of the geoid grid models submitted to ISG as a calibration model to better evaluate
the quality of ColSRBF2023. Figure 8a visualizes the geoid model of ColSRBF2023 for the
whole target area ∂ΩT, with a grid interval of 1′ × 1′, and Figure 8b shows the geoid height
differences with respect to the calibration geoid model. Table 4 provides the statistics of the
geoid height differences.
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Table 4. Statistics of the differences among the individual geoid models and the mean geoid models
at the 1′ × 1′ grid.

Model Institution Max (cm) Min (cm) Mean (cm) STD (cm) RMS (cm) Range (cm)

ColSRBF2019 DGFI 11.7 −34.0 −0.9 2.8 3.0 45.7
ColUNBSH2019 GSI 24.1 −24.0 0. 3 3.0 3.0 48.1
ColRLSC2019 IAPG 10.3 −31.5 −1.3 2.6 2.9 41.8
ColSRBF2023 HUEL 11.9 −19.9 0.1 2.4 2.4 31.8

Note: The models of ColFFTW2020 (AUTh) and ColWLSC2020 (Polimi) do not cover the whole study area, so they
are not included in the comparison.
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From Figure 8b, we can see that large differences are mainly concentrated on the
east and west sides of the target area (dark blue and dark red blocks in Figure 8b). These
areas are characterized by drastic elevation variations and sparse distributions of gravity
data, highlighting the importance of the gravity data’s density and quality. In other areas
(yellow and light blue regions in Figure 8b), the differences are relatively small, generally
not exceeding ±5 cm. Furthermore, in terms of the RMS of the geoid height differences,
ColSRBF2023 has a value of 2.4 cm, while the other three models have values of 3.0 cm,
3.0 cm, and 2.9 cm. ColSRBF2023 has the smallest RMS value among all the compared
models. Additionally, the model with the largest range of geoid height differences is
ColUNBSH2019 (GSI), reaching 48.1 cm. ColSRBF2023 performs slightly better, with a
range of 31.8 cm (Table 4). The overall average range of geoid height differences for all
models is 41.8 cm, which reflects the significant challenge in achieving 1 cm accuracy in
geoid modeling in mountainous areas.

In general, the best model in this study is the combined geoid model ColSRBF2023
with nter = 5200, nair = 1840, and nmin = 720 (Table 2). The STD and RMS values of
the geoid height differences with respect to the validation model are both 2.4 cm. The
distribution of the difference is relatively uniform, which indicates the effectiveness of
the residual and a priori accuracy comparative analysis method and the treatment of the
minimum degree of expansion of SRBFs.

6. Summary and Outlook

After the earlier work undertaken by Schmidt et al., Eicker, and Klees et al., SRBFs have
been widely used for regional gravity field modeling in the last two decades. In this study,
we combine terrestrial gravity data, airborne gravity data, GGMs, and topographic models
to calculate a high-resolution geoid model in Colorado based on band-limited SRBFs.
Detailed explanations are given regarding the determination of the optimal expansion
degree of gravity data: the optimal maximum expansion degree of terrestrial and airborne
gravity data and the minimum expansion degree of gravity data. The main conclusions are
as follows.

(1) The residual and a priori accuracy comparative analysis method can be an effective
approach to determining the optimal expansion degree of gravity data. Using this method,
the optimal expansion degrees of terrestrial and airborne data are determined to be 5200 and
1840, respectively. Additionally, the STD value of our optimal geoid model ColSRBF2023
with respect to GSVS17 data was 2.3 cm, which is smaller than all the other geoid models
in this study.

(2) The minimum degree of expansion of the gravity data also plays a role in the
modeling result. If the expansion degree is not properly determined, it can lead to geoid
height differences of ~5 mm. This highlights the importance of accurately determining the
minimum expansion degree of gravity data.

(3) Compared with ColSRBF2019, ColUNBSH2019, ColRLSC2019, and ColWLSC2020
submitted to ISG by different institutions, the ColSRBF2023 model showed a reduction in
the STD value of approximately 0.2–1.6 cm with respect to the GSVS17 data.

(4) Comparisons are also made with the mean geoid model of ISG. ColSRBF2023 for
the whole target area delivers an STD value of 2.4 cm, which is also a small value for all
participants. Moreover, there is favorable agreement between the STD value with respect to
the area mean solutions and the STD with respect to the GSVS17 GPS/leveling data, which
shows the reliability of our geoid model ColSRBF2023 to a certain extent.

Overall, in this study, we aimed to enhance the quality of the geoid model in Colorado
using band-limited SRBFs. To achieve this, the investigation and determination of the
optimal expansion degrees for both terrestrial and airborne gravity data were conducted.
The optimal geoid model was obtained when the maximum expansion degrees for terres-
trial and airborne gravity data were determined to be 5200 and 1840, respectively, while
the minimum expansion degrees for both data types were set to 720. The study demon-
strated the significance of accurately determining the spectral information of gravity data,
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particularly in rugged areas. In future studies, we plan to perform further analyses of
the remaining error sources in the determination of geoid models based on band-limited
SRBFs, including the effect of the cutoff degree of the GGM, topographic reductions, and
different approaches to handling airborne data, thereby furthering our contribution to the
1 cm geoid experiment of Colorado.
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