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Abstract: Pan-sharpening is an important means to improve the spatial resolution of multispectral
(MS) images. Although a large number of pan-sharpening methods have been developed, improving
the spatial resolution of MS while effectively maintaining its spectral information has not been well
solved so far, and it has also been taken as a criterion to measure whether the sharpened product can
meet the practical needs. The back-projection (BP) method iteratively injects spectral information
backwards into the sharpened results in a post-processing manner, which can effectively improve
the generally unsatisfied spectral consistency problem in pan-sharpening methods. Although BP
has received some attention in recent years in pan-sharpening research, the existing related work
is basically limited to the direct utilization of the BP process and lacks a more in-depth intrinsic
integration with pan-sharpening. In this paper, we analyze the current problems of improving the
spectral consistency based on BP in pan-sharpening, and the main innovative works carried out on
this basis include the following: (1) We introduce the spatial consistency condition and propose the
spatial–spectral BP (SSBP) method, which takes into account both spatial and spectral consistency
conditions, to improve the spectral quality while effectively solving the problem of spatial distortion
in the results. (2) The proposed SSBP method is analyzed theoretically, and the convergence condition
of SSBP and a more relaxed convergence condition for a specific BP type, degradation transpose
BP, are given and proved theoretically. (3) Fast computation of BP and SSBP is investigated, and
non-iterative fast BP (FBP) and fast SSBP algorithms (FSSBP) methods are given in a closed-form
solution with significant improvement in computational efficiency. Experimental comparisons with
combinations formed by seven different BP-related post-processing methods and up to 18 typical
base methods show that the proposed methods are generally applicable to the optimization of the
spatial–spectral quality of various sharpening methods. The fast method improves the computational
speed by at least 27.5 times compared to the iterative version while maintaining the evaluation
metrics well.

Keywords: pan-sharpening; spectral consistency; back projection; convergence condition;
closed-form solution; fast calculation method

1. Introduction

The spectral features possessed by multi-band images enable the detection and dis-
crimination of different materials in a scene, providing the possibility of fine-grained
land observation and target identification. However, due to the limitation of the imaging
mechanism, it is difficult to acquire satellite remote sensing images with both high spatial
resolution and high spectral resolution directly through hardware devices [1,2]. Although
multi-band images enhance the ability to express the corresponding feature attribute infor-
mation, their geometric information acquisition capability is often limited or degraded [3].
Pan-sharpening, as an important means to enhance the spatial resolution of multi-band
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low-resolution (LR) multispectral images (MS) by software, which refers to the process
of enhancing the spatial information and obtaining high-resolution (HR) MS images by
using HR single-band panchromatic (PAN) images aligned with them [4]. Despite a long
history of research, pan-sharpening is still one of the most challenging directions in remote
sensing image processing [5], and many key issues still need to be further explored and
solved. Among them, improving the spatial resolution of MS while effectively maintaining
its spectral information has not been well solved so far, and it is also regarded as a criterion
to measure whether the obtained high spatial resolution images can meet the practical
needs [6]. To this end, the principle of spectral consistency to measure the spectral quality
of the generated high spatial resolution images is proposed in the Wald protocol [7], which
is widely used for image-sharpening quality assessment. That is, for any sharpened image,
once it is degraded to the original LR scale, its spectral information should be as identical
as possible to the original image.

In general, pan-sharpening methods can be divided into four categories [4,8–10]: com-
ponent substitution (CS)-based methods, multi-resolution analysis (MRA)-based methods,
optimization model (OM)-based methods (also often referred to as variational optimization
or model-based methods) and deep learning (DL)-based methods. CS and MRA methods,
also known as methods based on detail injection or second-generation techniques, are
relatively lightweight, easy to implement and reproduce [11], and are mainstream accepted
methods that are still attracting a lot of attention. In recent years, new generation methods
represented by OM and DL have emerged and achieved good results in fields such as
super-resolution reconstruction of natural images, and also have a great impact on remote
sensing image pan-sharpening. Despite the larger potential, OM and DL methods are
still generally suffering from complex parameter tuning, high computational overhead,
and insufficient generalization capability [4,6], while experimental results and analyses
from reviews [4,8,9,12,13] over the past few years show that the performance of fully op-
timized CS and MRA methods is not significantly weaker than that of many advanced
OM or DL methods. This is probably due to the fact that the auxiliary HR PAN images
provide relatively realistic and accurate spatial information a priori for the sharpening
process, making the conventional methods also have a relatively high lower limit of quality,
which is different from super-resolution. Considering the fundamental position of the
traditional methods and their influence on the design of new generation methods, the
development and optimization studies carried out for the second-generation methods are
of great importance.

Among the major conventional methods, the MRA method is generally considered
to have better spectral preservation ability than the CS method. This is because the low-
frequency information of MS images embodying spectral components is retained more
in the results, and better MRA methods usually imply proper modeling of the sensor
spatial degradation process using filters. Nevertheless, it does not mean that MRA methods
are well qualified for spectral consistency. For any non-ideal filter with a long trailing
phenomenon, the frequency response intervals of its low-pass and high-pass portions
overlap, which will lead to the spectral component of the result being inevitably affected
by the PAN image, while its detail component will also be affected by the interpolated MS
image. As an example, the generalized Laplacian pyramid (GLP) method [14], which uses a
Gaussian filter adapted by a modulation transfer function (MTF), is superior to those filters
that do not take into account the actual physical imaging process at all or only approximate
it from the point of view of satisfying the consistency condition, such as box filters and
Starck–Murtagh filters [15], etc. However, if the spatial degradation is further applied again
to the output of the GLP, the result is not equivalent to the initial LR MS image [16], i.e., the
spectral consistency condition is not satisfied.

In fact, ref. [17] reviewed the pan-sharpening methods from the perspective of Bayesian
theory and pointed out that due to the lack of spectral consistency constraints in the
equivalent maximum a posteriori probability model, typical methods including MRA and
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CS categories usually cannot effectively follow the spectral consistency principle. Two main
solutions have been explored to improve this issue with the MRA approach.

The first approach is to combine the perfect reconstruction property of the multiscale
transform with the consistency condition. It uses a downsampling process that includes,
for example, a non-redundant discrete wavelet multiscale transform to achieve matching
of LR-HR images at scale, enabling LR MS images to be directly presented in the results
of multiscale decomposition. Since the generic wavelet low-pass filter based on critical
sampling does not match the MTF curve reflecting the actual remote sensing imaging
process, i.e., the blurring level of the images obtained by filtering with each of them is
different, a custom construction of the filter is needed for the filter. This requires intro-
ducing MTF information into the wavelet low-pass filter design, and then completing
the construction of the remaining filter bank based on some constraints (such as perfect
reconstruction and aliasing suppression conditions). For example, ref. [16] considers the
approximate coefficients of the transformed HR image to be solved as the LR MS image and
at the same time considers its detail coefficients as wavelet detail coefficients of the PAN
image. On this basis, the derivation of each filter coefficient is developed in combination
with the corresponding constraints, and the resulting two-level decomposition is coupled
by different filter banks. In [18], the initial results obtained by the GLP algorithm are
decomposed with the discrete wavelet transform adapted by MTF, and then the LR MS
image is replaced with its approximate components, keeping its original detail components
unchanged. This approach increases the signal share of MS images in the results and thus
reduces the difference between them, but due to the correlation of coefficients between
different scales, it still does not guarantee that the results precisely satisfy the consistency
condition, i.e., the approximate coefficients after decomposition again will not be the same
as before reconstruction. This problem is not illustrated in [18], but it is reflected in the
algorithmic idea of the subsequent literature [19].

The second way to improve the spectral inconsistency problem is similar to a further
extension of [18], i.e., using the MS image as the initial approximate component and
further iterating the approximate component substitution process in order to gradually
reduce the error until finally approaching to reach the spectral consistency. In fact, this
approach generally corresponds to the classic back-projection (BP) algorithm process in the
super-resolution problem (see Section 2.1 for analysis).

There are several works that apply BP to the pan-sharpening problem. Among them,
Vicinanza et al. [20] first used BP to improve the spectral consistency of various typical
sharpening algorithms. The method recursively estimates the image that best fits specific
constraints by applying a gradient descent-based BP procedure; Zhang et al. [17] focused
on analyzing the spectral inconsistency generated by the sharpening method in principle,
and then improved it with the help of BP. At the same time, the conjugate gradient method
is used to speed up the iterative process. Both Liu et al. [21] and Jiao et al. [22] combined
the high-pass modulation (HPM) algorithm with BP. The main difference between the two
is the way in which the initial solution is enhanced. The former “Enhanced BP” (EBP) is to
replace the MS image in the HPM algorithm with the sharpened results generated by other
algorithms, and then modulate to obtain an enhanced initial solution. The latter mainly
utilizes the FE-HPM [23], which includes a semi-blind blur kernel estimation process. The
sharpened solutions from the FE-HPM and the method to be enhanced are weighted and
averaged as the initial solution for the BP iteration.

The iterative optimization framework represented by BP has the advantages of strong
versatility and easy implementation. However, the existing related work basically only
stays at the level of direct use of the BP process, and lacks a more in-depth combination
with the sharpening problem (see Section 2.2 for the analysis of related problems).

In this paper, we focus on the problems of improving spectral consistency based on
BP in pan-sharpening, and extend and deepen the BP method from multiple dimensions to
better serve the sharpening task, including three main works as follows.
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(1) A spatial consistency condition corresponding to the spectral consistency condition
is proposed. On this basis, a BP method that takes into account both spatial consistency
and spectral consistency conditions is proposed, which is called “spatial–spectral BP”
(SSBP) in this paper. The method introduces spectral degradation constraints based on the
assumption of local linear combination on the basis of BP, which can effectively solve the
spatial distortion problem of inaccurate detail injection in the sharpening initial solution
while improving spectral consistency. The proposed method can better balance the spectral
and spatial information to achieve high-quality sharpening results.

(2) The targeted discussion of BP convergence study in the sharpening field is sup-
plemented. The proposed SSBP method is theoretically analyzed, and its convergence
condition is given. A relaxed convergence condition is further given for a specific BP
type—“degradation transpose BP” (see Section 2.1), which makes the proposed method
more robust. The proposed convergence conditions are proved theoretically, and a practical
verification analysis is also given. It is worth stating that the obtained conclusions are not
limited to the field of sharpening, but are equally applicable to the application of spatial
degradation terms (or so-called fidelity terms, data terms, etc.) in the form of degradation
transposed BP in optimization problems.

(3) Research on the fast calculation methods of BP and SSBP obtain effective closed-
form solutions for BP and SSBP by combining residual representation and ideal interpola-
tion BP. This closed-form solution approach gives a non-iterative fast spatial–spectral BP
algorithm, FSSBP. Compared with the corresponding iterative version, the computational
efficiency of this algorithm is significantly improved while the evaluation indicators are
similar, which makes it more valuable for engineering applications.

2. Related Works
2.1. Principle Analysis of BP-Based Spectral Consistency Improvement

Without loss of generality, the sharpened result performed by GLP is taken as an
example to illustrate the principle of spectral consistency improvement based on BP. Denote

the solution of the GLP algorithm as X0, and the interpolated MS and PAN are
∼

YM and YP,
respectively, then we have

X0 =
∼

YM + g ·
(
YP − YPL

)
(1)

where YPL is the approximate component obtained by first extracting YP and then interpo-
lating

YPL = (YP ∗Kd) · ↓ s· ↑s ∗Ku (2)

where ∗ represents the convolution operation, Kd is the Gaussian convolution kernel
adapted according to the sensor MTF, and ↓s and ↑s represent downsampling and upsam-
pling operations at resolution multiples s, respectively. The Ku corresponding interpolation
stage is often used for piecewise polynomial functions (such as the tap 23 filter [12]) that
approximate ideal interpolation functions (such as the function sinc). Set representation of
all variables as multi-band, for example g = { gk }, k = 1, . . . , L, L is the number of bands
in the MS image, and each band is calculated independently.

Taking X0 as the initial solution, the result after the replacement of approximate
components is X1, that is,

X1 =
∼

YM + X0 −X0,L (3)

among them, X0,L is the approximate component of X0, which corresponds to (2). From
the relationship between (1) and (3), it can be seen that in addition to interpreting the two

formulas as replacing their respective approximate components with
∼

YM, (3) can also be
understood as replacing YP with X0 to perform the GLP algorithm (gk is equivalent to 1 at

this time), where X0 is spectrally closer to
∼

YM than YP.
Obviously, the output of (3) contributes to improvement but cannot directly satisfy the

spectral consistency.
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Further, denote the solution of the t-th iteration as Xt (t ≥ 1), and expand the convolu-
tion and sampling process in combination with (2), which can be described as

Xt+1 = Xt + (YM −Xt ∗KH · ↓s) · ↑ s ∗KP (4)

Equation (4) actually corresponds to the classic BP algorithm in the super-resolution
problem [23], where the variable YM is the original MS image at the LR scale. In the
original BP algorithm, KH corresponds to the filtering operation that reflects the image
spatial degradation process, which can correspond to Gaussian blur, motion blur and other
degradation types. In the problem of remote sensing image sharpening, KH is Kd, and KP
is also called the projection filter, which corresponds to the inverse process of KH .

It should be noted that KP is not necessarily equal to Ku in the BP algorithm. For the
convenience of the following description, when KP is equal to Ku, the BP is called “ideal
interpolation BP” in this paper. It is more common to use the transpose of KH (that is, KH

T,
which is equivalent due to its symmetry) as KP. This is actually derived from the gradient
calculation process (gradient descent solution) of the optimization problem corresponding
to BP. For the convenience of distinguishing from the ideal interpolation BP, the BP in this
case is called “degradation transpose BP” in this paper.

Furthermore, the initial solution is not limited to being provided by the GLP method.
In fact, the result obtained by any sharpening method can be used as the initial solution. The
purpose of the discussion above using GLP as a starting point is to clarify its relationship
to BP (especially ideal interpolation BP). That is, the BP method can be regarded as an
iterative version of the GLP method.

2.2. Analysis of Problems Based on BP Spectral Consistency Improvement

In terms of improving spectral consistency, the iterative optimization framework rep-
resented by BP has obvious advantages over the approach based on perfect reconstruction,
and has also received more extensive attention and application. However, most of the
current pan-sharpening methods involving BP simply treat it as post-processing, with
insufficient consideration of the intrinsic characteristics and comprehensive optimization
of pan-sharpening, and something that lacks in-depth research based at a theoretical level.
This is reflected in the following aspects.

First, the observed PAN images that contain HR spatial information are not repre-
sented in the BP process. Although the BP process revolves around improving spectral
consistency, spectral consistency is a necessary condition to meet the practical needs of
pan-sharpening. With this constraint alone, it is difficult to guarantee high-quality results,
effectively improving the spatial quality while maintaining its spectral consistency. In fact,
in the process of pan-sharpening, the spectral properties of MS and the spatial properties of
PAN, as dual properties that are both interrelated and mutually restrictive, jointly restrict
the final sharpened result. A reasonable sharpening algorithm should take into account
both aspects of information, and the improvement of spatial quality is also the original
intention of the sharpening process. This makes it obvious that using only the original BP
as an iterative optimization process is flawed from the perspective of generic sharpening

quality improvement. It is conceivable that if only
∼

YM is used as the initial sharpening result
for BP iterations (see Section 2.1), even if the spectral consistency condition is eventually
nearly satisfied, the result may not contain a satisfactory spatial information enhancement
component due to the lack of guidance from PAN information.

Second, there is a lack of research on convergence aspects related to the application
of BP processes to the field of sharpening. In early studies on the convergence proof of
BP [24,25], ref. [24] only proves the case when the resolution ratio is 1 (i.e., the deblurring
problem), which is not suitable for sharpening or super-resolution applications. Ref. [25]
expands [24] to an arbitrary ratio, which can theoretically be applied to the sharpening
problem. However, there is no discussion on the validation of this convergence condition
for specific sharpening conditions (e.g., for specific filter parameters). In addition, no
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further studies on BP convergence conditions have been seen in the context of sharpening
applications, such as the existence of more relaxed convergence conditions in specific cases.

Third, there is a lack of fast computational research on BP. As an iterative processing al-
gorithm, it is necessary to consider the efficiency improvement of BP despite its exponential
level of convergence speed [25]. On the one hand, compared with the second-generation
pan-sharpening method, which is known for its efficiency, the computational overhead
added by BP iteration is significant. On the other hand, due to the high-dimensional char-
acteristics of the data itself and the general use of high-precision and large-size convolution
kernels, the problem of BP computation efficiency in remote sensing image sharpening
is also more prominent compared to applications such as the super-resolution [3,13] of
natural images. Given that its iterative computational process is similar or equivalent to
that of gradient descent, the overall iterative convergence rate can be improved to some
extent by using better iterative optimization algorithms such as the conjugate gradient
method, but the improvement is limited.

To address the above problems, this paper investigates three aspects, namely, the
spatial consistency condition, convergence and the acceleration strategy.

3. Methodology
3.1. Proposition of Spatial Consistency Conditions

In order to further improve the spatial quality of the BP iterative optimization frame-
work, it is necessary to find spatially relevant constraints that can be associated with the
PAN image to construct a “spatial BP”, and this requires first specifying the spatial con-
sistency that can form a corresponding relationship with the spectral consistency. For the
convenience of description, the original BP is referred to as “spectral BP” in this paper.

In the Wald protocol [7], in addition to the spectral consistency condition, two prin-
ciples of vector compositionality and scalar compositionality are also specified, which
can be combined and expressed as the compositional principle: the whole image (vec-
tor)/band image (scalar) of the sharpened image F should be as identical as possible to
the whole image/band image of the ideal image GT. The GT here is ideally the imaging
result that the MS sensor should obtain with the same spatial resolution as the PAN image.
The principle of compositionality defined on the HR scale is theoretically a sufficient and
necessary condition to meet the needs of sharpening applications. However, since GT is
not actually accessible and the content does not additionally contain specific descriptions
or assumptions about the relationship between the corresponding images except for the
spatial resolution factor, this means that the principle is not a direct guide for the spatial
constraints to be sought.

Since the answer cannot be obtained directly from the Wald protocol, it is necessary
to further consider spatial consistency from other perspectives. Review the equivalent
representation of spectral consistency: the spectral information of the resulting sharpened
image F after spatial degradation should be consistent with the original MS image. If
the characteristic of spatial–spectral duality is considered, the following expression (or
hypothesis) can be given: the spatial information of the sharpened image F after spectral
degradation should be consistent with the original PAN image. This paper defines this
formulation as the principle of spatial consistency.

In fact, from the perspective of physical imaging of MS and PAN sensors, the above
principle of spatial consistency is reasonable. Specifically, given that the mutually matched
PAN image is in a broad–narrow-band relationship with the MS image, the PAN image
can be effectively modeled as the result of superimposing the images of the bands in F,
i.e., obtained by spectral degradation (or spectral transformation) of F when the spectral
response intervals of the two overlap to a high degree. If the wavelength in the spectral
dimension is analogous to the frequency in the spatial dimension, then the PAN image
compared to the MS band image is similar to the relationship between the results of filtering
the same image by an all-pass filter and several band-pass filters in different frequency
ranges.
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It is worth mentioning that, like the correlation between spectral BP and MRA-based
GLP (see Section 2.1), the proposed spatial BP also has a similar correlation with CS-based
Gram–Schmidt Adaptive (GSA) [26]. That is, the spatial similarity is constrained by a linear
combination of bands in GSA. However, no previous work has considered its iterative form
and combined it with BP, and no work has pointed out the above-mentioned association.

3.2. Proposition of Spatial–Spectral Back-Projection Iterative Model (SSBP)

Considering that the spectral degradation is not usually depicted in the convolution
form, for the convenience of presentation, the latter equations are written in the matrix–
vector form, where the transformation or convolution process is expressed in matrix form
and the variables are expressed in column-vector form. The relevant variable symbols are
described in Table 1.

Table 1. Variable symbol description.

Variable Data Dimension Description

yM mb× 1 Vectorization of YM
yP n× 1 Vectorization of YP
y (mb + n)× 1 Combined representation of yM and yP
xk nb× 1 Vectorization of Xk
S mb× nb ↓s equivalent downsampling matrix
H nb× nb KH equivalent spatial degradation matrix
P nb× nb KP equivalent spatial projection matrix

MG mb× nb MG = SH
WG nb×mb WG = PST

MR n× nb Spectral degradation matrix
WR nb× n Spectral projection matrix
M (mb + n)× nb Combined representation of MG and MR
W nb× (mb + n) Combined representation of WG and WR

According to this variable symbology, the spectral consistency condition is equivalent
to the following spatial degradation model:

yM = MGx (5)

where x represents any HR-sharpened image vector that satisfies the spectral consistency
condition. Obviously, if x does not satisfy the spectral consistency condition, a non-zero
spectral error term eλ = yM−MGx will be generated. The spectral BP process is the process
of gradually reducing the eλ. Its iteration can be written as

xk+1 = xk + WGeλ
k (6)

where eλ
k = yM −MGxk is the spectral error term for k iterations.

Equation (6) is equivalent to (4). According to (5) and (6), and the spatial–spectral
duality relationship, the spectral degradation model based on the spatial consistency
condition can be established accordingly:

yP = MRx (7)

and the iterative form of spatial BP is

xk+1 = xk + WRes
k (8)

where the spectral degradation matrix MR is usually calculated by the multiple linear
regression between the PAN and MS images at the LR scale, as described previously, and
es

k = yP −MRxk is the spatial error term for k iterations.
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Similar to spectral BP, there are also two ways to take MR in (8). One is to directly make
WR = MR

T, that is, the spatial degradation transpose BP. The other type can be consistent
with the setting of the inverse spectral transform (gain vector) in the Gram–Schmidt or
GSA method, where the corresponding coefficients are derived from the Gram–Schmidt
orthogonalization process [12]. Combining (6) and (8), the following SSBP expression can
be obtained:

xk+1 = xk + τλWGeλ
k + τsWRes

k (9)

where τλ and τs are the weights corresponding to the above error terms, respectively.

3.3. Model Convergence Analysis
3.3.1. Convergence Conditions for Spatial–Spectral BP

Review the BP convergence condition given in [25]:

CBP = ‖Kδ −KP ∗KH ↓s‖ 1 < 1 (10)

where Kδ represents the unit impulse response centered at the (0,0) point. Since this formula
is defined based on convolution, it is not applicable to spatial BP and SSBP cases that include
linear spectral transformation operations (non-convolution). Therefore, it is necessary to
study the convergence based on matrix representation.

First, the relevant variables are formed into a combined representation. Let y =

[
yM
yP

]
,

ek =

[
eλ

k
es

k

]
, τ =

[
τλ

τs

]T

, M =

[
MG
MR

]
, and W =

[
WG
WR

]
, where τλ and τs are the vector

versions of τλ and τs, respectively, that is, τλ = τλ1 and τs = τs1. Vector 1 is an all-ones
vector with the same dimension as y. With the above representation, (5) and (7) can be
combined into the following degradation model:

y = Mx (11)

Furthermore, (9) can be further organized as y

xk+1 = xk + τWek (12)

Theorem 1. When the norm of any matrix corresponding to I− τMW is less than 1, (12) converges.

Proof. Since (11) and (12) are formally consistent with the spectral BP correlation equations,
respectively, inspired by the proof idea in [25], an expansion of ek in (12) yields

ek = y−Mxk = y−M(xk−1 + τWek−1)= (y−Mxk−1)− τMWek−1 = ek−1 − τMWek−1 = (I− τMW)ek−1 (13)

where I is the unit matrix with appropriate dimension, which actually corresponds to Kδ in (10).
Further, by the subproductivity between any vector norm and its compatible matrix

norm [27], it follows that∥∥(I− τMW)ek−1
∥∥ ≤ ‖(I− τMW)‖‖ek−1‖ (14)

From (13) and (14), we have

‖ek‖ =
∥∥(I− τMW)ek−1

∥∥ ≤ ‖(I− τMW)‖‖ek−1‖ ≤ (‖(I− τMW)‖)2‖ek−2‖ ≤ · · · ≤ (‖(I− τMW)‖)k‖e0‖

That is 0 ≤ ‖ek‖ ≤ (‖(I− τMW)‖)k‖e0‖.
When ‖(I− τMW)‖ < 1, there is lim

k→∞
(‖(I− τMW)‖)k‖e0‖ = 0.

Thus, we have lim
k→∞
‖ek‖ = 0, i.e., the SSBP converges.
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According to the above theorem, the convergence condition of SSBP is

‖(I− τMW)‖ < 1 (15)

Since both spectral BP and spatial BP are special cases of SSBP (the corresponding
weights are set to 0), their convergence conditions can also be generalized by (15).

3.3.2. Relaxed Convergence Condition for Degradation Transpose Back Projection

The previous section gave the convergence condition for SSBP including spectral BP,
which also holds true for degradation transpose BP (see Section 2.1). However, whether it
is based on the convolutional Formula (10) or the matrix-based Formula (15), it can be seen
from Section 3.4 below that they may have certain problems or uncertainties due to factors
such as sampling offset position and image size during actual inspection. To this end, this
section gives more relaxed convergence conditions for the degradation transpose spectral
BP. Before that, another condition for spectral BP convergence is given first.

For the convenience of discussion, the spectral error term eλ
k in (6) is expanded and

the symbol is simplified:

xk+1 = xk + WGeλ
k = xk +

∼
yM −Gxk (16)

where G = WGMG,
∼

yM = WGyM.
To prove the convergence of (16), in addition to proving that eλ

k decreases with iteration,
we can also prove that xk is equal to xk−1 when k approaches infinity. This is further
organized by

xk − xk−1 = xk−1 −Gxk−1 − xk−2 + Gxk−2 = (I−G)(xk−1 − xk−2) = (I−G)k−1
( ∼

yM −Gx0

)
(17)

where x1 − x0 =
∼

yM −Gx0.

Further let A = I−G, from (17), when Ak−1
( ∼

yM −Gx0

)
=0, it means that the conver-

gence is achieved. Since A in this formula is similar in form to the corresponding term in (13),
it is natural to think that the convergence condition should also be ‖A‖ < 1. However, this
is not the case. Since the iteration of xk can also be written as xk = Axk−1 +

∼
yM, it is further

expanded as

xk = Axk−1 +
∼

yM = A
(

Axk−2 +
∼

yM

)
+
∼

yM = A2xk−2 + A
∼

yM +
∼

yM = Ak−1x1 + ∑k−2
j=1 Aj ∼yM+

∼
yM = Akx0 + ∑k−1

j=0 Aj ∼yM (18)

For (18), if ‖A‖ < 1,then there is lim
k→∞

Akx0 = 0. This means that the final result of BP

iterative convergence is independent of the initial solution x0, but obviously this does not
match the facts, which shows that this assumption does not hold for a reasonably efficient
BP iterative process.

In fact, for A that matches the actual situation, there is ρ(A) = 1, where ρ(A) is the
spectral radius of A. According to the nature of spectral radius, there is |λ| ≤ ρ(A) ≤ ‖A‖,
where λ is an arbitrary eigenvalue of λ. An important application of the spectral radius is
to provide the largest lower bound for the norm of a matrix.

Based on the above analysis, the following corollary is given:

Corollary 1. When ρ(A) = 1, we have lim
k→∞

(x
k
− xk−1) = 0.

Proof. When ρ(A) = 1, it means A is semi-convergent, that is, lim
k→∞

Ak exists, and there is

lim
k→∞

Ak = I− (I−A)(I−A)D (19)
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where (·)D is the Drazin inverse [26]. To further organize it, the following hold:

lim
k→∞

Ak = I− (I− I + G)(I− I + G)D = I−GGD (20)

lim
k→∞

(x
k
− xk−1) = (I−GGD)(

∼
yM −Gx0) =

∼
yM −GGD ∼

yM −Gx0 + GGDGx0 (21)

Since the Drazin inverse is a kind of generalized inverse, for any matrix M, there is
MMDM = M. Therefore, (21) can be further written as

∼
yM −GGD ∼

yM −Gx0 + Gx0 =
(

I−GGD
) ∼

yM (22)

As the lim
k→∞

Ak corresponding to I−GGD semi-converges to a non-zero matrix, and
∼

yM is modeled as the result of further interpolation after the spatial degradation of the HR
image to be calculated, this transformation process just corresponds to G (see (5)). That
is,

∼
yM = Gx∗, where x∗ corresponds to any HR image that meets the spectral consistency

condition. Substituting into (22) can further obtain(
I−GGD

) ∼
yM =

(
I−GGD

)
Gx∗ = Gx∗ −GGDGx∗ = Gx∗ −Gx∗ = 0 (23)

Therefore, Corollary 1 holds.

In this paper, the convergence condition based on the LR scale error term in (10) and
(15) is called the “LR scale condition”, and the convergence condition corresponding to
Corollary 1 is called the “HR scale condition”. The correlation between the two can be
obtained as follows (based on the degradation transpose BP):(

I−MG
TMG

)
MG

T = MG
T
(

I−MGMG
T
)

(24)

It can be found that the I −MG
TMG on the left side of (24) is after the interpolation

operation of MG
T, and the operation of I−MGMG

T on the right side of the equation is
before the interpolation, that is, the two operations correspond to the HR scale and the LR
scale respectively.

After Corollary 1 is drawn, a further conclusion about the degradation transpose BP
is given:

Corollary 2. For degradation transpose BP with Gaussian low-pass filter kernel, it must be the case
that ρ(A) = 1.

Proof. In degradation transpose BP, since the data matrix G = MG
TMG is a real symmetric

matrix (or Hermitian matrix) and singular at the same time, it is known that G is positive
semi-definite [28], and all its eigenvalues are non-negative. Combining with A = I−G,
it follows that ρ(A) = 1 is satisfied when ρ(G) ≤ 2 is satisfied, at which point ρ(A) can
all be determined by the minimum eigenvalue (i.e., 0 value) of G. Therefore, the proof of
Corollary 2 only needs to verify that the condition ρ(G) ≤ 2 is satisfied.

In fact, when KH is a Gaussian low-pass filter kernel, according to the requirement of
low-pass filter energy preservation and the definition of Gaussian function, it can be known
that its coefficients have the characteristics of normalization (sum is 1) and non-negativity,
because each column of H is composed of cyclic translation of coefficients in KH, such
that the maximum column sum matrix norm (i.e., l1 norm) of H is 1 based on the above
characteristics of KH coefficients, i.e., ‖H‖1 = 1.

Further, from the properties of MG = SH and the downsampling matrix S, it can be
seen that the elements in MG are actually the result of r2 times downsampling on H by
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row, where r is the resolution ratio, which means that ‖MG‖1 < 1, and its corresponding
Gaussian function peak is retained after the S sampling operation. At the same time, since
H is a symmetric matrix and the S process does not change its column elements, there is∥∥MG

T
∥∥

1 = 1. Combined with the above analysis, using the subproductivity of the matrix
norm, we can obtain

‖G‖1 =
∥∥∥MG

TMG

∥∥∥
1
≤
∥∥∥MG

T
∥∥∥

1
‖MG‖

1
< 1 (25)

Since the spectral radius is the lower bound of the matrix norm, it is easy to obtain
ρ(G) < 1 from (25), and Corollary 2 holds.

From the above proof process, it can be found that for degradation transpose BP,
the convergence condition mainly depends on S and H, which are determined by r and
KH , respectively. When KH is a Gaussian blur kernel, the larger r is, the smaller ρ(G) is.
At this point, Corollary 2 holds for sharpening, super-resolution (r ≥ 2) and deblurring
applications (i.e., r = 1, S = I). However, when KH is another filter type or the BP
type is ideal interpolation, additional discussion must be made according to the specific
coefficients of the matrix. For example, for the bicubic filter (i.e., tap-7) that is often used in
the degradation/interpolation process in natural image super-resolution applications, the
l1 norm is greater than 1 due to the existence of negative values in the sidelobe coefficients;
for an ideal interpolator, for the purpose of energy preservation, the coefficient sum of the
corresponding filter is usually r2 times that of the degradation stage; so, the corresponding
qualitative conclusions cannot be drawn simply through the above analysis process. But
for sharpening applications where KH is fixed as a Gaussian blur kernel, Corollary 2 is
always satisfied. Combining Corollary 1 and Corollary 2, it can be seen that the degradation
transpose BP within the scope of this paper must converge.

A question to ponder is whether Corollary 2 is equally valid if the LR scale condition is
used. In fact, the relationship between the matrix spectral radius and the norm shows that
when the LR scale condition is satisfied, there should be ρ

(
I−MGMG

T) < 1. Note that this
condition is stricter than the original norm-based condition because a spectral radius less
than 1 does not mean that any norm is less than 1, but the opposite holds. This means that
the eigenvalue range of MGMG

T, which is also a real symmetric array, should be within
(0, 2). Based on the previous analysis of (25), it is easy to conclude that ρ

(
MGMG

T) is also
less than 1. The key then lies in discerning whether all the eigenvalues of MGMG

T are
greater than 0, i.e., whether MGMG

T is a positive definite matrix. Although the feasibility of
this idea is not excluded, the advantage of using the HR scale condition is that the process
of determining the lower bound of the relevant matrix eigenvalues is simpler and more
straightforward, and it additionally includes the cases where the eigenvalues can be 0 and
2. Nevertheless, it should be noted that the LR scale condition involves a much smaller
data size than the HR scale condition, implying that the LR scale condition should be a
more convenient choice when verifying the convergence of the conventional BP.

3.4. Application Analysis of Model Convergence Condition

The convergence conditions in Sections 3.3.1 and 3.3.2 above involve two types of
representations, convolution and matrix, respectively, and both representations have their
own advantages and disadvantages in practical applications.

On the one hand, the advantage of convolution-based representation is that the calcu-
lation process is independent of the actual image size, and only the convolution operation
needs to be completed according to the filter size; so, the computational overhead of the
verification process is very low. However, the convergence condition (10) and its proof
process given in [25] do not specify some details of the sampling method. In practical
applications, it is affected by the finite impulse response (FIR) filter size, scaling ratio
and sampling offset position. The effect of the setting will likely result in undefined or
unsatisfied conditions. In (10), the non-zero element in the unit pulse Kδ corresponds to the
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center position of the filter KS = KP ∗KH ↓s, and the size of the two is the same. However,
there may be odd and even size results at different sampling positions, corresponding to
the schematic diagrams of (a) and (b) in Figure 1, where the blue and white grids denote
the samples that are retained and discarded after sampling, respectively.
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Filters with symmetry about the central spike are usually of odd size (e.g., KH). For
ideal interpolators in sharpening (e.g., the most common tap-23), a separable, two-step
interpolation implementation is generally used. Although the number of coefficients of the
two-fold one-dimensional convolution kernel is odd, its equivalent two-dimensional filter
for direct four-fold interpolation is of even size, implying that the common KP should be of
even size. In contrast, even-size filters of two-fold ratio (e.g., tap-8), although less common
in other applications, have been considered in pan-sharpening [29], corresponding to the
odd-size KP. For the common case where KP and KH are of even and odd sizes, respectively,
the size of the result obtained by the two convolution operations is an even number (the
sum of the two minus 1), and the single peak exists but the position is not centered. Whether
symmetrical results can be obtained in this case with respect to the central single spike
depends on the sampling offset position. If both the KP and KH convolution kernels are of
odd size, then the result is still odd. If the conventional 4-fold downsampling is further
applied to it, the resulting KS must not be divisible, and the parity of its size and the
retained samples will also be determined by the sampling position. If the KS generated by
any combination of the above is an even size, it means that the center position is between
adjacent pixel grid points, and the operation with Kδ will not be accurately defined. In
this case, if the position of the adjacent pixel is regarded as the center, there may be a
contradictory situation where the convergence condition is not satisfied but still converges
in practice. Ref. [30] pointed out that the sampling position should start from the central
part of the convolution kernel.

On the other hand, the matrix representation of the convergence condition has the
advantage that it can include non-convolutional operations, such as the spatial consistency
condition related operations in this paper (see Section 3.1). At the same time, since the
sampling operation under the matrix representation is aimed at the image matrix, and its
dimension matches the image size, there are no uncertainties caused by the non-divisible
size and the above-mentioned sampling position. However, the correlation with image size
also brings the problem of large computational overhead. For example, even for a small
image of 56 × 56 pixels in size, the corresponding process matrix will have a maximum
dimension of 3136 × 9216 with the introduction of boundary processing, meaning that it
cannot be tested directly at the actual image dimensions. However, the matrix product
operation corresponding to the relevant convolution operation can be accelerated and
reduced in storage overhead through Fourier transform.

Figure 2 illustrates the validation of the BP convergence condition for the sharpening
problem with a resolution ratio of 4, where (a) illustrates the content of the matrix G
(the image is cropped for viewing due to the repetition of the style), and (b) shows the
validation of different KP and KH (corresponding to different MTF Nyquist frequencies)
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in (10). When KP is “MTF”, it corresponds to the transpose of the degradation operation,
and “general” corresponds to the interpolation method commonly used in Hyperspectral
sharpening (supporting non-even magnification) [31]. Note that the method in this paper
is also applicable to the Hyperspectral sharpening problem. “tap-7” corresponds to bicubic
interpolation. The “tap-8” is not shown due to the above sampling offset uncertainty, and
is verified to be converged by the actual sharpening process. The MTF Nyquist frequency
of different MS sensors is typically around 0.2–0.4, which is covered by the range tested
(horizontal axis). It can be seen from the numerical value of the vertical axis in the figure
that the tested conditions all satisfy the convergence (CBP is less than 1).
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3.5. Fast Computation of Models

This section further develops the discussion on the acceleration of BP and SSBP
algorithms, and two available routes for exploration are considered.

One way of thinking is to continue the derivation of (18) based on mathematical
induction, and discuss the asymptotic solution when k approaches infinity, which is

lim
k→∞

(
Akx0 + ∑k−1

j=0 Aj ∼yM

)
(26)

However, the computational procedure of this problem is not clear. First, although
the first term in (26) yields a theoretically convergent solution based on the Drazin inverse,
no efficient and feasible algorithm for finding the Drazin inverse has been found to exist.
Secondly, the second term of the equation generates undesirable computational procedures
when finding the partial sum of the matrix isometric series, i.e., it involves singular matrix
inversion, leading to unreachable results. Finally, given that the dimensionality of A is too
high to explicitly declare it in the program, even if a theoretical solution can be obtained, it
cannot be effectively applied to practical problems.

Therefore, this paper considers another idea: to associate the BP algorithm with the
optimization problem. This means finding its equivalent or approximate objective function
and exploring possible closed-form solutions for that objective function.

3.5.1. Fast BP

According to the relationship between BP and spectral consistency, the following
ordinary least squares problem can be obtained from the spatial degradation process:

argminx

{
‖MGx− yM‖

2
2

}
(27)

The ‖MGx− yM‖
2
2 term is often referred to as the data fidelity term, and the rela-

tionship between the gradient degradation of this formula and the BP algorithm can be
established by setting the implicit initial solution conditions (set the iterative initial solution
to be x0), that is, the degradation transposition BP. However, due to the ill-posedness of the
problem and the lack of regularization in the objective function, it is impossible to obtain
numerically stable closed-form solutions only by relying on the data fidelity term (i.e., the
globally optimal least-squares solution, which involves inverting the data matrix entries).
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Even if a regular term about x itself (e.g., Tikhonov, total variational regularization, etc.) is
added to the equation to stabilize the value, there is still the problem that the information
related to x0 is lost in the objective function because the least squares solution is indepen-
dent of the initial solution setting. Therefore, it is necessary to append x0 information to
the regularization term.

In fact, Yang et al. [32] gave the following objective function associated with the BP
algorithm (note SH = MG here):

argminx{‖SHx− yM‖
2
2 +

µ

2
‖x− x0‖2

2} (28)

where µ is the regular parameter. In different revisions (https://www.researchgate.net/
publication/224138603_Image_Super-Resolution_Via_Sparse_Representation (accessed
on 12 September 2023), https://ieeexplore.ieee.org/document/5466111, (accessed on
12 September 2023) of this paper, the iterative forms of the following two solutions are
given respectively:

xk+1 = xk − PST(SHxk − yM) (29)

xk+1 = xk − v[HTST(SHxk − yM) +
µ

2
(xk − x0)] (30)

Among them, (29) is actually the standard iterative formula of the BP algorithm, which
is not directly related to (28). When P is equal to HT, this formula corresponds to the
gradient degradation of (27) with a step size of 1. Equation (30) is the gradient degradation
corresponding to (28), where v is the step-size parameter.

Although the above two formulas are similar in meaning, they are obviously not
equivalent. Equation (28) can be regarded as an approximation of the objective function
equivalent to the BP algorithm. Compared with (29), the additional term µ

2 (xk − x0) in-
cluded in (30) will cause the variable update direction in the two equations to deviate from
the second iteration (i.e., k ≥ 1). In the end, the two will also correspond to solutions under
different objectives.

Since (28) is composed of two l2 problems, its closed-form solution exists theoretically.
However, given the large size of the variables of interest (MG

TMG) and the fact that it
cannot be diagonalized in the frequency domain, that is, an equivalent implementation
under Fourier transform cannot be sought, the closed-form solution is difficult to be derived
directly. Fortunately, with the in-depth research on related problems, feasible closed-form
solutions have been given in recent literatures [30,33], respectively. The core steps of the two
proof ideas are to use the convolution theorem to convert the spatial domain convolution
into the frequency domain dot product operation under the premise of making a periodic
boundary assumption for the image, and through the Sherman–Morrison–Woodbury inver-
sion formula, the MG

TMG correlation representation is converted into MGMG
T. The results

obtained by the two are the same; the difference is that [30] further obtains the convolution
form of the key variables from the signal perspective by multiphase decomposition of the
operations corresponding to MGMG

T, while [33] completes the derivation based on the
matrix representation based on the relevant corollary of [28]. According to the convolution
representation in [30], Equation (28) can correspond to the following closed-form solution:

x̂ =
1
µ

bx −
1
µ

MG
T

F−1

 F (MGbx)∣∣∣∣F (∼h0)

∣∣∣∣2 + λ


 (31)

where bx = MG
TyM + µx0, F and F−1 represent forward and reverse fast Fourier trans-

forms, respectively.
∼
h0 is the FIR filter corresponding to the MGMG

T operation process,

https://www.researchgate.net/publication/224138603_Image_Super-Resolution_Via_Sparse_Representation
https://www.researchgate.net/publication/224138603_Image_Super-Resolution_Via_Sparse_Representation
https://ieeexplore.ieee.org/document/5466111
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which is equivalent to the 0th polyphase component of HHT (computationally, it can be

obtained by downsampling HHT), i.e.,
∼
h0 =

{
F−1[F (KH)F

(
KH

T)]} ↓s.
So far, the BP-related optimization problem as an approximation (Equation (28)) and a

feasible closed-form solution to this problem (Equation (31)) have been clarified. However,
it can be seen from the following that the performance of optimizing the sharpening
method by the above process is not satisfactory, and no obvious quality improvement can
be obtained compared to the sharpening initial solution. To this end, this paper further
makes two improvements: one is to use variable substitution to convert the original problem
into a residual representation for the objective function of (28); the other is to replace the
projection filter equivalent to the degradation transpose in the closed-form solution with a
general projection filter according to the design idea of the projection filter in BP.

A. Residual representation of objective function

Let rx = x− x0. Substituting into (28), the following optimization problem on rx
is obtained.

r̂x = argminrx

{
‖MGrx − rS‖2

2 + µ‖rx‖2
2

}
(32)

where rS = (yM −MGx0). The closed-form solution (31) is also changed accordingly to

r̂x =
1
µ

MG
TrS −

1
µ

MG
T

F−1

F
(
MGMG

TrS
)∣∣∣∣F(∼h0

)∣∣∣∣2 + µ


 (33)

After obtaining the r̂x, the required solution of the original problem is x̂ = r̂x + x0.
Although the above idea of solving based on variable substitution is equivalent to the

solution of the original problem from the perspective of theoretical derivation, the actual
results of both are not. The prerequisite for this closed-form solution is the assumption of
the periodic boundary of the image; however, this assumption is usually not satisfied in
the actual image. In contrast, the sparse nature of the residual images (obeying a Laplace
distribution with zero mean) can mitigate the violation of this assumption. Figure 3 shows
the comparison of the sum of squared differences (SSD) between the reference image and
the closed-form solution under both representations.
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(a) Image space representation, (b) Residual representation.

It can be clearly seen that the results based on the residual representation can greatly
improve the error in the boundary parts of the image. It should be noted that the boundary
error problem may also exist in the residual representation, and the degree of error is
directly related to the setting of µ. A larger µ means a higher weight of the regular term
and a smaller boundary error, but at the same time the difference with the BP objective
function will be larger, which may cause a degradation of performance. With the same µ
value setting, the results using the residual representation are always better than the results
of the original image space representation. In fact, the boundary problem of sharpened
results is common, for example, the most commonly used tap-23 filter also leads to some
degree of boundary defects. Usually, a border crop is used by default (or a border padding)
to remove the effect of this content. Therefore, the smaller the µ value, the more significant
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the performance improvement without affecting the boundary quality of the final output
image. The residual representation can be more effective in reducing the reasonable range
of µ values.

From the point of view of optimization objectives, (32) can also be understood as
adding Tikhonov regularization (Tikhonov matrix is I) on the basis of the original data fi-
delity term on residuals, thereby replacing

(
MG

TMG
)−1 with

(
MG

TMG + µI
)−1 during the

derivative calculation. Since this process only adds a small perturbation µ to the diagonal
elements of the latter, it means that the impact on the original objective function is relatively
small. At the same time, the original information of x0 is also retained outside the opti-
mization problem and will not change with the optimization process, which is equivalent
to the implicit inclusion of the initial solution in the gradient descent method. It is worth
mentioning that the practice of using residual representation to improve performance is
also widely used in deep convolutional network design. Although the starting point is
different (the latter is used to improve the vanishing gradient phenomenon and increase
the depth of the network), the basic logic in effect is the same.

B. Introducing General Spatial Projection Filter and Step Factor into Closed-Form Solution

On the basis of (33), the relevant variables of the interpolation stage are replaced with
the relevant variables of the spatial projection filter. That is, to replace MG

T and KH
T with

WG and KP, respectively, the solution at this time is

r̂x =
1
µ

WGrS −
1
µ

WG

F−1

 F (MGWGrS)∣∣∣∣F( ∼hp0

)∣∣∣∣+ µ


 (34)

where
∼
hp0 =

(
F−1(F (KH)F (KP))

)
· ↓s.

Note that when KP = Ku is the approximate ideal interpolation function mentioned
earlier, and when KP = KH

T is equivalent to the original closed-form solution correspond-
ing to (33).

Different from (34), both (31) and (33) are derived from the derivation of the corre-
sponding optimization objective functions. Due to the inclusion of MG

T-related terms, the
latter two match the degradation transpose BP in terms of idea and performance. How-
ever, the purpose of this section is to form a more accurate approximation to BP while
accelerating. Since the projection filter of BP itself has no actual physical meaning, it can
theoretically be set arbitrarily under the condition of convergence, and it does not rule out
the possibility of a better choice than degradation transpose. For example, in addition to
degradation transpose projection filters, projection filters based on ideal interpolation can
also be used. The following is a further analysis of the two types of filters.

First, the difference between the two is in the “shape” of the filter, or more importantly,
in the Nyquist frequency to which the two correspond. Figure 4 is an example of the
interpolation results of the two filters, and the small picture in the upper left corner is the
corresponding filter.
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In principle, the interpolation process includes two stages of upsampling and low-pass
filtering, wherein the purpose of the low-pass filtering operation is to remove the periodic
repetition of the spectrum caused by the insertion of 0 samples in the upsampling stage.
For digital images, approximate ideal interpolation functions (such as tap-23 commonly
used for sharpening and tap-7 corresponding to bicubic) can make the image after the
sampling rate increase as much as possible to keep the original signal samples unchanged.
Intuitively speaking, the image should be enlarged to avoid blurring or other visual defects.
The projection filter used in the degradation transpose BP is a KH adapted to the MTF
of the MS sensor with a Nyquist frequency typically around 0.3. If it is used in the
interpolation process, there will be a loss of high-frequency information compared to the
ideal interpolation function with a Nyquist frequency of 0.5. It can be seen from Figure 4
that the result of the degenerate filter is slightly blurred compared to the ideal interpolation.
Therefore, the ideal interpolation filter should be better than the degradation transpose
filter in terms of interpolation principle. However, in terms of the entire BP process, the
impact of this difference needs to be viewed dialectically. Considering that the projection
operation is imposed on the error term eλ

k in the BP process (see (6)), it means that in each
iteration process, the residual term of the degradation transpose BP is slightly more blurred
than that of the ideal interpolation BP. On the one hand, if the unique details contained in
yM itself are not well preserved in x0 (as is the case with many sharpening algorithms) or
there is useful detail compensation information in eλ

k due to the insufficient details injected
by x0 from yP, then the ideal interpolation BP will be more helpful to restore this part
of detail than the “clear” eλ

k . On the other hand, if yM or x0 contains some unnecessary
detail defects (such as noise or aliasing) and appears in eλ

k , the relatively “fuzzy” eλ
k of

degradation transpose BP can filter this part of the content, and the ideal interpolated BP
may amplify the influence of these defects.

Second, the difference between the two projection filters is also reflected in the scaling
of the coefficients. As mentioned above, the conventional interpolation filter (used in the
ideal interpolation BP) is for the purpose of preserving energy (see Section 3.3.2), and
the sum of the coefficients is generally r2 times that of the degradation filter. In contrast,
there is no magnification scaling between the interpolation and degradation filters of the
degradation transpose BP (i.e., the scaling is 1). However, this does not imply that the
degradation transpose BP is defective in energy preservation. In fact, according to the
BP iterative formula of (6), since the projection filter acts on the error eλ

k , its coefficient
magnification actually does not mainly involve the problem of maintaining the total energy
of the image, but realizes the scaling of eλ

k . It is equivalent to playing the role of the step
size factor in the iterative process, that is, the default step size of the degradation transpose
BP and the ideal interpolation BP is 1 and r2, respectively. In order to unify the operation
between different filters and increase the variability, this paper further multiplies the closed-
form solution of BP and the WG-related variable (i.e., KP-related) in the iterative formula
by a normalized step-size factor γn = γ/∑ KP,i, where ∑ KP,i represents the accumulation
of KP coefficients. For the Fast BP (FBP), that is, (34) is adjusted accordingly as

r̂x =
γn

µ
WGrS −

γn

µ
WG

F−1

 F (γnMGWGrS)∣∣∣∣F(γn
∼
hp0

)∣∣∣∣+ µ


 (35)

Figure 5 shows the iterative convergence of the two BPs with different step size factors.
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From Figure 5, the following can be concluded:
(1) The effect of step size is consistent with the general iterative algorithm. The larger

the step size, the faster the rate of residual decrease, but too large a step size may result in
failure to obtain lower residuals or even non-convergence.

(2) The descent rate of the ideal interpolated BP is slightly higher than that of the
degradation transpose BP when the same step factor is used and the convergence condition
is satisfied, but the difference is not significant.

(3) The default step size of the degradation transpose BP (γ = 1) cannot achieve a
reasonable degree of convergence in a small number of iterations, while the step size of the
ideal interpolation BP (γ = 16) has the fastest convergence rate.

Therefore, combined with the consideration of the convergence conditions, the rea-
sonable range of γ can be set to

[
1, r2]. Appropriately selecting a larger step size within a

reasonable range is beneficial to obtain better comprehensive performance.
With the introduction of the step size factor, it is also equivalent to further increasing

the variability of the projection filter settings. This is because the filters corresponding
to different step sizes can be considered different (although only degenerate and ideal
interpolation filter “shapes” are considered in this paper). Although the generic projection
filter setting can no longer be derived from the optimal objective function, the modified
solution is better suited from the point of view of finding a non-iterative fast solution that is
as consistent as possible with the BP algorithm. Further change to other shapes of arbitrary
filters satisfying the convergence condition is possible according to the actual demand.

3.5.2. Fast SSBP

The derivation process of FSSBP is similar to that of FBP, with the difference being
the addition of spatial consistency-related content. Its corresponding objective function
containing spatial, spectral fidelity and regular terms is as follows:

argminx{‖MGx− yM‖
2
2 +

σ

2
‖MRx− yP‖

2

2
+

µ

2
‖x− x0‖2

2} (36)

Similarly, although the closed-form solution of (36) cannot be obtained by direct
derivation, it has been studied by sharpening the related literature in recent years. Qi
et al. [28,34] organized the equation obtained from the derivation under the objective
problem of matrix representation into the form of the Sylvester equation and gave two
proof ideas successively by exploring the structural characteristics of the coefficients of the
matrix in question in the frequency domain and introducing auxiliary matrix operations for
simplification. The first idea is based on the direct derivation of HR scale (corresponding to
MG

TMG). The second idea is similar to that in the aforementioned literature [30,33], using
the inversion formula to convert the subsequent derivation to the LR scale, which improves
the robustness of the method.

By comparing the proof ideas of [30,34], this paper replaces the relevant part of
the convolution operation involved in the closed-form solution with the following more
concise representation:

x̂ = Q

 1
λc

bx −
γn

λc
WG

F−1

 F (MGbx)∣∣∣∣F(γn
∼
hp0

)∣∣∣∣+ λc



 (37)

among them, bx = Q−1(γnWGyM + σW RyP + µx0

)
, Q and λc are obtained by eigenvalue

decomposition of c = σWRMR + µI, that is, c = QΛcQ−1, and λc is a vector composed of
Λc diagonal elements.
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Further, in order to replace (37) with the residual representation, (36) is first replaced
with the following objective function:

r̂x = argminx{‖MGrx − rS‖2
2 +

σ

2
‖MRrx − rλ‖

2

2
+

ρ

2
‖rx‖2

2} (38)

where rλ = yP −MRx0.
The corresponding closed-form solution of (38) is

r̂x = Q

 1
λc

br −
γn

λc
WG

F−1

 F (MGbr)∣∣∣∣F(γn
∼
hp0

)∣∣∣∣+ λc



 (39)

where br = Q−1(γnWGrs + τW Rrλ

)
.

Compared with the original closed-form solution based on the full matrix implemen-
tation in [34], the advantage of the modified closed-form solution is that it is easier to
understand, and the memory overhead is significantly reduced because it does not need
to store many high-dimensional matrices. In addition, the original closed-form solution
is derived with a default sampling offset of (0, 0), which is inconsistent with the actual
situation in most datasets. Although it can be solved by translating the input image, it
may cause a certain degree of quality degradation. In contrast, the convolution-based
solution can deal with this problem in a more natural way. The two closed-form solutions
are essentially identical in terms of computational efficiency.

4. Experiments and Analysis
4.1. Dataset and Experimental Setup

In order to verify the effectiveness of the proposed method, a total of four sets of
data consisting of different scene types and remote sensing platforms are selected for
experiments under degradation scale (DS) and full scale (FS) in this paper. Among them,
DS experiments are subdivided into full and half simulations according to whether they
include both spatial and spectral degradation.

The data used are from publicly available sample images or code packages [35–37],
and the relevant information is shown in Table 2. For display purposes, all images are
cropped and linearly stretched as in [35], and the size of the cropped HR images is
256 × 256 pixels. The experimental images used are shown in Figure 6.

Table 2. Data overview.

Short Name Scene Type Remote Sensing
Platform Experiment Type Experiment Mode Base Method

D-WV Mixture WorldView-2 DS
semi-simulation

Dual-base-
multiple-indicator PNN, STEM-MA

F-QB Nature QuickBird FS Dual-base-
multiple-indicator GLP, GS

D-PL Urban Pléiades DS full simulation Multi-base-single-
indicator

17 cases (showing
ATWT-M3)

F-GE Nature GeoEye-1 FS Multi-base-single-
indicator

18 cases (showing
GFPCA)
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In terms of comparison algorithms, in addition to the original sharpened results
(without post-processing), this paper selects degradation transpose BP (denoted as BPT),
ideal interpolation BP (denoted as BPI), EBP [21] and BP-related post-processing methods
of Jiao et al. (referred to as FE-BP) [22] to compare with the SSBP, FBP and FSSBP methods
proposed in this paper, which make for a total of eight types of post-processing. Among
them, EBP and FE-BP also focus on the improvement of BP spatial quality. Since each BP
method can be applied to any sharpened results, in order to avoid unnecessary redundancy
in the display of experimental content caused by the combination of different situations,
the experiments in this paper are divided into two modes. First, on the first two sets of
data, two specific sharpening methods are selected as the base methods for providing
sharpening for the initial images, and combined with the above types of post-processing
methods to carry out subjective visual quality comparisons and comparisons of multiple
objective evaluation indicators, which is all together referred to as the “dual-base-multi-
indicator” experiment. Secondly, on the latter two data, a single reference/non-reference
evaluation indicator reflecting the comprehensive quality of sharpening is applied, and
statistical comparisons based on multiple sharpening base methods are selected, and a
statistical comparison based on multiple sharpening base methods is carried out, i.e., the
“multi-base-single-indicator experiment”. The source code of the proposed method can be
downloaded from https://github.com/JZ-Tao/FSSBP/ (accessed on 12 September 2023).

4.2. Parameter Setting

In terms of common parameters, the default settings are kept for all base meth-
ods. The number of iterations of all iterative BPs is fixed at 100. In terms of iteration
step size, the default step size of BPI and BPT at a resolution ratio of 4 corresponds to a
16:1 relationship according to the previous discussion. Both FE-BP and EBP use BPT as the
basic iterative optimization method, where EBP does not include a step size setting, while
the beta parameter equivalent to the step size in FE-BP is set to 0.1, the same as in [22].

The parameter settings of the proposed methods are shown in Table 3. The spatial
projection filters vary from data to data. It is clear from the later experiments that the results
are relatively better when the ideal interpolation and degradation transpose projection
filters are used on the DS data and FS data, respectively. The possible reason for this is
that the DS data apply an additional filtering operation to the source image, which reduces
the possible noise and aliasing and is thus more suitable for the ideal interpolation filter
(corresponding to BPI), while the FS data are more stable when using the relatively “safe”
degradation transpose filter (corresponding to BPT). Similar to the spatial projection filter,

https://github.com/JZ-Tao/FSSBP/
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the spectral projection in SSBP and FSSBP gives relatively better results using the Gram–
Schmidt (GS) transform and degradation transpose approaches for the DS and FS data,
respectively. For the step-size setting, according to the analysis of Figure 5, the step size γ
of SSBP is set to 16 to obtain relatively good performance. For FBP and FSSBP, γ has an
overall inverse relationship with the regularization parameter µ. Unlike the iterative type
of BP methods that lead to the non-convergence of results when the step size is too large
(e.g., more than 24), there is no specific range of valid values for γ in the fast method under
the influence of µ. To be consistent with SSBP, γ is also set to 16 for both. Regarding the
setting of µ, the smaller µ is usually closer to the quality of the corresponding iterative
BP for each of the two, but too small a value of µ may lead to the non-convergence of the
results. The optimal µ value may vary slightly depending on the data and experiment
type, and is fixed to 0.0098 and 0.2 for DS and FS experiments, respectively. For the spatial
error term weights τ of SSBP and FSSBP, similar to µ, are set to 0.1 and 1 in the DS and FS
experiments, respectively.

Table 3. Parameter settings of the proposed methods.

Parameter DS Data FS Data Methods Involved

Spatial projection Ideal interpolation
filter

Spatial degradation
transpose filter SSBP, FBP, FSSBP

Spectral projection Gram–Schmidt
transform

Spectral degradation
transpose transform SSBP, FSSBP

Regularization
parameter µ

0.0098 0.2 FBP, FSSBP

Step size γ 16 16 SSBP, FBP, FSSBP

Spatial error term
weight τ

0.1 1 SSBP, FSSBP

4.3. Dual-Base-Multi-Indicator Experiment

In this set of experiments, consistent with the general sharpening evaluation ap-
proach, the quality of the results is comprehensively reflected by using multiple evalu-
ation indexes [38,39]. The base methods used for the D-WV data were selected as PNN
(pan-sharpening neural network) [36] and STEM-MA (shearlet transform-based entropy
matching with mode addition) [40]. The former is a novel DL-based method, which is one
of the state-of-the-art methods. The latter is a recently proposed hybrid method. SAM,
ERGAS, RMSE, SSIM and Q2n [41] were selected as evaluation metrics for DS experiments.

The base methods used for F-QB data were selected as GLP and GS methods, both of
which are representative methods in the MRA and CS categories, respectively, and the two
methods selected as base methods in [20]. HQNR [42], QNR+ [43], and Consistency-based
Q2n (C-Q2n) [44] were selected as evaluation metrics for FS experiments. By convention,
the spectral loss metric DK

λ [42] and the spatial loss metrics DS [12], and DR2

S [43], which
constitute the first two comprehensive evaluation metrics in the QNR category, are also
listed together. The definitions of the evaluation metrics in the DS and FS experiments are
shown in Table 4.
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Table 4. The definitions of the evaluation metrics.

Evaluation Metric Experiment Type Definition Optimum Value

SAM

DS

arccos
(

〈vR ,vF〉
‖vR‖2·‖vF‖2

)
0

ERGAS 100
r

√
1
K

K
∑

k=1

(
RMSE(Rk ,Fk)

E(Fk)

)2 0

RMSE
√

E[(Rk − Fk)2 ] 0

SSIM (2µRk µFk+C1)(2σRk ,Fk+C2)(
µ2

Rk
+µ2

Fk
+C1

)(
σ2

Fk
+σ2

Rk
+C2

) 1

Q2n 4σzR ,zF µzR
µzF(

σ2
zR
+σ2

zF

)(
µ2

zR
+µ2

zF

) 1

Dk
λ

FS

1−Q2n
(

Fk,L,
∼
Yk

)
0

DS q

√
1
K

K
∑

k=1

∣∣∣∣Q(Fk, Z)−Q
(∼

Yk, ZL

)∣∣∣∣q 0

DR2

S 1− ‖vẐ−vZ‖2
2

‖vZ−µvZ ‖
2
2

0

HQNR
(

1− Dk
λ

)α
(1− Ds)

β 1

QNR+
(

1− Dk
λ

)α(
1− DR2

S

)β 1

C-Q2n Q2n(Fk,LR, Yk
)

1
Note: For DS metrics, R and F denote the reference image and sharpened result, respectively, and Rk and Fk
denote the kth band images of R and F (k = 1, 2, . . ., K), respectively. µx , σx , and σx,y denote the mean of x, the
standard deviation of x, and the covariance between x and y, respectively. r in ERGAS is the resolution ratio
(e.g., 4). E is the expectation operation. zx , vx are the hypercomplex representation and vector representation of x,

respectively. For FS metrics, Y and
∼
Y correspond to the LR MS image and its interpolation result, respectively. Z is

the PAN image. Ẑ is the result of fitting a multiple linear regression from F to Z. vẐ is the vector representation of Ẑ.

4.3.1. DS Experiment: D-WV Data

Figure 7 and Table 5 correspond to the sharpened image of the data D-WV and the
quantitative evaluation results with reference, respectively. The small image corresponding
to the upper left corner of Figure 7 is the SSD image relative to the reference image,
corresponding to the delineated area and is enlarged (2.5 times). In Table 5 (and also in
Tables 6–8 below), for each type of evaluation index, the best and second best index values
corresponding to each base method are highlighted using the font styles of “bold” and
“underline”, respectively.

Table 5. Comparison of evaluation indicators of sharpened results in data D-WV. The best and second
best index values corresponding to each base method are highlighted using the font styles of “bold”
and “underline”, respectively.

Base
Method

Evaluation
Indicators

Post-Processing Method

None BPT BPI EBP FE-BP FBP SSBP FSSBP

PNN

SAM 6.8330 6.6723 6.6830 6.9204 7.4723 6.6649 6.5904 6.5806
ERGAS 4.6618 4.5797 4.5677 5.6122 4.8746 4.5763 4.2533 4.2916
RMSE 59.7932 58.9320 58.7737 70.8994 63.2313 58.8755 55.1023 55.5452
SSIM 0.8775 0.8799 0.8804 0.8878 0.8633 0.8801 0.8964 0.8949
Q2n 0.8559 0.8628 0.8639 0.8772 0.8478 0.8628 0.8814 0.8788

STEM-MA

SAM 7.2094 7.1922 7.1988 7.7343 7.5131 7.1877 7.1961 7.1902
RMSE 4.5754 4.5532 4.5457 6.5855 4.8891 4.5503 4.5106 4.5263

ERGAS 59.4878 59.1550 59.0278 89.0184 63.5587 59.1075 58.6851 58.8940
SSIM 0.8827 0.8835 0.8839 0.8679 0.8622 0.8837 0.8849 0.8843
Q2n 0.8714 0.8713 0.8716 0.8521 0.8492 0.8716 0.8731 0.8721
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STEM-MA in Table 5, it can be seen that PNN has an advantage in terms of spectral 
quality (lower SAM), but the rest of the metrics are slightly inferior to STEM-MA. The 

Figure 7. Visual comparison of data D-WV sharpened results. The upper left area corresponds to
the enlarged SSD image of the red boxed area in the image. (a) A-PNN-FT. (b) A-PNN-FT (BPT).
(c) A-PNN-FT (BPI). (d) A-PNN-FT (EBP). (e) A-PNN-FT (FE-BP). (f) A-PNN-FT (FBP). (g) A-PNN-FT
(SSBP). (h) A-PNN-FT (FSSBP). (i) STEM-MA. (j) STEM-MA (BPT). (k) STEM-MA (BPI). (l) STEM-MA
(EBP). (m) STEM-MA (FE-BP). (n) STEM-MA (FBP). (o) STEM-MA (SSBP). (p) STEM-MA (FSSBP).
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Table 6. Comparison of evaluation indicators of sharpened results in data F-QB. The best and second
best index values corresponding to each base method are highlighted using the font styles of “bold”
and “underline”, respectively.

Base
Method

Evaluation
Indicators

Post-Processing Method

None BPT BPI EBP FE-BP FBP SSBP FSSBP

GLP

DK
λ 0.0255 0.0082 0.0070 0.1094 0.0597 0.0084 0.0124 0.0122

DS 0.1180 0.0582 0.0336 0.0560 0.0464 0.0760 0.0481 0.0856
DR2

S 0.0198 0.0415 0.0724 0.2601 0.2570 0.0418 0.0079 0.0082
HQNR 0.8595 0.9341 0.9597 0.8407 0.8966 0.9142 0.9401 0.9014
QNR+ 0.9552 0.9506 0.9211 0.6589 0.6986 0.9502 0.9798 0.9797
C-Q2n 0.9860 0.9981 1.0000 0.9673 0.9031 0.9962 0.9950 0.9925

GS

DK
λ 0.3124 0.0086 0.0065 0.0844 0.0602 0.0160 0.0128 0.0136

DS 0.2229 0.0562 0.0386 0.0347 0.0430 0.1040 0.0476 0.1148
DR2

S 0.0000 0.0408 0.0744 0.2118 0.2565 0.0371 0.0079 0.0087
HQNR 0.5343 0.9357 0.9552 0.8839 0.8994 0.8635 0.9402 0.8519
QNR+ 0.6876 0.9510 0.9196 0.7217 0.6987 0.9475 0.9794 0.9778
C-Q2n 0.8218 0.9974 1.0000 0.9815 0.9022 0.9897 0.9950 0.9865

Table 7. Comparison of evaluation indicators of sharpened results in data D-PL. The best and second
best index values corresponding to each base method are highlighted using the font styles of “bold”
and “underline”, respectively.

Base
Method

Evaluation
Indicator

Post-Processing Method

None BPT BPI EBP FE-BP FBP SSBP FSSBP

BDSD-PC

Q2n

0.9699 0.9755 0.9763 0.8796 0.9713 0.9757 0.9771 0.9763
BT-H 0.9719 0.9771 0.9780 0.8959 0.9712 0.9774 0.9780 0.9772

GS 0.8586 0.9690 0.9716 0.9297 0.9287 0.9645 0.9768 0.9748
GSA 0.9701 0.9751 0.9760 0.8954 0.9713 0.9755 0.9760 0.9753

NL-IHS 0.8876 0.9503 0.9548 0.9477 0.9592 0.9496 0.9738 0.9728
PRACS 0.9477 0.9647 0.9667 0.9394 0.9684 0.9648 0.9757 0.9747

ATWT-
M3

Q2n

0.8815 0.9420 0.9485 0.9632 0.9605 0.9423 0.9756 0.9742

Indusion 0.8926 0.9685 0.9740 0.9115 0.9576 0.9685 0.9762 0.9750
GLP 0.9669 0.9734 0.9746 0.9157 0.9708 0.9737 0.9764 0.9758
GLP-

HPM-H 0.9722 0.9772 0.9780 0.8990 0.9712 0.9775 0.9781 0.9774

REG-GLP 0.9706 0.9754 0.9763 0.8948 0.9714 0.9758 0.9763 0.9756

AWLP-H

Q2n

0.9723 0.9769 0.9776 0.8886 0.9717 0.9771 0.9775 0.9769
GFPCA 0.7999 0.9272 0.9360 0.9708 0.9482 0.9258 0.9786 0.9758
STEM-

MA 0.9759 0.9763 0.9764 0.8824 0.9736 0.9764 0.9764 0.9761

STEM-MS 0.9756 0.9762 0.9764 0.8826 0.9735 0.9763 0.9764 0.9761

PWMBF
Q2n 0.9403 0.9725 0.9745 0.9136 0.9635 0.9725 0.9761 0.9748

SR-D 0.9661 0.9692 0.9700 0.9198 0.9723 0.9695 0.9768 0.9762

Mean value 0.9365 0.9674 0.9697 0.9135 0.9650 0.9672 0.9766 0.9756

Average rate of change (%) / 3.3091 3.5553 −2.4498 3.0447 3.2865 4.2846 4.1791
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Table 8. Comparison of evaluation indicators of sharpened results in data F-GE. The best and second
best index values corresponding to each base method are highlighted using the font styles of “bold”
and “underline”, respectively.

Base Method Evaluation
Indicator

Post-Processing Method

None BPT BPI EBP FE-BP FBP SSBP FSSBP

BDSD-PC

QNR+

0.9678 0.9726 0.9426 0.8375 0.9422 0.9773 0.9832 0.9813
BT-H 0.9648 0.9732 0.9424 0.8430 0.9427 0.9780 0.9840 0.9822

GS 0.9093 0.9646 0.9335 0.8640 0.9006 0.9679 0.9837 0.9793
GSA 0.9620 0.9719 0.9420 0.8353 0.9420 0.9766 0.9827 0.9805

NL-IHS 0.8737 0.9452 0.9182 0.8891 0.9252 0.9444 0.9835 0.9765
PRACS 0.8641 0.8732 0.8499 0.9118 0.9401 0.8754 0.9836 0.9754

ATWT-M3

QNR+

0.8379 0.8842 0.8620 0.9077 0.9333 0.8825 0.9837 0.9737
Indusion 0.7671 0.9067 0.9032 0.8148 0.9058 0.8884 0.9820 0.9664

GLP 0.9373 0.9358 0.9074 0.8285 0.9378 0.9400 0.9820 0.9760
GLP-HPM-H 0.9628 0.9681 0.9427 0.8389 0.9403 0.9701 0.9840 0.9799

REG-GLP 0.9654 0.9672 0.9420 0.8324 0.9414 0.9696 0.9827 0.9794

AWLP-H

QNR+

0.9625 0.9681 0.9437 0.8620 0.9397 0.9700 0.9838 0.9800
GFPCA 0.7253 0.8639 0.8438 0.9144 0.9168 0.8568 0.9838 0.9699

STEM-MA 0.9368 0.9335 0.9187 0.8653 0.9406 0.9348 0.9838 0.9770
STEM-MS 0.9563 0.9457 0.9188 0.8717 0.9430 0.9503 0.9838 0.9807

PNN
QNR+

0.9628 0.9557 0.9263 0.8650 0.9484 0.9597 0.9832 0.9816
PWMBF 0.9169 0.9611 0.9343 0.8642 0.9285 0.9616 0.9834 0.9760

SR-D 0.9543 0.9505 0.9294 0.8503 0.9434 0.9526 0.9831 0.9789

Mean value 0.9126 0.9412 0.9167 0.8609 0.9340 0.9420 0.9833 0.9775

Average rate of change (%) / 3.1290 0.4494 −5.6702 2.3419 3.2195 7.7481 7.1068

From the SSD maps in the upper left corner of Figure 7a,i, it can be seen that the
initial results obtained by STEM-MA have a slightly smaller SSD error than PNN in the
corresponding region. By comparing the raw sharpened result metrics of PNN and STEM-
MA in Table 5, it can be seen that PNN has an advantage in terms of spectral quality (lower
SAM), but the rest of the metrics are slightly inferior to STEM-MA. The ERGAS and Q2n

metrics, which can comprehensively reflect the sharpened quality of both, are relatively
close to each other—which is the reason for comparing them as base methods.

After optimization via different BP methods, it can be seen from Figure 7 that except
for the EBP results, which are obviously sharper, the overall visual quality change in the
original sharpened results by other optimization methods is not easily detectable, and
basically only some differences can be observed in the SSD maps. In the PNN group
(Figure 7a–h), by comparing the error concentration area in the upper left part of each SSD
map, it can be found that the Figure 7g,h plots corresponding to SSBP and FSSBP have
the largest improvement. The Figure 7b,c,f maps corresponding to GS, BPI and FBP are
almost identical visually. Figure 7e corresponding to FE-BP is slightly blurred in general
compared to the original result, and although some of the error locations in its SSD map are
somewhat improved, new errors are introduced at other locations. In the STEM-MA group
(Figure 7i–p), the trends of EBP and FE-BP remain consistent with the PNN group, with the
difference that the other methods correspond to a less pronounced degree of perceptible
change in the SSD maps. This indicates that PNN should improve more than STEM-MA
with the same optimization method (except the method that brings negative optimization).

As can be seen from Table 5, the optimization results obtained by SSBP outperform
the other comparison methods in all metrics except SAM, which is slightly weaker due to
the fact that the optimization objective of the method is not solely aimed at spectral quality
improvement. The performance of the two accelerated methods (FSSBP and FBP) is slightly
inferior to their corresponding iterative versions in general due to the use of regularization
to form approximate solutions, but their SAMs are further improved. FSSBP is basically
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better than the other compared methods in terms of overall performance, and is second
only to SSBP. Compared with BPT, BPI has a slight advantage in these data.

The quantitative evaluation values of EBP showed a large degree of recession com-
pared to the original results under some indicators such as ERGAS. The enhancement
idea of the method is to use the multiplicative rule of the GLP-HPM method for the initial
results to extract details from the PAN again and inject them, and its effectiveness depends
on the spatial quality of the adopted base method and the chosen enhancement method
(i.e., HPM) itself. For a sharpened result with sufficient detail information, this process
will lead to an over-injection of details. For a sharpened result with insufficient detail,
however, the process does not preclude the ability to supplement the detail appropriately.
For example, if direct interpolation is used as the initial result and then enhanced with
EBP, the output will be equivalent to the sharpened result of the GLP-HPM method. While
very sharp results may be more advantageous in some visualization applications, they are
inconsistent with the rating of integrated spatial–spectral quality that is commonly sought
in sharpening applications.

Also employing a GLP-HPM related method, FE-BP’s enhancement scheme for the
initial results is to keep their low frequencies and replace their high frequencies with the
high frequencies of the HPM results (more specifically, the FE-HPM method). In sharpening
applications, the enhancement logic of this method is relatively reasonable compared to
EBP, but this replacement process implies the assumption that the high frequencies of the
FE-HPM method should be more accurate than the high frequencies of the sharpened
initial results, i.e., its effectiveness also depends heavily on the enhancement method itself.
As can be seen from the table, FE-BP yields weaker results than the original BP, and also
brings a small amount of negative optimization. In addition to the possible influence of
the accuracy of the blurred kernel estimation, this result should be attributed more to the
fact that the chosen base method corresponds to a better spatial quality of the initial results
than FE-HPM.

Overall, PNN obtains more effective quality improvement than STEM-MA after the
same optimization method, in agreement with the analysis above. The possible reason
is that STEM-MA has introduced spatial consistency considerations in its scheme design
through spectral transformations, and is therefore less affected by the spatial–spectral
optimization method proposed in this paper.

4.3.2. FS Experiment: F-QB Data

Figure 8 and Table 6 correspond to the sharpened images of the F-QB data and the
quantitative evaluation results without reference, respectively. The small picture in the
upper left corner of Figure 8 is the enlarged result of the image of the delineated area.

From Figure 8, we can clearly see the defects of EBP and FE-BP methods affected by
the instability of the multiplicative rule value of GLP-HPM method itself; at the position
containing dark pixels (such as the mountain range of the enlarged part in Figure 8a–h), it
is easy to cause abnormal results because the value of the divisor is too small relative to
the divisor, resulting in significant color patches in Figure 8d,e,l,m. In fact, replacing the
HPM method used by both with a fog-corrected HPM method (i.e., GLP-HPM-H) [45,46]
is expected to improve this defect relatively effectively. The rest of the optimized results
for the GLP group are also very close to the original GLP results (Figure 8a). It can be seen
from the previous experimental analysis that this means that the original quality of the GLP
method is higher. However, compared with the (Figure 8b) picture of BPT, the (Figure 8c)
picture of BPI shows a little aliasing phenomenon (sawtooth effect) from the wave part
in the upper left corner, especially near the coastline, which means the visual quality of
BPI is weaker than BPT. The results of FBP are close to BPT; FSSBP and SSBP repair the
aliasing phenomenon.
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Figure 8. Visual comparison of data of F-QB-sharpened results. The upper left area corresponds to
the zoomed-in image of the yellow boxed area in the image. (a) GLP. (b) GLP (BPT). (c) GLP (BPI).
(d) GLP (EBP). (e) GLP (FE-BP). (f) GLP (FBP). (g) GLP (SSBP). (h) GLP (FSSBP). (i) GS. (j) GS (BPT).
(k) GS (BPI). (l) GS (EBP). (m) GS (FE-BP). (n) GS (FBP). (o) GS (SSBP). (p) GS (FSSBP).

For the GS group, except for the same parts as those observed above, it can be seen from
the enlarged part of Figure 8i of the original results that it has obvious spectral distortion
(the vegetation color is lighter). Thanks to the optimization of BP, all optimization methods
(Figure 8j–p) can effectively improve this phenomenon.

The following can be seen from Table 6: Consistent with the DS experiments in the
previous subsection, the two BP original algorithms that focus on improving spectral
consistency have the least spectral distortion (the lowest DK

λ value and the highest C-Q2n).
Compared with BPT, although BPI obtains a lower DK

λ value due to the larger equivalent
step size, its comprehensive evaluation is weaker than that of BPT due to the influence of
space quality, which is consistent with the observation results; HQNR, as a hybrid indicator
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that has been considered to replace QNR in recent years [37], has been experimentally
found that the weights of its spatial (DS) and spectral (DK

λ) evaluations are often different.
Generally speaking, the magnitude of DK

λ is lower than that of DS, which means that this
indicator is more inclined to maintain spectral consistency. When the spatial consistency
is introduced, the DS index has a certain degree of design rationality problem [44] (FE-BP
is sub-optimal under this indicator, but it has obvious quality defects from the sharpened
results), which leads to an increase in the DK

λ error caused by adjusting the corresponding
parameters, while the DS does not obtain a corresponding degree of decline. Therefore, the
proposed spatial–spectral consistency method fails to obtain a good evaluation under this
index; under the QNR+ index, SSBP and FSSBP were optimal and sub-optimal, respectively,
and the numerical differences were not obvious, especially in the GLP group. Although
Q2n can maintain good stability under different scale experiments [47], the C-Q2n index is
also inclined to the evaluation of spectral preservation according to its principle, and cannot
well reflect the spatial quality difference of HR scale, and the distinguishability between
values is not good (for example, the indicators of GLP and GS after BPI processing are both
1).Therefore, also as a comprehensive performance evaluation index, it can be seen from
the comparative analysis of the numerical values in the table and the results in Figure 8 and
the consistency comparison with the DS experimental evaluation, compared with HQNR
and C-Q2n, QNR+ can more reasonably reflect the spatial–spectral performance of each
method under FS experiments.

4.4. Multi-Base-Single-Indicator Experiment

In the previous experiment, one of the base methods from the new type, the MRA-CS
hybrid, the MRA, and the CS class was selected for analysis. The experiments in this section
further expand the number of base methods belonging to the above four categories to 18
(since PNN does not provide a network model adapted to the Pléiades sensor, it is excluded
from the D-PL data experiment. For similar situations, see [21].), in order to verify the
generality of the proposed method for different base methods.

The selected base methods include (i) CS: BDSD-PC [48], BT-H [43], GS [49], GSA,
NL-IHS [50], and PRACS [51]; (ii) MRA: ATWT-M3 [52], Indusion [53], GLP, GLP-HPM-H,
and REG-GLP [54]; (iii) hybrid: AWLP-H, GFPCA [55], STEM-MA and STEM-MS [40];
(iv) new type: PNN [36], PWMBF [56], and SR-D [57]. The code implementations of the
above base methods, except STEMs, are from the “Open Remote Sensing” website (https:
//openremotesensing.net/kb/codes/, accessed on 12 September 2023). These methods
include both newly proposed methods with leading performance in recent years and
some classical methods that are considered less competitive. For the comparison of visual
effects, since the case of high-quality base methods was shown in the previous section,
the classical ATWT-M3 and GFPCA are selected as the base methods for each of the
D-PL and F-GE data to avoid content redundancy, where the former tends to obtain
relatively blurred spatial quality and the latter is usually not superior in terms of both
spatial and spectral quality. In terms of evaluation metrics, Q2n and QNR+, which better
reflect the comprehensive performance, are selected for D-PL and F-GE, respectively. The
visual display and evaluation results of the D-PL data are shown in Figure 9 and Table 7,
respectively, and the small image in the upper left corner is the SSD map. The corresponding
results of the F-GE data are shown in Figure 10 and Table 8, respectively, and the upper left
corner is the partially enlarged result.
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From a comprehensive comparison of Figures 9 and 10, it can be clearly seen that EBP,
FE-BP, SSBP and FSSBP have the ability to repair image spatial quality. In contrast, BPT, BPI,
and FBP have limited repair effects. For BPI and BPT, both still have relative advantages in
DS and FS experiments, but the advantage of BPI is not obvious; on the contrary, it has a
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serious aliasing problem under the FS experiment (Figure 10c). Although the results are
still slightly blurred, from the SSD maps in Figure 9b,c,f, the improvement effect of the
three original BP methods is still better than that of EBP and FE-BP. Compared with other
methods, the over-sharpening problem of EBP still exists, but the degree is not so obvious
because the initial results are relatively blurred, especially under the F-GE data, which are
very close to the results of FE-BP visually, only slightly sharper than the latter. The results
of SSBP and FSSBP are almost the same, which is still superior to other methods. In the
D-PL data, it can be seen from the SSD map comparison that in the F-GE data, although the
four spatially enhanced BP methods are close in sharpness, spectral distortions appear in
EBP and FE-BP (the overall color shift green), which is caused by the HPM method itself.

In terms of the comparison of evaluation indicators of multiple base methods, it
can be seen from Table 7 that various base methods have obtained the most and second
most performance improvements under SSBP and FSSBP, respectively, which are almost
the same. This is followed by BPI, BPT, FBP and FE-BP. EBP is negatively optimized for
most of the methods, except for the relatively weak base method. The effectiveness of
this method is uncertain; for example, the degree of optimization varies greatly for two
methods, ATWT-M3 and Indusion, which belong to the same MRA category and have
close Q2n metrics in the original results. Some base methods with excellent spatial quality
proposed in recent years (e.g., BT-H, GLP-REG, etc.) can also obtain good optimization
results using only BP, and most of these methods belong to the CS or hybrid classes that
originally already include the consideration of spatial consistency. The optimization effect
with the original BP (or FBP) after further introduction of spatial consistency (i.e., SSBP and
FSSBP) is basically the same or has only a negligible quality reduction. In fact, it is found
that for the above base method, the case corresponding to an optimal τ value of 0 (i.e., no
spatial error term is introduced) is not fixed but may occur for some combinations of the
base-method data-experiment types. On the one hand, if the base method already includes
spatial consistency considerations, the additional introduction of the spatial error term
may instead reduce the correction ratio of the spectral error. On the other hand, it is also
related to the spatial–spectral tendency of the comprehensive evaluation index. For FS (or
DS) experiments, the best choice of τ value is usually either 0 or 1 (or 0.1). Then in FSSBP,
thanks to its fast computational process, the following adaptive τ setting can be considered
further based on the above analytical choice: the FSSBP results under τ = 0 and τ = 1 (or
0.1) are calculated separately, and then the more optimal solution is selected according to
QNR+. For simplicity, a fixed τ value setting is used in this paper.

The statistics of the mean and average rate of change in Table 8 corresponding to the
F-GE data show that for all the chosen base methods, the improvement of FSSBP and SSBP
compared to the other methods is more pronounced than in Table 7, corresponding to the
D-PL data. SSBP is slightly better than FSSBP, but the actual visual difference is almost
imperceptible. At the same time, the indicator values of FBP and its corresponding BPT are
very close, and most of the base methods are even slightly better than the latter. Affected
by aliasing, BPI also has more negative optimizations in this group of experiments. The
ranking of quality improvement is in the order of SSBP, FSSBP, FBP, BPT, FE-BP, BPI and
FBP. The rest of the experimental findings are basically the same as those described above
and will not be repeated here.

By summarizing the above two sets of experiments, it can be seen that the fast method
proposed in this paper can form a sufficiently effective high-precision approximation for BP
and SSBP. In addition, by comparing the evaluation values before and after optimization, it
can be found that the base method with good initial results can usually obtain relatively
better optimization results, but this conclusion is not strictly established. Some methods
that are usually considered obsolete or perform relatively poorly with certain data have the
potential to outperform some methods that are considered to possess higher quality, such
as GS compared to GSA, after being optimized by the method proposed in this paper.
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4.5. Computation Time Comparison

This section further presents the calculation time comparison of several post-processing
optimization methods. A total of three different image sizes are tested for the calculation
time, and the average value is obtained by executing each method 10 times in a row. The
parameter settings of each method are consistent with the above experiments. Note that
the calculation time results include only the post-processing stage and do not include
the calculation time of the base method, and are independent of the type of base method
and the selection of specific data. The experimental platform used is Windows 10 + Intel
i5-7200U @2.50GHz + MATLAB R2019b. The results are shown in Table 9.

Table 9. Calculation time comparison.

Image Size
(Pixels)

Computation Time (Seconds)

BPT BPI EBP FE-BP FBP SSBP FSSBP

320 × 320 9.9177 10.6809 10.0768 3.2240 0.3433 10.1752 0.3650
512 × 512 20.8084 20.8141 21.0307 8.4183 0.4865 21.7466 0.4947
768 × 768 45.5060 46.5506 46.0192 19.6646 1.5939 48.6580 1.7686

From Table 9, it can be seen that the calculation time of each iterative method except
the two fast methods and FE-BP is basically at the same level. The reason why FE-BP has
an advantage in computing time compared to other iterative BP methods is that the size
of the convolution kernel estimated by the filter estimation method is set to be smaller
than the default high-precision MTF convolution kernel (the former has a length of 25, the
latter is 41). From the above statistics, it is clear that reducing the size of the convolution
kernel is also an effective way to reduce the computational time complexity. Although
the relevant conclusions are not mentioned in the original literature of the FE-BP method,
from the experimental results, this paper believes that this is actually the most obvious
advantage when replacing the default convolution kernel with the estimated convolution
kernel. Finally, the computational efficiency of the two fast methods is much better than
any of the iterative methods involved in the comparison. Overall, FSSBP slightly increases
computation time compared to FBP, but the difference is small. The experimental findings
can be consistent at different scales. For FSSBP, the speedup relative to SSBP at the tested
parameters is at least 27.5.

5. Conclusions

In this paper, a general post-processing optimization study for pan-sharpening meth-
ods is carried out based on BP with the MRA method as the analytical entry point for
the problem that the spectral consistency condition is commonly not satisfied. First, the
concept of spatial consistency is introduced and used to characterize the spectral degra-
dation relationship between MS and PAN images, and the corresponding spatial–spectral
BP method, i.e., the SSBP method, is proposed. Further, the convergence condition of the
proposed method and the proof of the convergence condition for the more relaxed BP of the
degradation transpose are given. Finally, the corresponding non-iterative methods, namely
the FBP and FSSBP methods, are proposed for BP and SSBP, and effective improvements
are formed by introducing residual representations and generalized projection filters in the
closed-form solutions concerned. It is experimentally demonstrated that the proposed SSBP
method can form a general spatial–spectral consistency improvement on the sharpened
results. The computational efficiency of the proposed fast method is significantly improved
compared to the corresponding iterative version while the optimization quality is close to
or only slightly degraded.
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