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Abstract: Due to the scarcity of observational data and the intricate precipitation—runoff relationship,
individually applying physically based hydrological models and machine learning (ML) techniques
presents challenges in accurately predicting floods within data-scarce glacial river basins. To address
this challenge, this study introduces an innovative hybrid model that synergistically harnesses the
strengths of multi-source remote sensing data, a physically based hydrological model (i.e., Spatial
Processes in Hydrology (SPHY)), and ML techniques. This novel approach employs MODIS snow
cover data and remote sensing-derived glacier mass balance data to calibrate the SPHY model. The
SPHY model primarily generates baseflow, rain runoff, snowmelt runoff, and glacier melt runoff.
These outputs are then utilized as extra inputs for the ML models, which consist of Random Forest
(RF), Gradient Boosting (GDBT), Long Short-Term Memory (LSTM), Deep Neural Network (DNN),
Support Vector Machine (SVM) and Transformer (TF). These ML models reconstruct the intricate
relationship between inputs and streamflow. The performance of these six hybrid models and SPHY
model is comprehensively explored in the Manas River basin in Central Asia. The findings underscore
that the SPHY-RF model performs better in simulating and predicting daily streamflow and flood
events than the SPHY model and the other five hybrid models. Compared to the SPHY model,
SPHY-REF significantly reduces RMSE (55.6%) and PBIAS (62.5%) for streamflow, as well as reduces
RMSE (65.8%) and PBIAS (73.51%) for floods. By utilizing bootstrap sampling, the 95% uncertainty
interval for SPHY-RF is established, effectively covering 87.65% of flood events. Significantly, the
SPHY-RF model substantially improves the simulation of streamflow and flood events that the SPHY
model struggles to capture, indicating its potential to enhance the accuracy of flood prediction within
data-scarce glacial river basins. This study offers a framework for robust flood simulation and
forecasting within glacial river basins, offering opportunities to explore extreme hydrological events
in a warming climate.

Keywords: flood; data-scarce; glacial river basins; hybrid modeling; multi-source; SPHY model

1. Introduction

High mountainous regions (e.g., Himalayas, Alps, Tien) encompass a myriad of
glaciers, snow cover, alpine lakes, and rivers, making them pivotal components of global
ecosystems and water resources. These regions are particularly sensitive to climate change
due to their unique interaction between climate forcing and complex terrain gradients.
Recent decades have seen a notable acceleration in glacier ablation due to the warming
climate [1]. Concurrently, shifts in snow accumulation and melt dynamics have been
induced [2]. Moreover, the intensity of extreme rainfall events in high-elevation regions
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has exhibited a remarkable 15% amplification for every degree Celsius of warming, a
pace roughly twice as rapid as previously documented [3]. These shifts have substantial
implications for runoff patterns, overall water availability [4], and the occurrence of floods,
such as the severe flood in Pakistan in 2022 [5]. Consequently, the imperative for dependable
flood prediction in this context is paramount to support sustainable water resource planning
and management strategies.

Flood or streamflow simulation models are generally categorized into three primary
groups: physical-based models, statistical or machine learning-based models, and a hybrid
of both. The physical-based hydrological models rely on climate forcings and represent
various hydrological processes through mathematical formulations [6]. Notable examples
include Spatial Processes in Hydrology (SPHY) [7], Variable Infiltration Capacity model
(VIC) [8], and Soil Water Assessment Tool (SWAT) [9], which have found extensive use
in simulating catchment dynamics and runoff processes in alpine regions [10]. However,
acquiring high-quality climate data as inputs and streamflow records for model calibration
is a noteworthy challenge. The limited density of meteorological observation networks often
gives rise to significant uncertainties [11]. Additionally, physical-based hydrological models
are constrained by their simplified representation of hydrological processes. Even with
abundant climate forcings and deliberated calibration, the physical-based model cannot
fully reproduce the observed streamflow [12]. Furthermore, physical-based models can only
simulate hydrologic fluxes and state variables predefined during model configuration. They
cannot leverage other observed land surface characteristics (e.g., land surface temperature)
to improve model performance. These limitations ultimately impede the attainment of
precise flood prediction.

The statistical or machine learning (ML) approach has been successfully applied to
water environment research over two decades [13,14] by exacting the patterns from hydro-
logic observations. The ML-based hydrological models generally consist of meteorological
variables and an expression accounting for the statistical relationship between these vari-
ables and streamflow [15]. Typically, ML-based hydrological models require less expertise
and time for developing and calculating [16], and can solve highly nonlinear problems
without considering the physical processes [17]. Furthermore, they usually perform bet-
ter than physical-based hydrological models [11,18]. In recent years, the long short-term
memory (LSTM) model, with its unique internal structure, has demonstrated unparalleled
popularity and robustness in hydrologic modeling [19]. However, the main problem of
ML-based hydrological models is that it has no physical process and can only find rules
from the data. This requires the observation records used to train the ML model to cover
a wide range of hydrologic variability, which is usually unavailable in data-scarce high
mountainous regions. For example, ML-based hydrological models cannot describe the
dynamic accumulation and melting process of glaciers, so it is difficult to capture their
tipping points [20] under climate change in alpine regions, leading to inaccurate predictions
in many situations. Therefore, the performance of the ML approaches may suffer from
extrapolation, limiting their applications in prediction under changing climate.

To address the inability of ML-based hydrological models to account for complex phys-
ical processes, the hybrid model was proposed to combine the strengths of physical-based
hydrological models and ML techniques. Currently, the commonly used hybridization ap-
proach is adding the outputs of physically informed models into ML models. The outputs
of physically informed models could be simulated streamflow and intermediate variables
(e.g., snowmelt runoff) [20]. Similarly, Xu et al. [21] used the outputs (i.e., snowmelt and
rainfall) of physically informed models as inputs of Convolutional Long Short-Term Mem-
ory. Though hybrid models have made significant progress, most of the daily scale or flood
studies focus on low-altitude areas, or the application of hybrid models in high mountain-
ous regions is mainly applied to monthly scale runoff simulation. However, there is no
report on applying the hybrid model to study streamflow or flood in high mountainous
areas. This is due to data-scarce regions like high-altitude glacial river basins; obtaining
reliable hydrological data can be challenging. Sparse and irregular data coverage, coupled
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with the complex interactions between glaciers, snow, and rain, poses significant hurdles to
conventional modeling approaches. Since accurate streamflow prediction leads to effective
water resources management and flood warning, it is valuable and necessary to enhance
the performance of streamflow or flood simulation over alpine regions.

To this end, the primary aim of this study is to enhance flood event simulations in
high-altitude glacial river basins with limited available data. By merging the strengths
of multi-source remote sensing data to calibrate model parameters and integrating the
physical insights of the widely used Spatial Processes in Hydrology (SPHY) model with
the predictive capabilities of ML algorithms, we intend to elevate the accuracy and de-
pendability of flood simulations. The study’s objectives are to address the following
questions: (1) Can the proposed hybrid model enhance the capacity for flood event sim-
ulation? (2) Can the multi-objective parameter calibration method improve the ability of
runoff simulation for the SPHY model? (3) Can better alignment of inputs to physical
processes improve the hybrid’s flood simulation capabilities? This study diverges from its
predecessors in three key aspects: (1) It attempts hybrid modeling in data-limited glacial
river basins in high mountainous regions to amplify flood modeling capacity; (2) It employs
multi-source remote sensing data and emphasizes the calibration of physical models to
augment flood simulation performance; (3) The bootstrap sampling technique was used to
provide uncertain intervals for flood prediction results of the hybrid model. This innovative
hybrid model is tested to simulate daily streamflow in Central Asia’s typical alpine region,
the Manas River basin.

In summary;, this research aims to bridge the methodology and information gap be-
tween physical-based hydrological modeling and ML approaches to enhance the simulation
of flood events in data-scarce high-altitude glacial river basins. By combining the strengths
of these two methodologies, we aspire to contribute to advancing hydrological modeling
techniques, ensuring more accurate predictions of flood patterns. Ultimately, this study
has the potential to provide valuable insights for water resource management, disaster
mitigation, and climate change adaptation strategies in regions highly vulnerable to the
impacts of climate change.

2. Study Area and Data
2.1. Study Area

This study was conducted in the source region of the Manas River Basin (MRB). The
Manas River originates on the northern slope of the Tianshan Mountains, situated in the
heartland of Central Asia. It is China’s largest artificial oasis area and the fourth largest
irrigation district [22]. Additionally, the river forms a crucial part of the Economic Belt
on the Northern Slope of the Tianshan Mountains. The MRB encompasses the catchment
between 84°30'~86°30'E and 43°~44°N, with an upstream contributing area of 5156 km?,
extending to the Kensiwate station (Figure 1). Discharge at the Kensiwate station follows
an uneven seasonal distribution, with approximately 80% occurring during the months
from June to September. As Ji and Chen [23] reported the annual average precipitation in
the MRB at around 550 mm. The genesis of floods within the Manas River is primarily
attributed to its mountainous terrain. Floods in the lower mountain regions result from
heavy rainfall, while in the middle mountain areas, snow melting and intense rainfall
contribute to floods. In the high mountain regions, permanent snowmelt constitutes the
predominant flood source. The basin features elevations exceeding 3100 m, characterized by
perennial snow and glaciers, while the lower mountain and hilly areas experience thicker
snow accumulation during autumn and winter.
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Figure 1. Map of the headwater catchment of Manas River Basin.

With the gradual increase in temperatures during July and August, the annual peak
floods typically manifest within this timeframe, occasionally extending to June. The
principal flood type in the Manas River is associated with snowmelt, accompanied by
rain-induced and mixed-type floods, the latter being more pronounced during significant
flood events. The annual peak flow predominantly transpires between June and August,
particularly from late July to early August. Floods primarily originate from the middle
mountain areas, marked by substantial year-to-year fluctuations in peak flow. The steep
topography pronounced longitudinal slopes of the mountainous regions and the water-
shed’s inherent limited storage capacity contribute to rapid flood escalation and decline,
short-lived peak durations, and brief peak occurrences.

From hydrological records spanning 1955 to 2008 at the Kensiwate Hydrological
Station, the highest recorded peak flow within the mountainous of the Manas River reached
1110 m3/s, while the lowest was measured at 192 m3/s [24]. Among the 53 years of
recorded flood data from the Kensiwate Hydrological Station, the highest flow frequencies
were observed in July, surpassing half of the total series. Moreover, within a 30-day interval
from mid-July to early August, the highest flow frequencies accounted for 81.1% of the
entire series.

2.2. Data

The observed daily streamflow data at the Kensiwate hydrological station were col-
lected by the Xinjiang Hydrological Bureau during 2002-2012. IMERG-F (Integrated Multi-
satellite Retrievals for Global Precipitation Measurement Final) is a remote-sensing precip-
itation product [25] with a spatial resolution of 0.1° x 0.1° used in this study. It utilizes
microwave and infrared observational data from multiple satellites, including the GPM
satellite and satellite-based precipitation estimators. It combines these data with ground-
based precipitation measurement site information and employs advanced precipitation
estimation algorithms to achieve global-scale estimation of precipitation distribution. The
average, maximum, and minimum temperatures were collected from China’s meteorologi-
cal forcing datasets (2002-2012) [26]. The MOD15A2H MODIS Leaf Area Index was used
to calculate potential evapotranspiration [27].



Remote Sens. 2023, 15, 4527

50f21

The Digital Elevation Model (DEM) with a grid size of 90 m was obtained from the
CGIAR Consortium for Spatial Information (CGIAR-CSI) (http:/ /eros.usgs.gov/find-data,
accessed on 1 September 2023). These data were resampled to 1 km x 1 km model resolution
to calculate the slope, cell drainage direction, and for lapsing of temperature fields [28], to
extract watersheds into sub-basins, generated river networks, and define water bodies and
outlets. The glacier outlines defined in RGI6.0 for the RGI region 13 (Central Asia) were
used in this study [29]. The initial ice thicknesses for individual glaciers were derived from
modeled glacier ice depths [30]. MODIS snow cover data [31] and Geodetic glacier mass
balance data [1] calibrate snow and glacier melt parameters over glaciers. Hydraulic soil
properties used in this study were derived from HiHydroSoil (1 km x 1 km) and resampled
to model resolution [32]. Land use data used in the model were derived from the European
Space Agency Climate Change Initiative (ESA CCI) data set [33].

3. Methodology
3.1. SPHY Model

In this investigation, we employ the Spatial Processes in Hydrology (SPHY) v3
model, which is a spatially distributed (raster-based) “leaky-bucket”-type water balance
model [34]. This model has been purposefully designed to facilitate large-scale cryospheric-
hydrological research; it effectively integrates a range of hydrological processes, encom-
passing (a) rainfall-runoff, (b) cryospheric processes, (c) evapotranspiration, and (d) soil
hydrological processes. Notably, SPHY exhibits remarkable versatility in its spatial scala-
bility, accommodating various spatial scales such as sub-basin, basin, and regional levels.
For this particular investigation, the model operates on a daily time step with a spatial
resolution of 1 x 1 km. The total runoff (Qr,) for each grid cell at any time step in the
model is the sum of glacier melt runoff (Qgr), snowmelt runoff (Qgsr), rainfall-runoff

(Qrr), and baseflow (Qpr).

Qrot = Qgr + Qsr + Qrr + Qpr- 1)

The model maintains dynamic snow storage, soil water storage, and groundwater
storage for each grid cell. Snowmelt runoff is computed for snow-covered land surface
grid cells, and the corresponding runoff over glacier surfaces is termed glacier runoff. Cal-
culating snowmelt involves a degree-day approach with calibrated melt rates. Before melt
calculation at each time step, sublimation is estimated and removed from snow storage.
The model also considers meltwater refreezing within the snowpack. Snowmelt runoff is
generated when snowmelt surpasses the storage threshold. Rainfall-runoff encompasses
surface runoff from rainfall and lateral flow from soil water storage. Surface runoff is deter-
mined through saturation excess runoff. The model derives reference evapotranspiration
using the Modified Hargreaves method [35]. Soil moisture, influenced by soil properties,
land use, and capillary rise, is subjected to evapotranspiration, with any remaining water
contributing to river discharge via lateral flow or surface runoff. Baseflow runoff arises
from groundwater storage release, and each type of runoff is routed downstream through a
simple recession coefficient method.

To address model equifinality concerns effectively, a three-step calibration strategy is
implemented. Firstly, parameters associated with snow processes are calibrated utilizing
MODIS snow cover data [31]. Following this, parameters linked to glacier melt are fine-
tuned utilizing remote sensing-based geodetic glacier mass balance data [1]. Finally, rainfall-
runoff and routing parameters are calibrated by leveraging observed streamflow data.

The parameter calibration of the physical process model typically involves three
phases: model warm-up, calibration, and verification. To ensure an accurate comparison
with the hybrid approach, our study designates 2002 as the warm-up period, although no
direct comparison is drawn. The calibration and validation periods span from 2003 to 2007
and 2008 to 2012, respectively, and are collectively termed the training and testing periods
in subsequent analysis.
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3.2. Machine Learning Algorithms

ML is a branch of Artificial Intelligence that focuses on enabling computers to learn
from data and improve performance automatically without explicit programming. The
fundamental idea of ML is to allow computers identification of patterns, rules, and trends
from extensive data, accomplishment of tasks like prediction, classification, and recognition.
Currently, there exists a wide array of ML algorithms, making it challenging to enumerate
them all. However, the primary objective of this study is to test whether hybrid models
can enhance the accuracy of flood simulations in high mountainous regions. Thus, the
following provides a brief introduction to six ML algorithms, including classical Support
Vector Machine (SVM), ensemble learning algorithms like Random Forest (RF) and Gradient
Boosting (GDBT), as well as the deep learning algorithms that have garnered significant
attention recently, such as Deep Neural Networks (DNN), LSTM, and Transformer (TF).

All six ML models are implemented in Python, mainly using two Python modules,
sklearn and torch. The GridSearchCV technique [36] was utilized in this study to optimize
the hyperparameters. GridSearchCV meticulously navigates the ML model’s performance
landscape by exhaustively scanning the designated hyperparameter combinations, leading
to the identification of the optimal hyperparameter configuration. Consequently, the
optimal hyperparameter combinations for the six selected ML models are obtained and
presented in Table 1.

Table 1. Hyperparameter settings for RF, GDBT, LSTM, TF, SVM and DNN.

Algorithm Hyperparameter Value Algorithm Hyperparameter Value
Number of trees 300 Number of Layers 1
Maximum number of features 4 Hidden Units 8
Minimum samples of split 10 Number of Attention Heads 2
RF Maximum depth None TF Learning Rate 0.001
Minimum samples of nodes 5 Batch Size 8
for leaf
Learning rate 0.001 Number of Training Steps 1000
Number of trees 3000 Learning Rate 0.001
Maximum number of features 3 DNN Epochs 1000
GDBT Minimum samples of split 10 hidden layers 20
Maximum depth 8 Activation Function ReLu
Minimum samples of nodes 2 C 20
for leaf
Training algorithm adam SVM kernel rbf
Minimum batch size 120 gamma 0.15
LSTM maximum epochs 1200
Initial learning rate 0.01
Learning rate decline factor 0.5

In the context of the hybrid model, data are partitioned into two subsets: the training
dataset and the testing dataset. Each subset encompasses 50% of the data, the proportional
division chosen due to the SPHY model’s training period spanning from 2003 to 2007,
with the subsequent testing period occurring between 2008 and 2012. To ensure a fair and
balanced comparison, an equivalent-length testing dataset is selected. The training dataset
primarily serves the purpose of determining model parameters, whereas the testing dataset
is primarily employed to assess and compare the performance of different models.

3.2.1. Random Forest

RF is an ensemble method rooted in decision trees, random subspace, and Bootstrap
aggregating, commonly used for regression tasks [37]. It averages predicted values from
multiple decision trees to produce the final result [38]. In RF, each decision tree is built



Remote Sens. 2023, 15, 4527

7 of 21

using a subset of training data and random features, curbing overfitting and enhancing
generalization. Its strength is handling intricate variable relationships, capturing non-linear
patterns, and mitigating noisy data. Prediction-wise, individual tree outputs are combined
through techniques like averaging (for regression) or voting (for classification), yielding a
dependable result. RF highlights feature importance, aiding in identifying pivotal variables.
With its robustness, scalability, and applicability to diverse domains—finance, healthcare,
language processing, and image analysis—RF effectively addresses bias and variance,
making it a favored choice among data scientists and ML practitioners.

3.2.2. Gradient Boosting

GDBT is a robust ensemble learning algorithm for regression prediction tasks [39]. By
iteratively constructing decision trees, GDBT gradually deepens and increases their number
to capture intricate relationships among input and output variables. It effectively manages
large-scale datasets and high-dimensional features [40]. GDBT sequentially combines weak
learners to create a strong predictor to enhance model accuracy. Through iterative itera-
tions, each new model rectifies the errors made by its predecessors, refining predictions. It
accomplishes this by adjusting misclassified instance weights, ultimately delivering precise
predictions. The optimization process involves gradient descent, progressively enhancing
the model’s performance by minimizing a predefined loss function. The technique’s popu-
larity is evident in notable implementations like XGBoost, LightGBM, and CatBoost, which
efficiently handle diverse data types. Widely used in regression, classification, and ranking
tasks, GDBT excels at managing complex relationships and generating robust predictions.

3.2.3. Long Short-Term Memory

LSTM is a specialized variant of the recurrent neural network (RNN), adept at pre-
dicting time series phenomena [41]. In contrast to conventional RNNs, LSTM replaces
hidden units with memory cells encompassing memory cell state, input gate, forget gate,
and output gate. This gate-controlled information and memory flow addresses gradient
vanishing/exploding issues [42]. LSTM excels at capturing intricate patterns and long-term
dependencies, adapting to various data distributions, and bolstering capacity through
stacked layers. These attributes are suitable for complicated hydrological time series analy-
sis [43]. For supervised learning, the time series dataset can be structured using past time
steps to predict subsequent steps via the sliding window approach. This study adopts a
window width of one, transforming the time series into a supervised learning problem. The
LSTM model consists of an input layer, two LSTM layers, and an output layer. To combat
overfitting, early stopping regularization is employed during training. This technique halts
training when validation loss ceases to improve.

3.2.4. Transformer

TF is a groundbreaking deep learning architecture that revolutionized natural language
processing and beyond. Introduced by Vaswani et al. [44] in 2017, it replaced traditional
sequence-to-sequence models by introducing the “self-attention” mechanism, allowing it
the capture of long-range dependencies in data. The TF’s core innovation is the attention
mechanism, which assigns different weights to different words in a sequence based on
their contextual relevance, enabling it to process inputs in parallel rather than sequentially.
This boosts efficiency and parallelism in computation, making it highly scalable. The TF
architecture is divided into an encoder and a decoder, allowing it the handling of tasks
like machine translation, text generation, and time series forecasting and classification [45].
Its effectiveness and versatility have led to its adoption beyond NLP, finding applications
in image generation, speech recognition, and even drug discovery. With its attention-
based model and parallel processing capabilities, the TF has become the foundation for
many state-of-the-art deep learning models, showcasing its enduring impact on many
Al applications.
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3.2.5. Support Vector Machine

SVM is a robust supervised ML algorithm for classification and regression tasks [46].
It works by finding the optimal hyperplane that best separates different classes of data
points in a high-dimensional space. SVM aims to maximize the margin between classes,
making it robust against overfitting. It can handle linear and nonlinear data using different
kernels to transform the input space. SVM is effective for both small and large datasets
and is widely used in image recognition, text categorization, and bioinformatics due to its
ability to handle complex decision boundaries and high-dimensional data. Due to its good
generalization ability and robustness, SVR is suitable for handling high-dimensional data
and is particularly effective in dealing with nonlinear problems [47].

3.2.6. Deep Neural Network

A DNN is an advanced ML model inspired by the human brain’s neural structure.
It consists of multiple layers of interconnected nodes called neurons which process and
transform input data. DNNSs excel in learning intricate patterns and features from complex
data, making them highly effective for tasks like image and speech recognition, natural
language processing, and even game playing. DNN depth enables them to automatically
extract hierarchical representations of data, learning abstract features at each layer. DNNs
adjust their internal weights during training through backpropagation to minimize pre-
diction errors. This process allows them good generalization to new, unseen data. While
their power lies in capturing intricate relationships, DNNs also require substantial data
and computational resources for training, which might lead to overfitting without proper
regularization techniques. Despite these challenges, DNNs have revolutionized various
fields, advancing Al capabilities and driving innovation across industries [48].

3.3. Hybrid Model

Figure 2 illustrates the three-step process for constructing the proposed hybrid model.
In Step 1, meteorological data (precipitation (P), average temperature (Tair), maximum
temperature (Tmax), and minimum temperature (Tmin)), static data (DEM, soil data, land
use data), and remote sensing data (glacier depth, glacier area, LAI data) are employed to
establish the SPHY model. Additionally, MODIS snow cover fraction (SCF) data, remote-
sensing-derived glacier mass balance (GMB) data, and observed data are used to calibrate
the SPHY model, with the parameter calibration utilizing the NSGA-II algorithm. Moving
to Step 2, the SPHY model’s outputs (baseflow, glacier melt runoff, snowmelt runoff, and
rain runoff), along with the meteorological data and SCF, are combined as inputs to create
hybrid models. Subsequently, the simulated streamflow and flood of these hybrid models
are compared. In Step 3, the optimal hybrid model is selected based on the comparisons
from Step 2. To quantify uncertainty, the bootstrap resampling technique is applied to derive
the uncertainty interval of the selected optimal hybrid model, and then the uncertainty
is analyzed.

3.4. Performance Measures

Given the versatility and ease of interpretation, the following four performance mea-
sures were comprehensively used to qualitatively evaluate the performance of the devel-
oped models: root mean squared error (RMSE), correlation coefficient (CC), Nash-Sutcliffe
efficiency coefficient (NSE), and percent bias (PBIAS), which were expressed as follows:

n o 2
RMSE — \/Zi_l (ysm;l ]/obs) , (2)
CC Z?:l (]/obs — yobs) (]/sim — ysim) , (3)

VI Wobs — Tope)? Kt s — T
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NSE=1-— Z?:l(yobs - ysim)z (4)
o n = 27
Z:i:l (yobs yobs)
PBIAS(%) _ Z:i:l (%sim - yohs) % 100, )
Yi1 Yobs

where 7 is the number of observations; y;,, represents the simulated streamflow; v, is the
observed flow; and ., ¥.;,, denote the average of observed and simulated streamflow,
respectively. The CC, ranging from —1 to 1, quantifies the collinearity between simulations
and observations. A value of CC =0 indicates an absence of linear relationship, while CC =1
or —1 signifies a perfect positive or negative linear relationship. The RMSE measures the
standard deviation of the differences between predicted and observed streamflow values.
A smaller RMSE signifies closer agreement between predictions and observations. The
NSE is a normalized metric that gauges the relative residual variance against the variance
of measured data. Meanwhile, the PBIAS, ranging from —oo to co, captures the average
tendency of simulated data to exceed or fall short of observed values, presenting over- and
underestimation as a percentage, the best value of PBIAS is 0. The performance evaluation
criteria of the hydrological models in regard to NSE and PBIAS is shown in Table 2.

[Mctcorological data L Static data J [ RS data
(P, Tmax.Tmin,Tair) DEM.Soil.Landuse (Glacier,LAI)
| |

4

[ '
! 1
4 1
4 1
g 1
! 1
! 1
: 1
Step 1: | RS data calibration calibration Observed {
SPHY model ] | [ (SCE.GMB) SN e ol Streamflow E
g A
! NSGJA-II :
]
! | [ | | :
f v h J v v i
‘| Basefl Glacier melt Rain runoff Snowmelt | [P,Tmax,Tmin,| |
{ sERiy runoff runoff Tair, SCF_J |
l __________ * ____________________________________ '
Step 2:
Hybrid models MLs(RF, SVM, train Observed
comparison GDBT,DNN,LSTM,TF) Streamflow

y

Uncertainty and
Performances Assessment

Step 3: | E
Uncertaiﬁty : Bootstrap|resampling 1
i i

1 1

1 1

1 1

1 1

Figure 2. Flowchart of constructing the proposed hybrid model.

Table 2. The performance evaluation criteria of the hydrological models [49].

Performance Rating NSE IPBIAS| (%)
Very Good 0.70 < NSE < 1.00 IPBIAS | <25
Good 0.50 < NSE < 0.70 25 < IPBIAS| <50
Satisfactory 0.30 < NSE<0.5 50 < IPBIAS| <70
Unsatisfactory NSE < 0.30 IPBIAS| > 70
4. Results

4.1. Streamflow Simulated by SPHY Model

Effective model inputs are crucial for enhancing simulation capabilities, demanding
thorough attention. Prior investigations underscore the significance of glacier runoff
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and snowmelt runoff within the hybrid model [20], substantiating their pivotal role in
enhancing runoff simulation accuracy. In line with these insights, the present study employs
a multi-objective calibration approach to meticulously calibrate model parameters across
various components.

The snow module parameters are systematically optimized to minimize discrepancies
between mean monthly simulated snow cover fractions within the SPHY model and those
observed through MODIS snow cover data [31]. Figure 3a displays the time series of simu-
lated snow cover fractions for the Manas basin, while Table 3 presents the corresponding
performance metrics. Utilizing the parameter set calibrated via the NSGA-II algorithm,
the SPHY model exhibits robust performance, closely aligning its simulated snow cover
fractions with those derived from Muhammad, S. and Thapa, A. [31]. During the training
period, the modeled and observed outcomes exhibit remarkable proximity, evidenced
by an NSE value of 0.76, a CC value reaching 0.88, an RMSE value of merely 0.1, and
a Bias value of 6.46%. The model’s performance showcases even greater consistency to
some extent during the testing period, reflecting an RMSE value of approximately 0.07,
an NSE value of 0.87, a CC value of 0.93, and a Bias value hovering around —3.47. The
performance during the testing period exhibited improvement, potentially attributed to
the SPHY model’s ability to capture a higher snow cover fraction within that timeframe,
aided by the parameters calibrated based on the MODIS SCF data. Figure 2b displays the
multi-year monthly mean of simulated and observed snow cover fractions for the Manas
basin. SPHY underestimates snow cover fractions for the autumn, while the other months
simulate very well. Given the influence of cloud shading on the MODIS snow area product,
the snow simulation is considered as notably satisfactory.

1.04 —e— MODIS SCF —e— Simulated SCF @) osd MODIS SCF —e— Simulated SCF (b)
< 307
= 081 =
% 206
§ 0.6 "g 0.5
£ 0
Z 041 z
) & 03
0.2 0.2
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 ol > 3 5 3 10 2
Date-monthly Month
Figure 3. (a) Monthly simulated snow cover fractions (SCF) by SPHY model and MODIS SCF;
(b) multi-year monthly mean simulated SCF by SPHY model and MODIS SCF.
Table 3. Statistical evaluations of annual glacier melt, monthly snow cover fraction and daily
streamflow simulated by the SPHY model.
Training Period Testing Period
Variabl
aniables NSE cC RMSE  PBIAS (%) NSE cC RMSE  PBIAS (%)
Glacier (Y) 0.21 0.94 0.04 km? 4.05 -12.9 0.51 0.13 km? 1.18
Snow (M) 0.76 0.88 0.10 6.46 0.87 0.93 0.07 —3.47
Streamflow (D) 0.85 0.93 19.09 m3/s 7.10 0.86 0.93 20.88 m3/s 1.6

Note: Y, M, and D denote Yearly, Monthly, and Daily, respectively.

The time series of simulated glacier mass balance for the Manas basin is shown in
Figure 4, and Table 3 shows corresponding performance metrics. With the calibrated
optimal parameter, the SPHY model performs well and simulated glacier mass balances
are consistent with observations [1]. Throughout the training period, the modeled and
measured glacier mass balance for the Manas Basin Glacier exhibited remarkable proximity,
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reflected in an impressive correlation coefficient (CC) value of up to 0.94, a remarkably
low root mean square error (RMSE) value of merely 0.04 km?3, and a bias value of 4.05%.
Although the model’s performance undergoes a slight decline during the testing period,
it remains acceptable across the entirety of the study duration, as evidenced by relatively
favorable performance metrics—approximately 0.13 km? for RMSE, 0.51 for the CC value,
and about 1.18% for Bias. The observed performance dip during the testing period is
primarily attributed to the suboptimal accuracy displayed in 2009 and 2010, manifesting
as substantial overestimations and underestimations. Despite NSE values of 0.21 during
training and —12.9 during testing, indicating subpar performance, the simulation remains
relatively satisfactory. This is primarily due to the inherent discontinuities in both the
temporal and spatial dimensions of the glacier mass balance data sourced from Hugonnet
et al. [1], necessitating interpolation. Consequently, the temporal alterations in glacier mass
balance data are comparatively modest. In actuality, the melt of the Manas River glacier
is significantly influenced by temperature and precipitation. A glance at Figure 3 reveals
that in 2009 and 2010, there was a conspicuous reduction in snow cover area in contrast to
other years, resulting in a significantly elevated glacier melt volume in 2010. Conversely,
the diminished snow cover in 2009 contributed to a reduced glacier melt volume, primarily
attributable to lower temperatures. This, in turn, resulted in noticeably diminished runoff
for the same year, which can be found in Figure 5a. Furthermore, the multi-year average
glacier melt volume from the simulation closely converges with observation at 0.329 km?
and 0.321 km3, respectively. Additionally, the trends of annual glacier melt volumes,
—0.017 km3/year for simulation and —0.013 km3/year for observation, are remarkably
consistent. These simulated values adeptly capture the glacier’s melting trend. Hence, the
results of the glacier simulation presented in this study are deemed reasonable.

|
<

|
=3
¥

—0.3 1

Cumulative glacier mass balance (km3/y)

-0.4
0.51 —e— Simulation -—— —0.017 km*/year
—&— Observation == —0.013 km3:‘year
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Year

Figure 4. Annual cumulative glacier balance simulated by SPHY model.
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Figure 5. Simulated streamflow using the SPHY model and observations presented as time series
(a) and scatter (b). The red dotted line in (a) indicates the flood line. The solid red line in (b) indicates
a 1:1 line.
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The time series simulated daily streamflow within the Manas basin, which is pre-
sented in Figure 5, while Table 3 provides an exposition of the corresponding performance
metrics. Notably, the SPHY model exhibits commendable performance, with the simulated
daily streamflow closely aligned with observational data. Specifically, for the Manas basin,
the concurrence between modeled and observed streamflow is particularly pronounced
during the calibration period. With a notable NSE value of 0.85, an impressive correla-
tion coefficient (CC) value of up to 0.93, an RMSE value of only 19.09 m?/s, and a Bias
value of 7.10%, the model’s fidelity is evident. Evaluation indicators presented in Table 3
substantiate the model’s robustness during the testing period, with an RMSE value approx-
imating 20.88 m?3/s, an NSE value of 0.86, a CC value of 0.93, and a Bias value of around
1.6%. Comparing the NSE, CC, and RMSE values between the training and validation
periods underscores their close alignment, affirming the model’s adeptness and strong
generalization capabilities.

In this study, flood is defined as the minimum flood record value of the Kensiwate
hydrological station which is 192 m3/s. From Figure 5a, it can be found that the uneven
distribution of flood occurrences across various years is notable. Over the ten years from
2003 to 2012, 81 flood events were recorded. Remarkably, during the training period, merely
29 floods were observed, while the testing period accounted for 52 floods. The average
magnitude of simulated flood events during the training interval registered at 189.67 m3/s.
In contrast, the corresponding observed average flood magnitude was 228.60 m3/s, de-
noting an underestimation of 17.02%. A similar pattern was observed during the testing
period, where the average observed flood magnitude reached 244.80 m®/s, in contrast to
the simulated average flood magnitude of 172.11 m?/s, translating to an underestimation
of 29.69%. As can be seen from Figure 5b, the SPHY model significantly underestimates
flooding but is very good for other runoff simulations. These findings distinctly underscore
the limitations of the SPHY hydrological model in encapsulating flood events.

In fact, it is common for runoff simulations to underestimate flood events in high
mountain areas [50], in particular the physical-based hydrological model. The root of
this limitation can be traced to the paucity of high-quality observed temperature and
precipitation data within the Manas River basin. Moreover, the utilization of remote
sensing precipitation products, characterized by the averaging of precipitation over a
0.1° x 0.1° grid, while the spatial resolution of the SPHY model is set as 1 km x 1 km,
results in the attenuation of precipitation peaks. As an integral factor influencing flood
simulations, temperature similarly contributes to this limitation. Despite downscaling
through bilinear interpolation, the lower resolution of temperature products impedes accu-
rate reconstruction of temperature peaks, subsequently hampering precise flood simulation.
This issue resonates as a universal challenge across data-scarce regions.

4.2. Streamflow Simulated by Hybrid Models

Table 4 displays the statistical metrics of NSE, CC, RMSE and PBIAS for both the
training and testing periods for six hybrid models (namely SPHY-RF, SPHY-GDBT, SPHY-
SVM, SPHY-DNN, SPHY-LSTM, and SPHY-TF) utilized for simulating streamflow in the
Manas River basin. The optimal outcomes among the six models are highlighted in bold.
Notably, the NSEs indicate “very good” ratings (i.e., NSE > 0.70) for six hybrid models.
Furthermore, compared with the results in Table 3, it becomes evident that the performance
of all hybrid models notably surpasses that of the physical-based SPHY model. This
aligns with the common observation that statistical models tend to outperform physical-
based models in streamflow simulation [51]. This highlights the capacity enhancement of
streamflow modeling by combining physical models with ML. Assessing CC, NSE, and
RMSE among the six hybrid models, the SPHY-GDBT model excels during the training
period, while SPHY-RF performs best during the testing period. In terms of generalization,
SPHY-RF is better suited for streamflow simulation. Additionally, a comparison among
the hybrid models reveals that ensemble-learning-based hybrid models (SPHY-GDBT and
SPHY-RF) significantly outperform the simple Support-Vector-Machine (SPHY-SVM)- and
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deep-learning-based hybrid models (SPHY-DNN, SPHY-LSTM, and SPHY-TEF). It is also
noticeable that the performance of the simple SVM is comparatively poorer. Thirdly, deep-
learning-based hybrid models (SPHY-DNN, SPHY-LSTM) demonstrate remarkable stability,
exhibiting minimal deviation between the training and testing periods, consistent with
prior research [21].

Table 4. Statistical evaluations of daily streamflow simulated by hybrid models.

Training Period Testing Period
Models

NSE cC RMSE PBIAS NSE cC RMSE PBIAS

SPHY-RF 0.991 0.996 5.07 —0.05% 0.966 0.982 9.727 0.6%

SPHY-GDBT 0.995 0.999 3.46 0.0% 0.953 0.976 11.39 1.2%
SPHY-SVM 0.877 0.940 18.91 —2.8% 0.892 0.948 17.24 —2.9%

SPHY-DNN 0.918 0.958 15.75 —0.07% 0.904 0.946 16.65 0.9%

SPHY-LSTM 0.921 0.961 15.27 3.7% 0.921 0.961 14.80 2.9%

SPHY-TF 0.968 0.988 9.61 —1.3% 0.927 0.965 14.20 2.0%

To evaluate the performance of hybrid models in streamflow simulation, the simulated
streamflow of the hybrid models was compared against the physical-based model SPHY,
as shown in Figure 6, since the training and testing datasets for hybrid models are divided
based on the same distribution principle. In contrast, the physical model divides them
based on chronological order; for a fair comparison, all simulated data were juxtaposed.
From Figure 6, it is evident that all hybrid models outperform the SPHY model. Among
them, SPHY-SVM performs the poorest (Figure 6¢), with only partial simulated results
outperforming the physical model. The advantage is insignificant for most points, and even
some high flows are noticeably underestimated. Although SPHY-DNN beats SPHY-SVM
regarding evaluation metrics in Table 4, the comparison between Figure 6¢,d reveals a
similar high-flow simulation performance that some high flows are noticeably underes-
timated. The SPHY-TF model (Figure 6f) exhibits a slight advantage over the physical
model in a flood simulation. However, within 50~150 m3/s of streamflow, it tends to
overestimate, and this phenomenon does not occur in other models. Moreover, all the
other five hybrid models can significantly reduce the overestimations of the SPHY model
around 200 m3/s. Comparing the well-performing models SPHY-RF, SPHY-GDBT, and
SPHY-LSTM, it is observed that relative to SPHY-LSTM, both SPHY-RF and SPHY-GDBT
can simulate high-flow effectively. Among them, SPHY-GDBT performs better, possibly due
to better performance during the training period and some degree of overfitting, leading
to its inferior performance compared to SPHY-RF during validation. Through the above
results, it is found that the hybrid model, namely SPHY-RF, is more suitable for streamflow
simulation and prediction.

4.3. Flood Simulated by Hybrid Models

Accurate prediction of high flows is paramount for informed decision-making to
prevent water resource wastage during flood events. This study defines the minimum flood
value as the lowest recorded flood value of the Kensiwate hydrological station, amounting
to 192 m3/s [24]. To evaluate the flood simulation performance of various hybrid models
during the testing period, the results of each model are compared to observed values, as
depicted in Figure 7. The graphical representation distinctly showcases the superior flood
simulation performance of the SPHY-RF hybrid model over the other five counterparts.
Specifically, SPHY-SVM (Figure 7c), SPHY-DNN (Figure 7d) and SPHY-LSTM (Figure 7e)
exhibit substantial underestimation of flood values, with their scatter plots exhibiting high
similarity. This suggests their unsuitability for flood prediction. Moreover, despite SPHY-
TF’s comparatively lower performance when juxtaposed with SPHY-RF and SPHY-GDBT,
it still demonstrates notable potential in flood prediction. Contrary to the prevalent belief
in the pronounced advantages of deep learning algorithms in diverse studies, this research



Remote Sens. 2023, 15, 4527

14 of 21

Simulation (m3/s)

Simulation (m*/s)

@
",

=
g 2
=
F
&

300

asserts that for straightforward, small-scale size problems, RF outperforms them. Deep
learning algorithms such as LSTM and TF might require a larger quantity of samples to
effectively train model parameters and attain a heightened level of model stability.

. . 400 . . 400 . V
e  SPHY Simulation e  SPHY Simulation e  SPHY Simulation
& 5 5 : . L4 ’ . .
e  SPHY-RF Simulation 350 e  SPHY=-GDBT Simulation 350 e  SPHY=-SVM Simulation
300 300
Q | =
& 250 ™ 250
£ . £ e o
z e = o %
E] ERY
B 150 £ 150 °
172} w
100 100
50 50
(b) (c)
0 o
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Observation (m3fs) Observation (mze‘si Observation (m3«’s)
N . 400 . . 400 . -
e  SPHY Simulation e  SPHY Simulation e  SPHY Simulation
e  SPHY-DNN Simulation 350 e  SPHY-LSTM Simulation 350 e  SPHY-Transformer Simulation
300 300 °
Q Q
& 250 ° “& 250
1 = .
L] S 200 “ ° e o® .S 200 [ ] °
® g 7] f [ g .
2 150 3 2 150
= £
1z w
100 100
50 50
(d) () U]
0 o
0 50 100 150 200 250 300 350 400 o 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Observation (m*/s)

Observation (mzs‘s)

Observation (m3/s)

Figure 6. Comparison of the streamflow simulated by the SPHY model and hybrid models presented
as scatter The solid red line in (a—f) indicates a 1:1 line.
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Figure 7. Comparison of the streamflow simulated by the hybrid models presented as scatter for the

testing period The solid red line in (a—f) indicates a 1:1 line.

Table 5 presents the evaluation metrics for flood simulations by hybrid models and
the SPHY hydrological model to assess the flood modeling capability of hybrid models.
Although the training and testing period divisions differ between the SPHY and the
hybrid models, the simulation results of the SPHY model still hold certain reference values.
From Table 5, it is evident that during the training period, almost all hybrid models
outperform the SPHY model, except for SPHY-SVM, which performs better in terms of
NSE but worse in other metrics than the SPHY model, suggesting that SPHY-SVM may
not be suitable for flood simulation. Among the hybrid models, SPHY-GDBT exhibits the
best performance during the training period, but its testing results deteriorate rapidly,
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possibly due to overfitting. Regarding the testing period, SPHY-RF achieves the best
results, with the highest NSE, CC, and lowest RMSE, PBIAS. Although NSE and CC
decreased more than the training period, the consistent performance of RMSE and PBIAS
indicates the reliability of SPHY-RF’s training outcomes. The hybrid models based on
deep learning demonstrate noticeable improvements over the physical SPHY model, yet
they still lag behind SPHY-RF, suggesting that deep learning models still have room for
enhancement in flood simulation. All models in Table 5 exhibit negative PBIAS values in
both training and testing periods, indicating an underestimation of flood values. Like other
ML streamflow forecasting models, discrepancies with observed peaks could be attributed
to various factors: (1) IMERG remote sensing’s inability to capture extreme precipitation;
(2) the absence of consideration for glacial lake bursts during summer; (3) inaccurate
outputs generated by SPHY due to limited climate data, and (4) challenges inherent to
ML in predicting extreme values. Typically, extreme values reside in the tail of the data
distribution, while most training data cluster around the distribution’s center. Models
might lack sufficient examples of extreme values to predict such scenarios accurately. In
conclusion, all the analysis above highlights that the SPHY-RF model excels not only in
curve fitting ability during the training period but also in its capacity for generalization.

Table 5. Statistical evaluations of flood simulated by hybrid models and the SPHY model.

Training Period Testing Period
Models
NSE ccC RMSE PBIAS NSE ccC RMSE PBIAS

SPHY-RF 0.708 0.899 27.23 —13.22% 0.323 0.757 29.91 —18.83%
SPHY-GDBT 0.922 0.995 14.05 —12.20% 0.021 0.611 44.78 —22.47%
SPHY-SVM —2.678 0.035 96.80 —78.87% —2.702 0.164 87.12 —73.37%
SPHY-DNN —1.501 0.117 79.82 —57.90% —1.486 0.192 71.39 —53.23%
SPHY-LSTM —0.404 0.224 59.82 —28.11% —0.372 0.344 53.05 —28.31%
SPHY-TF 0.660 0.898 29.41 —18.91% —1.412 0.341 70.32 —41.77%
SPHY —3.58 0.185 66.08 —38.92% —1.572 0.348 87.62 —71.10%

To enhance flood simulation and provide more informative flood forecasting, this
study employed the Bootstrap resampling technique to sample the inputs of the SPHY-
RF model 10,000 times. The resulting 95% confidence interval was utilized to quantify
uncertainty. As depicted in Figure 8a, the uncertainty interval width for all data was
12.20 m3/s, with a Percentage of Coverage (POC) of 92.03%. Notably, the majority of
observed values were encompassed within the 95% confidence interval, except for certain
extreme flood events. Figure 8b displays the uncertainty intervals for 84 flood values
from 2003 to 2012. The uncertainty interval width was 91.66 m3/s, with a POC of 87.65%.
Although certain flood events lie outside the realm of the uncertainty interval, this interval
still offers valuable insights. According to statistical analysis, the average value of points
exceeding the upper boundary of the uncertainty interval is 30.51 m>/s. In contrast, the
average value of these flood events is 263.4 m>/s. This indicates that the upper boundary of
the uncertainty interval underestimates floods by 11.5%. However, in practical application,
this discrepancy can be rectified through real-time corrections. Certainly, the hybrid model
failed to capture certain flood events due to the absence of flood-related information among
the inputs, such as exceptional heavy rainfall and abrupt events like glacier lake outbursts.
Consequently, regardless of the sampling approach, consistently underestimated points will
remain so. Furthermore, the figure indicates that flood predictions above approximately
220 m3/s generally tend to underestimate actual values. This discrepancy might arise from
the scarcity of samples representing such extreme floods in the hybrid models dataset,
leading to larger deviations and consequently increased uncertainty intervals in predictions.
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Figure 8. Uncertainty estimation by SPHY-RF: (a) streamflow, (b) flood.

5. Discussion
5.1. Can the Multi-Objective Parameter Calibration Method Improve the Ability of SPHY Model
Streamflow Simulation?

To answer the question of whether the combined use of MODIS snow cover data,
remote sensing-derived glacier mass balance data, and streamflow for calibrating the SPHY
model can enhance its runoff simulation capability, an experiment was conducted that
calibrating the SPHY model parameters by streamflow alone. The results are presented
in Table 6. A comparison between the evaluation metrics in Tables 2 and 6 reveals that
simulation through multi-objective calibration of parameters significantly outperforms
those obtained through streamflow-only calibration. Notably, NSE improved by 4.9%
during training and 13.1% during testing. A comparison of simulation results during
both training and testing periods indicates that multi-objective calibration yields more
consistent results, as evidenced by NSE, CC, and RMSE values closely aligning. In con-
trast, the streamflow-only calibration demonstrates noticeable disparities, possibly due to
overfitting. Numerous studies have explored the advantages of multi-objective calibration.
For instance, Chen et al. [52] employed the MODIS snow cover area (SCA) product, the
snow water equivalent (SWE) product, and Gravity Recovery and Climate Experiment
(GRACE) satellite-derived total water storage (TWS) to calibrate model parameters, high-
lighting superior outcomes compared to single-objective calibration. Similarly, in a study
by Liu et al. [53], multi-objective calibration schemes employing ET and TWSC products
exhibited enhanced accuracy in runoff simulation. Such investigations underline the com-
plexity of hydrological issues in high-altitude regions, encompassing interwoven factors
like snowmelt, rainfall, snowmelt runoff, and glacier runoff. Multi-objective calibration
effectively captures this complexity, enhancing model accuracy by balancing various per-
formance indicators and avoiding over-optimizing specific metrics, thereby enhancing the
model’s predictive capacity for unforeseen future scenarios.
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Table 6. Statistical evaluations of daily streamflow simulated by the SPHY model calibrated by

streamflow alone.

Periods NSE CC RMSE (m3/s) PBIAS (%)
Training Period 0.81 091 21.48 -10.38
Testing Period 0.76 0.88 28.54 —9.45

5.2. Can Better Alignment of Inputs to Physical Processes Improve the Hybrid Model’s Flood
Simulation Capabilities?

The findings from Sections 4.2 and 4.3 highlight SPHY-RF’s superiority over other
models. Thus, we exclusively employed the RF algorithm to couple with the SPHY model,
calibrated solely by streamflow (referred to as SPHY-RF2), to explore whether incorporating
the ML algorithm inputs aligned with actual physical processes can enhance streamflow
and flood simulation capabilities. The statistical assessments of daily streamflow simulated
by SPHY-RF2 are presented in Table 7. Compared it to the results of the SPHY model
calibrated by streamflow alone (referred to as single-objective calibrated) in Table 6, it can
be seen that SPHY-RF2 exhibits improved runoff simulation capability. However, similar to
the single-objective calibrated SPHY model, it performs better during the training than the
testing period.

Table 7. Statistical evaluations of daily streamflow and flood simulated by the SPHY-RF2 model
while the SPHY model calibrated by streamflow alone.

Training Periods Testing Periods
Models
NSE ccC RMSE PBIAS NSE ccC RMSE  PBIAS
SPHY-RF2 (streamflow) 0.987 0.993 6.17 ~0.0 0.920 0.959 14.91 —0.4%
SPHY-RF2 (flood) —1.669 0.188 39.43 —29.7% —1.349 0.107 48.69 —32.6%

In contrast to SPHY-RF, besides the closely matched PBIAS metric, SPHY-RF2 consis-
tently outperforms all other indicators during training and testing periods, indicating that
aligning input variables with actual processes enhances runoff simulation. Furthermore,
distinct differences emerge in flood simulation between SPHY-RF and SPHY-RF2, with the
latter demonstrating superior performance. This underscores that alignment with actual
processes significantly enhances flood simulation. In ML, model performance heavily
hinges on input samples. Floods, being extreme values with limited samples, could be
improved for effective information representation. Inadequate capture of flood-related
details by input factors results in simulation degradation. When comparing single-objective
calibrated (Table 6) with multi-objective calibrated (Table 3) approaches, the latter con-
sistently yields superior NSE performance. This metric’s sensitivity to extremes implies
that fewer flood-related details are captured in the single-objective calibrated SPHY model.
Consequently, capturing flood information becomes challenging even when employing RF
fitting, leading to poorer performance.

5.3. The Potential of Hybrid Models for Flood Prediction in High Mountainous Regions

Combining physical models with ML methods holds immense potential for flood fore-
casting in high mountainous, usually data-scarce regions [54]. This synergistic approach
leverages the strengths of both methods to address the complexity and uncertainty inherent
in flood prediction within these intricate environments. Firstly, physical models provide
a robust foundation by integrating fundamental physical laws that govern hydrological
processes. Coupling these models with ML techniques allows for a deeper understanding
of the intricate interactions among glacier melt, snowmelt, rainfall, and other runoff compo-
nents. ML algorithms excel at capturing nonlinear relationships, capturing subtle nuances
that traditional models might overlook. Secondly, ML methods adapt to real-time data,
enabling dynamic adjustments in predictions based on rapidly changing meteorological
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conditions and evolving patterns of glaciers and snowmelt. This adaptability is crucial for
capturing the rapid responses characteristic of high-altitude environments. Thirdly, uncer-
tainty is inherent in hydrological modeling, especially in data-scarce regions. Employing
ML techniques aids in quantifying uncertainty, providing more reliable probabilistic flood
forecasts, which are vital for decision-makers and emergency responders. Fourthly, ML
models trained in one region can be fine-tuned and generalized for other data-scarce moun-
tainous areas, aiding regions lacking sufficient historical data to swiftly adopt predictive
models. In conclusion, combining physical models and ML methods is pivotal in flood
forecasting in high-altitude regions. This integrated approach enhances predictive accuracy
and contributes to wiser decision-making, disaster preparedness, and sustainable water
resource management, particularly in areas vulnerable to the impacts of climate change.

5.4. Limitations of the Current Study

The results of this study suggest that integrating physical models and ML methods to
predict floods in high-altitude mountainous areas is a promising approach that comes with
several limitations. Firstly, this hybrid model lacks model interpretability. ML methods
often manifest as black-box models, making it challenging to interpret their decision-making
processes. Although the hybrid model inputs in this study have physical properties, there
are no physical constraints in the process of being used for ML, which makes it still hard to
understand the contributing factors to a flood event. Secondly, the issue of data imbalance
is noteworthy. Flood events are typically infrequent, resulting in datasets predominantly
composed of non-flood events and a sparse representation of flood events. Extra measures
may be necessary to balance the data to prevent the model from leaning excessively toward
non-flood events. Thirdly, the risk of overfitting still exists. When integrating complex
models with numerous parameters, there is a risk of overfitting, particularly when data
are limited. For example, the best performing model in this study, SPHY-RF, performed
better in the training period than in the testing period, so it is necessary to use more data to
train the model in practical applications. Furthermore, there are concerns regarding the
applicability of this approach under changing climate conditions. Predicting floods under
changing climate conditions is challenging. Changes in precipitation and temperature can
lead to fluctuations in the outputs of models like SPHY. When incorporated into hybrid
models, these variations can compound, making it difficult to apply the model to predict
floods under changing climate conditions. Despite these limitations, integration of physical
models and machine learning methods still promises to improve flood prediction accuracy
in high-altitude mountainous regions, especially when data are scarce. Overcoming these
challenges requires further research and methodological enhancements to fully harness the
potential of this approach.

6. Conclusions

To enhance flood simulation in data-scarce glacial river basins, we present a novel
hybrid modeling approach that leverages multi-source remote sensing data, a physically
based hydrological model (SPHY), and machine learning (ML) techniques. Within this
hybrid model, remote sensing data, including MODIS snow cover data and glacier mass
balance data, are effectively employed to calibrate the SPHY model. The SPHY model
generates crucial components like baseflow, rain runoff, snowmelt runoff, and glacier
melt runoff in the high mountainous regions, which act as new inputs for the subsequent
ML components. This newly developed hybrid model undergoes rigorous training and
validation assessments. Subsequently, the best performing hybrid model is selected through
comprehensive comparisons, followed by an uncertainty analysis.

Through a case study within the Manas River basin in Central Asia, our study reveals
several significant insights. First and foremost, the hybrid model (SPHY-RF) markedly en-
hances flood simulation accuracy compared to the standalone physical-based hydrological
model (SPHY) which plays an important role in flood forecasting. Remarkably, SPHY-RF
outperforms five other hybrid models (SPHY-GDBT, SPHY-LSTM, SPHY-DNN, SPHY-TE,
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SPHY-SVM) regarding both streamflow and flood simulation in the testing period. It may
be due to the lack of training data that the performance of hybrid models based on deep
learning algorithms is not as good as that of RF. Additionally, the integration of multi-
objective optimization demonstrates its potential to improve streamflow simulation for the
SPHY model, subsequently enhancing the streamflow and flood simulation performance
of the SPHY-RF model. By utilizing bootstrap sampling, the 95% uncertainty interval for
SPHY-REF is established, effectively covering 87.65% of flood events.

In conclusion, our findings highlight the substantial potential of the hybrid modeling
approach for simulating floods in data-scarce glacial river basins. This approach not
only establishes a robust framework for flood simulation and forecasting in complex
environments, but also lays the groundwork for investigating extreme hydrological events
under the influence of a warming climate in alpine regions worldwide.

Author Contributions: All authors contributed to the work. Conceptualization, X.L. and D.Z,;
methodology, YW. and W.R,; software, TM. and W.R,; validation, J.S., R.Z. and W.R.; formal analysis,
W.R,; investigation, W.R.; resources, W.R.; data curation, W.R. and T.M.; writing—original draft
preparation, W.R.; writing—review and editing, X.L., D.Z. and R.Z,; visualization, W.R. and T.M.;
supervision, X.L. and D.Z.; project administration, X.L. and D.Z.; funding acquisition, W.R. and J.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos.
42101406 and 42101397).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editors and the reviewers for their crucial.
comments and suggestions, which improved the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al.
Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726-731. [CrossRef]

2. Kraaijenbrink, P.D.A ; Stigter, E.E.; Yao, T.; Immerzeel, W.W. Climate change decisive for Asia’s snow meltwater supply. Nat.
Clim. Chang. 2021, 11, 591-597. [CrossRef]

3. Ombadi, M,; Risser, M.D.; Rhoades, A.M.; Varadharajan, C. A warming-induced reduction in snow fraction amplifies rainfall
extremes. Nature 2023, 619, 305-310. [CrossRef]

4. Cui, T; Yang, T.; Xu, C.-Y,; Shao, Q.; Wang, X,; Li, Z. Assessment of the impact of climate change on flow regime at multiple
temporal scales and potential ecological implications in an alpine river. Stoch. Environ. Res. Risk Assess 2018, 32, 1849-1866.
[CrossRef]

5. Nanditha, J.S.; Kushwaha, A.P; Singh, R.; Malik, L; Solanki, H.; Chuphal, D.S.; Dangar, S.; Mahto, S.S.; Vegad, U.; Mishra, V. The
Pakistan flood of August 2022: Causes and implications. Earth’s Future 2023, 11, e2022EF003230. [CrossRef]

6.  Robertson, D.E.; Pokhrel, P.; Wang, Q.]. Improving statistical forecasts of seasonal streamflow using hydrological model output.
Hydrol. Earth Syst. Sci. 2013, 17, 579-593. [CrossRef]

7. Khanal, S.; Lutz, A.F,; Kraaijenbrink, PD.A.; van den Hurk, B.; Yao, T. Variable 21st century climate change response for rivers in
High Mountain Asia at seasonal to decadal time scales. Water Resour. Res. 2021, 57, e2020WR029266. [CrossRef]

8. Wang, N,; Liu, W.; Wang, H.; Sun, E; Duan, W,; Li, Z; Li, Z.; Chen, Y. Improving streamflow and flood simulations in three
headwater catchments of the Tarim River based on a coupled glacier-hydrological model. J. Hydrol. 2021, 603, 127048. [CrossRef]

9. Duan, Y;; Meng, E; Liu, T.; Huang, Y.; Luo, M.; Xing, W.; De Maeyer, P. Sub-daily simulation of mountain flood processes based
on the modified soil water assessment tool (swat) model. Int. |. Environ. Res. Public Health 2019, 16, 3118. [CrossRef]

10. Yang, T.; Cui, T.; Xu, C.-Y,; Ciais, P.; Shi, P. Development of a new IHA method for impact assessment of climate change on flow
regime. Glob. Planet Chang. 2017, 156, 68-79. [CrossRef]

11.  Ren, W,; Yang, T.; Shi, P; Xu, C.-Y.; Zhang, K.; Zhou, X,; Shao, Q.; Ciais, P. A probabilistic method for streamflow projection and
associated uncertainty analysis in a data sparse alpine region. Glob. Planet Chang. 2018, 165, 100-113. [CrossRef]

12. Khan, M.S.; Coulibaly, P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 42. [CrossRef]

13.  Adnan, RM.; Heddam, S.; Liang, Z.; Zounemat-Kermani, M. Least square support vector machine and multivariate adaptive
regression splines for streamflow prediction in mountainous basin using hydrometeorological data as inputs. J. Hydrol. 2020,
586, 124371. [CrossRef]

14. Xu, T.; Liang, F. Machine learning for hydrologic sciences: An introductory overview. WIREs Water 2021, 8, €1533. [CrossRef]


https://doi.org/10.1038/s41586-021-03436-z
https://doi.org/10.1038/s41558-021-01074-x
https://doi.org/10.1038/s41586-023-06092-7
https://doi.org/10.1007/s00477-017-1475-z
https://doi.org/10.1029/2022EF003230
https://doi.org/10.5194/hess-17-579-2013
https://doi.org/10.1029/2020WR029266
https://doi.org/10.1016/j.jhydrol.2021.127048
https://doi.org/10.3390/ijerph16173118
https://doi.org/10.1016/j.gloplacha.2017.07.006
https://doi.org/10.1016/j.gloplacha.2018.03.011
https://doi.org/10.1029/2005WR003971
https://doi.org/10.1016/j.jhydrol.2019.124371
https://doi.org/10.1002/wat2.1533

Remote Sens. 2023, 15, 4527 20 of 21

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.
38.

39.

40.

41.
42.

43.

44.

Wang, X.; Yang, T.; Wortmann, M.; Shi, P.; Hattermann, F; Lobanova, A.; Aich, V. Analysis of multi-dimensional hydrological
alterations under climate change for four major river basins in different climate zones. Clim. Chang. 2017, 141, 438. [CrossRef]
LeCun, Y,; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436—444. [CrossRef]

Chen, S.; Zhang, Z.; Lin, J.; Huang, J. Machine learning-based estimation of riverine nutrient concentrations and associated
uncertainties caused by sampling frequencies. PLoS ONE 2022, 17, e0271458. [CrossRef]

Humphrey, G.B.; Gibbs, M.S.; Dandy, G.C.; Maier, H.R. A hybrid approach to monthly streamflow forecasting: Integrating
hydrological model outputs into a Bayesian artificial neural network. J. Hydrol. 2016, 540, 623-640. [CrossRef]

Feng, D.; Liu, J.; Lawson, K.; Shen, C. Differentiable, learnable, regionalized process-based models with multiphysical outputs
can approach state-of-the-art hydrologic prediction accuracy. Water Resour. Res. 2022, 58, e2022WR032404. [CrossRef]

Ren, WW.,; Yang, T.; Huang, C.S.; Xu, C.Y.; Shao, Q.X. Improving monthly streamflow prediction in alpine regions: Integrating
HBV model with Bayesian neural network. Stoch. Environ. Res. Risk Assess 2018, 32, 3381-3396. [CrossRef]

Xu, T.; Longyang, Q.; Tyson, C.; Zeng, R.; Neilson, B.T. Hybrid Physically Based and Deep Learning Modeling of a Snow
Dominated, Mountainous, Karst Watershed. Water Resour. Res. 2022, 58, €2021WR030993. [CrossRef]

Zhang, Z.; Li, Z.; He, X. Progress in the research on glacial change and water resources in Manas river basin. Int. Soil. Water
Conserv. Res. 2014, 25, 332-337. (In Chinese)

Ji, X;; Chen, Y. Characterizing spatial patterns of precipitation based on corrected TRMM 3B43 data over the mid Tianshan
Mountains of China. J. Mt. Sci. 2012, 9, 628-645. [CrossRef]

Ye, J. Analysis on Ecological Environment Protection and Monitoring of Water Source Project in Manas River in Xinjiang. WCSTE
2021, 27, 41-44. (In Chinese)

Huffman, G.J. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG); NASA Algorithm
Theoretical Basis Doc., Version 06; NASA: Washington, DC, USA, 2020; p. 39. Available online: https://gpm.nasa.gov/sites/
default/files/2020-05/IMERG_ATBD_V06.3.pdf (accessed on 1 September 2023).

Chen, Y,; Yang, K,; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving land surface temperature modeling for dry land of China.
J. Geophys. Res. Atmos. 2011, 116. [CrossRef]

Myneni, R.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. NASA
EOSDIS Land Processes DAAC. 2015. Available online: https:/ /Ipdaac.usgs.gov/dataset_discovery/modis/modis_products_
table/mod15a2h_v006/ (accessed on 1 September 2023).

Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. AGU 2008, 89, 93-94.
[CrossRef]

Pfeffer, W.T.; Arendt, A.A,; Bliss, A.; Bolch, T.; Cogley, ].G.; Gardner, A.S.; Wyatt, F. The Randolph Glacier Inventory: A globally
complete inventory of glaciers. J. Glaciol. 2014, 60, 537-552. [CrossRef]

Farinotti, D.; Huss, M.; Fiirst, ].J.; Landmann, J.; Machguth, H.; Maussion, F,; Pandit, A. A consensus estimate for the ice thickness
distribution of all glaciers on Earth. Nat. Geosci. 2019, 12, 168-173. [CrossRef]

Muhammad, S.; Thapa, A. An improved Terra—Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product
(MOYDGLO06*) for high-mountain Asia between 2002 and 2018. Earth Syst. Sci. Data 2020, 12, 345-356. [CrossRef]

Boer, ED. HiHydroSoil: A high resolution soil map of hydraulic properties (Version 1.2), Report 984. Future Water 2016, 31, 1-32.
Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C. Land Cover cci-Product User Guide-Version 2,
ESA Public Doc. CCI-LC-PUG(2.4). 2014. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-
cover?tab=overview (accessed on 1 September 2023).

Terink, W.; Lutz, A.F.; Simons, G.W.H.; Immerzeel, W.W.; Droogers, P. SPHY v2.0: Spatial Processes in HYdrology. Geosci. Model
Dev. 2015, 8, 1687-1748. [CrossRef]

Hargreaves, G.; Samani, Z. Reference crop evapotranspiration from temperature. Appl. Eng. Agric 1985, 1, 96-99. [CrossRef]
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine learning in Python. J. Mach. Learn Res.
2011, 12, 2825-2830.

Breiman, L. Random forests. Mach. Learn 2001, 45, 5-32.

Schoppa, L.; Disse, M.; Bachmair, S. Evaluating the performance of random forest for large-scale flood discharge simulation.
J. Hydrol. 2020, 590, 125531. [CrossRef]

Bui, Q.T; Chou, T.Y;; Hoang, T.V.; Fang, YM.; Mu, C.Y.; Huang, PH.; Meadows, M.E. Gradient boosting machine and object-based
CNN for land cover classification. Remote Sens. 2021, 13, 2709. [CrossRef]

Rahman, A.; Hosono, T.; Quilty, ].M.; Das, J.; Basak, A. Multiscale groundwater level forecasting: Coupling new machine learning
approaches with wavelet transforms. Adv. Water Resour. 2020, 141, 103595. [CrossRef]

Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural. Comput. 1997, 9, 1735-1780. [CrossRef]

Huang, H.; Feng, G.; Cao, Y.; Feng, G.; Dai, Z.; Tian, P.; Wei, ].; Cai, X. Simulation and Driving Factor Analysis of Satellite-Observed
Terrestrial Water Storage Anomaly in the Pearl River Basin Using Deep Learning. Remote Sens. 2023, 15, 3983. [CrossRef]

Zhou, E; Chen, Y; Liu, J. Application of a New Hybrid Deep Learning Model That Considers Temporal and Feature Dependencies
in Rainfall-Runoff Simulation. Remote Sens. 2023, 15, 1395. [CrossRef]

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30, 5998-6008.


https://doi.org/10.1007/s10584-016-1843-6
https://doi.org/10.1038/nature14539
https://doi.org/10.1371/journal.pone.0271458
https://doi.org/10.1016/j.jhydrol.2016.06.026
https://doi.org/10.1029/2022WR032404
https://doi.org/10.1007/s00477-018-1553-x
https://doi.org/10.1029/2021WR030993
https://doi.org/10.1007/s11629-012-2283-z
https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf
https://gpm.nasa.gov/sites/default/files/2020-05/IMERG_ATBD_V06.3.pdf
https://doi.org/10.1029/2011JD015921
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2h_v006/
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2h_v006/
https://doi.org/10.1029/2008EO100001
https://doi.org/10.3189/2014JoG13J176
https://doi.org/10.1038/s41561-019-0300-3
https://doi.org/10.5194/essd-12-345-2020
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=overview
https://doi.org/10.5194/gmd-8-2009-2015
https://doi.org/10.13031/2013.26773
https://doi.org/10.1016/j.jhydrol.2020.125531
https://doi.org/10.3390/rs13142709
https://doi.org/10.1016/j.advwatres.2020.103595
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3390/rs15163983
https://doi.org/10.3390/rs15051395

Remote Sens. 2023, 15, 4527 21 of 21

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Li, S.; Jin, X,; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X,; Yan, X. Enhancing the locality and breaking the memory bottleneck of
transformer on time series forecasting. Adv. Neural Inf. Process. Syst 2019, 32, 5243-5253.

Vapnik, V.; Golowich, S.E.; Smola, A. Support vector method for function approximation, regression estimation, and signal
processing. Adv. Neural Inf. Process. Syst. Denver 1996, 9, 281-287.

Tongal, H.; Booij, M.]J. Simulation and forecasting of streamflows using machine learning models coupled with base flow
separation. . Hydrol. 2018, 564, 266-282. [CrossRef]

Wang, Y.; Fang, Z.; Hong, H.; Peng, L. Flood susceptibility mapping using convolutional neural network frameworks. J. Hydrol.
2020, 582, 124482. [CrossRef]

Kalin, L.; Isik, S.; Schoonover, ].E.; Lockaby, B.G. Predicting Water Quality in Unmonitored Watersheds Using Artificial Neural
Networks. J. Environ. Qual. 2010, 39, 1429-1440. [CrossRef]

Wijngaard, R.R.; Lutz, A.F; Nepal, S.; Khanal, S.; Pradhananga, S.; Shrestha, A.B.; Immerzeel, W.W. Future changes in hydro-
climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS ONE 2017, 12, e0190224. [CrossRef]
Piotrowski, A.P.; Napiorkowski, ].J. Product-Units neural networks for catchment runoff forecasting. Adv. Water Resour. 2012, 49,
97-113. [CrossRef]

Chen, X.; Long, D.; Hong, Y.; Zeng, C.; Yan, D. Improved modeling of snow and glacier melting by a progressive two-stage
calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper
Brahmaputra River basin? Water Resour. Res. 2017, 53, 2431-2466. [CrossRef]

Liu, X,; Yang, K.; Ferreira, V.G.; Bai, P. Hydrologic model calibration with remote sensing data products in global large basins.
Water Resour. Res. 2022, 58, €2022WR032929. [CrossRef]

Li, X,; Feng, M.; Ran, Y,; Su, Y,; Liu, F; Huang, C.; Shen, H.; Xiao, Q.; Su, J.; Yuan, S.; et al. Big Data in Earth system science and
progress towards a digital twin. Nat. Rev. Earth Environ. 2023, 4, 319-332. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/j.jhydrol.2018.07.004
https://doi.org/10.1016/j.jhydrol.2019.124482
https://doi.org/10.2134/jeq2009.0441
https://doi.org/10.1371/journal.pone.0190224
https://doi.org/10.1016/j.advwatres.2012.05.016
https://doi.org/10.1002/2016WR019656
https://doi.org/10.1029/2022WR032929
https://doi.org/10.1038/s43017-023-00409-w

	Introduction 
	Study Area and Data 
	Study Area 
	Data 

	Methodology 
	SPHY Model 
	Machine Learning Algorithms 
	Random Forest 
	Gradient Boosting 
	Long Short-Term Memory 
	Transformer 
	Support Vector Machine 
	Deep Neural Network 

	Hybrid Model 
	Performance Measures 

	Results 
	Streamflow Simulated by SPHY Model 
	Streamflow Simulated by Hybrid Models 
	Flood Simulated by Hybrid Models 

	Discussion 
	Can the Multi-Objective Parameter Calibration Method Improve the Ability of SPHY Model Streamflow Simulation? 
	Can Better Alignment of Inputs to Physical Processes Improve the Hybrid Model’s Flood Simulation Capabilities? 
	The Potential of Hybrid Models for Flood Prediction in High Mountainous Regions 
	Limitations of the Current Study 

	Conclusions 
	References

