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Abstract: Greenhouse gases such as CH4 generated by forest fires have a significant impact on
atmospheric methane concentrations and terrestrial vegetation methane budgets. Verification in
conjunction with “top-down” satellite remote sensing observation has become a vital way to verify
biomass-burning emission inventories and accurately assess greenhouse gases while looking into
the limitations in reliability and quantification of existing “bottom-up” biomass-burning emission
inventories. Therefore, we considered boreal forest fire regions as an example while combining five
biomass-burning emission inventories and CH4 indicators of atmospheric concentration satellite
observation data. By introducing numerical comparison, correlation analysis and trend consistency
analysis methods, we explained the lag effect between emissions and atmospheric concentration
changes and evaluated a more reliable emission inventory using time series similarity measurement
methods. The results indicated that total methane emissions from five biomass-burning emission
inventories differed by a factor of 2.9 in our study area, ranging from 2.02 to 5.84 Tg for methane. The
time trends of the five inventories showed good consistency, with the Quick Fire Emissions Dataset
version 2.5 (QFED2.5) having a higher correlation coefficient (above 0.8) with the other four datasets.
By comparing the consistency between the inventories and satellite data, a lagging effect was found to
be present between the changes in atmospheric concentration and gas emissions caused by forest fires
on a seasonal scale. After eliminating lagging effects and combining time series similarity measures,
the QFED2.5 (Euclidean distance = 0.14) was found to have the highest similarity to satellite data.
In contrast, Global Fire Emissions Database version 4.1 with small fires (GFED4.1s) and Global Fire
Assimilation System version 1.2 (GFAS1.2) had larger Euclidean distances of 0.52 and 0.4, respectively,
which meant that they had lower similarity to satellite data. Therefore, QFED2.5 was found to be
more reliable while having higher application accuracy compared to the other four datasets in our
study area. This study further provided a better understanding of the key role of forest fire emissions
in atmospheric CH4 concentrations and offered reference for selecting appropriate biomass burning
emission inventory datasets for bottom-up inventory estimation studies.

Keywords: boreal forest fire; CH4 concentrations; biomass burning; emission inventory; satellite
observations

1. Introduction

Forest fires, one of the main natural disturbances in boreal forests [1,2], are known
to have a long duration and wide spatial range and cause significant losses [3]. Boreal
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forests are located in high latitude areas and cover vast territories, making them ideal places
to monitor global climate change [4]. Approximately 5–20 million hectares of forestland
in boreal forests are burned out annually [5,6]. Boreal forests accounted for the majority
(nearly 70%) of all tree cover losses caused by fires over the past 10 years [7,8]. In 2021, the
key areas of global fires mainly included North America, Canada, Siberia and the Far East
region. The average area of forest fires in Russia reached 1,679,534 hectares from 2012 to
2021 [8].

The forest fires are accompanied by the emissions of toxic gases and various harmful
particles (ex: CH4), making a significant contribution to regional and global carbon emis-
sions. It is estimated that the total global emissions of CO2, CO, and CH4 from forest fires are
3135 Tg C/year, 228 Tg C/year, and 167 Tg C/year, respectively, accounting for 45%, 21%,
and 44% of all global source emissions [9]. The highest methane emissions from biomass
burning in the northern forest region accounted for 45% of the global methane emissions
during the summer of 2010, when forest fires were frequent (https://gml.noaa.gov/ccgg/
carbontracker-ch4/ (accessed on 6 July 2023)). When severe forest fires occurred in the 2010
North American Northern Forest Severe Fire Incident, methane emissions accounted for 30%
to 45% of the total gas emissions (https://gml.noaa.gov/ccgg/carbontracker-ch4/ (accessed
on 6 July 2023)). As one of the main greenhouse gases, methane is more active in the atmo-
sphere than carbon dioxide. Although it has a lower atmospheric concentration than carbon
dioxide, it has 84 times higher warming potential within a 20-year scale [10]. The atmo-
spheric concentration of methane is steadily increasing. For example, data from the Japanese
Greenhouse Gases Observing Satellite (GOSAT) revealed that the global monthly mean
CH4 concentration reached 1873 ppb in March 2023, with a growth rate of 15 ppb year−1

from March 2022 to March 2023 (https://www.gosat.nies.go.jp/recent-global-ch4.html
(accessed on 6 July 2023)). Reducing methane emissions can be considered an effective way
to quickly mitigate climate change because of methane’s shorter lifetime than CO2 [11].
However, the estimation of methane emissions is influenced by numerous factors (fire area,
combustion type, season and wind speed) that make it challenging to accurately quantify
the methane released by forest fires [12]. Considering the goal of emission reduction and
understanding global climate change as well as the carbon cycle, it is vital to accurately
estimate CH4 emissions from regional forest fires [13,14].

The widely used “bottom-up” Global Biomass Burning Emission Inventory (GBBEI)
can provide bottom-up, near-surface and near-real-time data sources for estimating CH4
emissions from forest fires [15]. In order to better apply the existing GBBEI to the assessment
of air pollutant emissions, existing research used emission comparisons from different in-
ventory data using methods such as time correlation analysis and global chemical transport
models (GEOS-Chem) and looked for differences between inventory data [16,17]. However,
due to the dynamic characteristics of fire behavior and the input of related combustion
parameters [18], GBBEI has discrepancies over spatial and temporal scales [19], making it
challenging to estimate the reliability of GBBEI in quantifying fire-induced emissions in
global continental regions [16].

Given the limitations of the “bottom-up” GBBEI, the IPCC explicitly proposed the
standard of using atmospheric concentration measurements to assist inventory verification
through the “IPCC 2006 National Greenhouse Gas Inventory Guidelines 2019 Revision”. It
is based on determining atmospheric concentrations by remote sensing measurements and
ground base station measurements in combination with the “top-down” (i.e., atmospheric
inversion) model to estimate greenhouse gas emissions while verifying and correcting the
results of traditional bottom-up national greenhouse gas inventories. With the consistent
development of carbon satellite monitoring capabilities and accuracy, a growing number of
studies are using atmospheric concentration satellite monitoring data and ground station
observation data to verify and correct emission inventories while obtaining more reliable
emission inventory products [12,20–22]. Regression statistics and fitting analysis methods
are mostly used to compare carbon dioxide emissions and concentration information
between inventory and satellite data at a large regional scale [20,22]. However, there are

https://gml.noaa.gov/ccgg/carbontracker-ch4/
https://gml.noaa.gov/ccgg/carbontracker-ch4/
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many methane emission sources, and we should try our best to eliminate interference from
other emission sources (wetlands, permafrost, fuel combustion, etc.) [23,24]. Therefore, we
selected forest fires as the main source of interference to reduce the interference from other
emissions and reliably assess the accuracy of inventories.

Five commonly used GBBEIs, atmospheric concentration satellite data and ground
station observation concentration data were selected in this study. As one of the most active
greenhouse gases, methane was selected as our research object. In order to understand the
relationship between methane emissions caused by fires in boreal forests and atmospheric
concentrations from 2010 to 2020, we used numerical comparison, correlation analysis
and trend consistency analysis to quantitatively analyze the consistency and differences
between datasets at the regional scale. Furthermore, using satellite data as the measurement
standard, we quantitatively explored the similarity between each inventory dataset and
satellite data in terms of time trends using the time similarity method. Moreover, based
on previous research findings on inventory data, we evaluated a more reliable inventory.
With the help of this study, we can better address the rapid growth of greenhouse gas
concentrations, implement targeted greenhouse gas emission control policies and provide
theoretical support for mitigating regional and global climate change.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

In order to reduce the interference of other methane emission sources, areas with
high forest cover and frequent forest fires were chosen. We determined a typical area of
the boreal forest fires as our study area, by using ArcGIS10.7 software to conduct spatial
overlay analysis on the basis of MCD12Q1 land cover data, MCD64A1 burned area data
and a global forest disturbance drivers map (Figure S1) with limitations such as forest cover,
forest loss-driven wildfires, and areas presented in patches due to excessive fires [25–27].
The study areas included Canada’s 45◦ N~60◦ N and 140 W~55 E area (hereinafter referred
to as CAN) and Russia’s 50◦ N~65◦ N and 75◦ E~158◦ E area (hereinafter referred to as
RUS) (Figure 1) with a period of 2010–2020. The study areas mainly included temperate
coniferous forest and mixed coniferous and broad-leaved forest with a large forest area
dominated by a temperate continental climate with cold and dry winters as well as warm
and rainy summers.
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Figure 1. Geographical location of the study areas ((left), CAN; (right), RUS).

2.1.2. Satellite XCH4 Observations

The comprehensive coverage of atmospheric concentration distribution information is
vital for analyzing the spatiotemporal dynamic characteristics of regional atmospheric con-
centrations. We used the global atmospheric CH4 column concentration (XCH4) monthly
data from Lei Liping’s research team from 2010 to 2020 [28]. This dataset was based on
geostatistical methods and utilized the intrinsic autocorrelation of satellite observation
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data (GOSAT and SCIAMACHY satellite data) for optimal estimation, effectively filling
the data gap. Based on the spatiotemporal Kriging interpolation method, the generated
global XCH4 spatiotemporal continuous grid data were processed with a spatiotemporal
resolution of 0.5◦ grid. The data were in tiff format, which could be used for analyzing
the characteristics of global or regional atmospheric CH4 concentration changes. The data
collected in this study are presented in Table S1.

2.1.3. Ground-Based XCH4 Data

Based on ground station observation data sourced from the World Data Center for
Greenhouse Gases (WDCGG) (https://gaw.kishou.go.jp/ (accessed on 6 July 2023)) and the
geographical location of the study area, two atmospheric background stations in Canada
were selected (Figure S2). The study area included the East Trout Lake (ETL) and Fraserdale
(FSD) stations. The station characteristics are shown in Table S2. Due to the limited number
of existing ground stations in Russia, which were not distributed within the RUS study area,
this study only used the concentration data from ground stations in the CAN study area as
the basis for subsequent validation studies. At the same time, the monthly average CH4
concentration data from the global atmospheric background station in Monaloa, Hawaii
(MLO) was selected as a point of comparison. The region is mainly controlled by marine
climate and is less affected by local biological activities as well as anthropogenic emissions.
The observed values are usually considered representative of the global average water
level [29].

2.1.4. Global Biomass-Burning Emission Inventories

Five global biomass burning emission inventories were selected to study the dif-
ferences and consistency between different inventories (Table S3). (1) GFED4.1s. The
Global Fire Emissions Database Version 4.1 covers 14 ecosystem regions around the world
from 1997 and presents 0.25◦ × 0.25◦ monthly global biomass combustion emissions
data. It includes small fire emissions along with satellite information on fire activity
and vegetation productivity (https://www.geo.vu.nl/~gwerf/GFED/GFED4/ (accessed
on 14 July 2023)). (2) FINN2.5. The Fire Emission Inventory Dataset provides global
0.1◦ × 0.1◦ daily fire emission data from 2001 to the present. Currently, the FINN2.5
version dataset provides a distribution map of atmospheric combustion emissions for
each component (https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar (ac-
cessed on 14 July 2023)). (3) GFAS1.2. The Global Fire Assimilation System assimilates
fire radiative power (FRP) observations from satellite sensors and provides 0.1◦ × 0.1◦

daily near real-time biomass burning emission data of global firepower from 2003 to
the present (https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-fire-
emissions-gfas?tab=overview (accessed on 14 July 2023)). (4) FEER1.0. The Fire Energy and
Emissions Research Dataset measures smoke emission rates using MODIS FRP and aerosol
optical depth (AOD) and provides global 0.1◦ × 0.1◦ monthly as well as daily real-time
biomass burning emission data from 2003 to the present (https://feer.gsfc.nasa.gov/data/
(accessed on 14 July 2023)). (5) QFED2.5. The Rapid Fire Emissions Dataset based on
MOD14/MYD14 FRP Level 2 products and emission coefficients is estimated to provide
0.1◦ × 0.1◦ monthly and daily biomass burning emission data from 2000 to the present
(https://portal.nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/ (accessed on
14 July 2023)). According to different estimation methods, there are mainly two GBBEI
categories. One is the burned-area-based approach (GFED4.1s, FINN2.5), and the other is
the list of products based on the FRP estimation method (FEER1.0, GFAS1.2, QFED2.5) [30].

Since the temporal resolution of GBBEI represents month or day, the spatial resolution
is 0.1◦~0.25◦, while the temporal resolution of the satellite dataset represents month and
the spatial resolution is 0.5◦~1◦. To ensure the consistency between various types of data,
the inventory dataset was resampled to 0.25◦ using the bilinear interpolation method. This
method made our data images smooth, without step phenomena, reduced the blackness of
linear features, and had higher spatial position accuracy. At the pixel scale, a pixel-by-pixel
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summation synthesis method was used to generate time series data for the inventory
dataset at the monthly and annual scales.

2.2. Methods
2.2.1. Detrended Fluctuation Analysis

Detrended fluctuation analysis (DFA) is a scaling index calculation method proposed
by Peng et al. in 1994 based on the DNA mechanism, which was used to analyze the
long-range correlation of time series [31]. One advantage of the DFA method is that it
can effectively filter out the trend components in the sequence and detect long-range
correlations containing noise and superimposed polynomial trend signals. It is suitable
for long-range power-law correlation analysis of non-stationary time series. Based on the
principle of DFA, we used MATLAB2022 software to subtract an optimal (fitted) line, plane,
or surface from the data. The processed data had a mean of zero. The specific formula
principle can be found in the Supplementary Materials S1.

2.2.2. Pearson Correlation

The Pearson correlation coefficient (r) is commonly used to measure the linear corre-
lation between variables and global synchronization. Its value ranges from −1 to 1. The
closer the absolute value to 1, the stronger the linear correlation between variables. Among
them, r > 0 indicates that there is a positive correlation between variables. On the contrary,
it indicates there is a negative correlation between variables as well. The specific calculation
formula is as follows.

rx,y =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2∑n
i=1(yi − y)2

(1)

In the equation, {xi, i = 1, 2, . . ., n} and {yi, i = 1,2, . . ., n} represent two sets of sequences
with a length of n, and x and y represent the mean values of the two sets of sequences. The
t-test is commonly used to test the significance of the Pearson correlation coefficient.

t = r·
√

n − 2
1 − r2 (2)

In the formula, n is the number of samples, r is the correlation coefficient, and t is the
test value. The commonly used significance test levels are 0.05 (significant correlation) and
0.01 (extremely significant correlation).

2.2.3. Coefficient of Variation

The coefficient of variation (CV) is a statistical analysis method used to measure the
magnitude of variability between variables [32]. The coefficient of variation is a standard
for converting the degree of variation in variable attributes into a percentage form. It
combines the standard deviation and mean of sample variables to describe the degree of
variation between sample variables. The specific calculation formula is as follows.

CV =
standardd eviation

average
× 100% (3)

2.2.4. Time Lagged Cross Correlation

Time lag cross-correlation (TLCC) is measured by gradually moving a time series
vector and repeatedly calculating the correlation between two signals [33,34]. This method
calculates the correlation coefficient of one-time series b with a lag of −k~k order and
another time series a. Assuming that the correlation is strongest in order i, it indicates
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that the optimal lag order is i. If i < 0, then “a” has an i-order with leading The specific
calculation formula is as follows.

TLCCk(a, b) =
∑N−1−k

i=0 (ai − a)
(

bi+k − b
)

√
(ai − a)2

√(
bi+k − b

)2
(4)

In the equation, {ai, i = 1,2, . . ., N} and {bi, i = 1,2, . . ., N} are two sets of sequences with
a length of N. a and b are the mean values of the two sets of sequences, with k being the
order of lag.

2.2.5. Time Series Similarity Measurement—Euclidean Distance

Euclidean distance is the most direct method, and its concept is simple. When applying
Euclidean distance to compare two time series, each point between the series establishes
a one-to-one correspondence [35]. Based on the correspondence between points, the
Euclidean distance is calculated as a distance measure (similarity) between two time series.
For the same length sequences, the distance between each two points is calculated and
summed. The smaller the distance, the higher the similarity. The specific calculation
formula is as follows.

d =

√
n

∑
i=1

(xi − yi)
2 (5)

In the equation, {xi, i = 1,2, . . ., n} and {yi, i = 1,2, . . ., n} are two sequences of length n.
The studied research method is shown in Figure 2:
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3. Results
3.1. Temporal Variation Characteristics of Atmospheric CH4 Concentrations
3.1.1. Monthly Variation Characteristic

Figure 3 shows the time series changes in the atmospheric CH4 concentration in
the study area, being monitored by carbon satellites. The global CH4 concentration was
observed at selected MLO stations on a monthly scale. Overall, there was a high degree of
consistency in the time trends between the two data sources in different research areas. The
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concentration of XCH4 in the atmosphere showed a significant fluctuating upward trend
between 2010 and 2020. Considering the specific values (Figure 3), the change trend for
CAN was consistent with the global atmospheric CH4 concentration change trend. The
atmospheric CH4 concentrations in the CAN (average value: 1804.45 ± 25.60 ppb) and RUS
(average value: 1811.44 ± 26.38 ppb) areas were lower than the global average (average
value: 1834.26 ± 26.51 ppb). Notably, the time series change trend for CAN lagged behind
the global atmospheric CH4 concentration change trend, whereas that for RUS was the
opposite. We assumed that this was related to the timing of large-scale forest fires in the
study areas, which would bring inconsistent peak changes.
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Although large-scale synchronous monitoring can be accomplished using the atmo-
spheric methane column concentration, retrieved from satellite remote sensing observation
data [29], there are some limitations to the accuracy of satellite remote sensing observations
compared to ground station observations. Therefore, monthly data from ETL and FSD
stations within the CAN region were collected in this study, using the average level as the
ground observation value. Since the data product retrieved by satellite is the average mole
fraction of dry air in the CH4 column after full mixing of the atmosphere (Figure 4a), it is
more diluted than the surface data. Therefore, the observation value at ground stations
was higher than the satellite remote sensing retrieval data. Although there were differences
in specific values between the two datasets, their time series trends were relatively similar.
The difference (130.08 ± 10.16 ppb) between 2010 and 2020 showed good stability with-
out significant seasonal fluctuations. This could explain the phenomenon of differences
between satellites and MLO sites in Figure 1. Due to the global average presented by MLO
sites, it was difficult to accurately reflect the gas concentration in a specific region.

3.1.2. Seasonal Variation Characteristic

The relative change on a monthly scale cannot be reflected only from the absolute
change trend analysis of atmospheric concentration. By removing linear trends from the
data through detrended fluctuation analysis [35], we focused on the fluctuation of trend
data. In order to obtain the relative variation of the data, the annual relative variation
values from the concentration data were extracted after removing the trend. The temporal
variation differences for XCH4 in the CAN and RUS regions from 2010 to 2020 were
obtained (∆XCH4 referred to the difference between the annual mean of atmospheric CH4
concentration in the following year and the previous year) (Figure 5). The pretreated
atmospheric methane column concentrations can be used as indicators to evaluate the
methane source/sink of the study area relative to the regional average level [21]. As shown
in Figure 5, there was a significant difference in the trend of atmospheric CH4 concentration
changes between the two regions. The peak value in the CAN region was in October, and
the valley value was in March. The values from August to December were positive. This
indicated that the region was a methane source during these months. The atmospheric
methane concentration showed a positive growth trend. However, the peak value in the
RUS region was in August, and the valley value was in March. The values from July to
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September were greater than zero. Other months showed a decreasing trend. Due to lower
temperatures in the RUS region compared to the CAN region, methane concentration
changes showed a negative increase in winter.
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At the same time, the seasonal variation in CH4 concentrations at atmospheric back-
ground stations in the CAN region was analyzed in this study. Moreover, the multi-year
monthly average and standard deviation of atmospheric CH4 concentration were obtained
while considering the average of two stations (Figure 4b). It showed atmospheric methane
concentrations were low from April to July. Among them, the highest value of atmospheric
CH4 concentration was in December (1953.74 ± 12.04 ppb), and the lowest value of atmo-
spheric CH4 concentration was in June (1914.20 ± 12.04 ppb). Due to the unstable chemical
properties of methane, illumination factors could lead to the oxidation of methane in the
atmosphere [29] while resulting in a low value in summer.

3.1.3. Interannual Variation Characteristic

Considering annual changes (Figure 6a), there is a significant interannual fluctuation in
atmospheric CH4 concentrations in various regions, with alternating positive and negative
annual changes. However, the years of increase in both are not the same. In the CAN region,
the atmospheric CH4 concentration showed positive growth in 2014, 2016, 2017, 2019 and
2020, with significant increases in 2014 and 2020. In the RUS region, the atmospheric CH4
concentration showed positive increases in 2014, 2016, 2018 and 2020, with significant
increases in 2016 and 2020. The sudden increment represents the occurrence of abnormal
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activities that could have generated a large amount of CH4 during that year. As the study
area included a typical region of global forest fires, it was found that the year with a sudden
increment was closely related to historical events after considering historical forest fire
events in the region. According to the interannual variation analysis of CH4 concentration
observed by atmospheric background stations in the CAN region, the trend of atmospheric
CH4 variation observed by ground stations was consistent and demonstrated a continuous
upward trend (Figure 6b). During the observation period, the annual average growth rate
of the atmospheric CH4 concentration was 0.37%, indicating a strong growth trend.
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3.2. Temporal Variation Characteristics of CH4 Emissions
3.2.1. Monthly Variation Characteristic

The average CH4 emissions from the five emission inventory datasets showed signifi-
cant fluctuations over time, with emissions rising from April to October each year (Figure 7).
The overall emissions in RUS were higher than those in the CAN research area. This could
be attributed to the fact that the forest area in Russia is the largest in the world, and forest
fires are frequent. As shown in Figure 7, the estimated total emissions for the five emission
inventories in the CAN study area from 2010 to 2020 ranged from 2.02 to 5.84 Tg CH4,
while estimates for the RUS study area ranged from 3.97 to 14.23 Tg CH4. Among them,
the estimated methane emissions from the GFED4s were the highest, while the QFED2.5
was relatively conservative. Based on the comprehensive (five types) emission inventory
datasets, there were consistent mutation months in the CAN and RUS regions in 2018 and
2012 and 2019, respectively. The RUS region had few forest fires and no greenhouse gas
emissions in winter due to the cold and dry climate.

3.2.2. Seasonal Variation Characteristic

As shown in Figure 8, there was a significant seasonal difference in CH4 emissions
between the CAN and RUS regions, both exhibiting a seasonal cycle of highs in summer and
autumn and lows in winter and spring. In other words, emissions showed a continuously
increasing peak from May to September, indicating that forest fires are more common in
the two regions during this period. Moreover, the box plot (Figure S3) shows that emission
data were relatively scattered, reflecting the instantaneous and uncertain characteristics of
gas emissions. Among them, the highest CH4 emissions occurred in July (CAN average:
0.11 Tg CH4, RUS average: 0.22 Tg CH4), and the lowest in January. This could be
attributed to large-scale forest fires [36], mainly due to high summer temperatures and
dry environment while resulting in an increase in the emissions of CH4 and other gases.
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However, the two study areas had extremely low air temperatures and ice formation in
January, making them less prone to fires.
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3.2.3. Interannual Variation Characteristic

Except for the inconsistent years of FEER data mutation, most datasets showed consis-
tent interannual trends in CH4 emissions (Figure 9). The estimated emissions for all datasets
decreased slightly in the CAN region between 2010 and 2020 while slightly increasing in the
RUS region. However, the interannual variation trend in CH4 emissions in the CAN and
RUS research areas was not significant. The highest CH4 emissions in the CAN region were
in 2013. There were small peaks in 2015 and 2018. This result can be explained by the phe-
nomenon of El Niño drought years (2013 and 2015). The highest CH4 emissions in the RUS
region occurred in 2012, with small peaks in 2016 and 2018. Based on the variation analysis
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numerical coefficient (Table S4), the estimated CH4 emissions from different datasets in
the CAN region generally exhibited a high fluctuation trend (41.03% < CV < 60.70%), with
an average CH4 emission value of 0.31 ± 0.17 Tg CH4 (±1 Std) and an average value
of 0.18 ± 0.07~0.52 ± 0.29 Tg CH4 for each dataset. Similarly, the CH4 emissions in the
RUS region also exhibited a high fluctuation trend (43.77% < CV < 62.01%), with the aver-
age values of each dataset ranging from 0.36 ± 0.16 to 1.27 ± 0.79 Tg CH4. Among them,
the differences in the average emissions of each inventory were within a certain range.
Figures 10 and 11 show the similarities and differences in the spatial distribution of annual
methane emissions. Five inventories showed consistent spatial heterogeneity in terms of
annual total methane emissions, exhibiting a characteristic of spatial aggregation while
also exhibiting differences in spatial numerical distribution. Except in the CAN region,
the spatial distribution of methane emissions from GFED4.1s was different from those of
the other four inventories, with fewer emissions in the southwest. In the CAN area, it
was mainly concentrated in British Columbia and Alberta, and in the RUS area, it was
concentrated in Amur Oblast.
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3.3. Analysis of the Temporal Correlation between Atmospheric CH4 Concentration and
CH4 Emissions
3.3.1. Ground Station Data and Satellite Data

Domestic and international research frequently uses ground station observation data
and satellite remote sensing inversion data to verify the reliability of both. In order to verify
the accuracy of remote sensing data, fitting regression analysis was first conducted on
ground station data and satellite data in the CAN region from 2010 to 2020. By establishing a
linear regression model, the correlation between the two datasets was obtained (Figure S4).
The results indicated that the satellite inversion of CH4 concentration data (XCH4) used by
the research institute had good consistency with ground observations of CH4 concentrations
in time series (R2 = 0.93). It was evident that there was a high temporal correlation
between satellite data and ground observation station data, and at the same time, ground
stations could not fully cover the research area. Therefore, the CH4 concentrations retrieved
from satellite remote sensing could be used as a measurement standard to evaluate the
authenticity and accuracy of estimated values in various inventory datasets.

3.3.2. Analysis of Correlations between Inventory Datasets and between Inventory
Datasets and Satellite Datasets

Based on preliminary data experiments, it was found that the changes in CH4 emis-
sions at the interannual scale did not reflect the real-time characteristics of emissions. The
interannual differences between inventory data and satellite data were significant due to
the accumulation of annual values. Therefore, the correlation between inventory data and
satellite data at the monthly scale (multi-year monthly average) was considered for analysis.
As shown in Figure S5, there was a significant positive correlation between the estimated
emissions from the five inventory datasets on monthly scales. However, the estimated
emissions from the inventory datasets showed a negative correlation with the changes in
atmospheric CH4 concentrations monitored by satellites. Therefore, it was assumed that a
lagging effect was present in between.

In order to further understand the lag time between emissions and changes in at-
mospheric concentrations, the optimal lag order between gas emissions and changes in
atmospheric concentrations was considered. Figure 12 shows the gradient distribution dia-
gram of the Pearson correlation coefficient between the atmospheric concentration change
and gas emissions in the CAN and RUS regions using the TLCC. As shown in Figure 12a,
when the atmospheric CH4 concentration change lagged behind the CH4 emissions for
3 months, the correlation between the two was the strongest in the CAN region. Except for
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FINN2.5, the correlation coefficient under the optimal lag order was above 0.9 for all other
datasets, and the significance was p < 0.01 (Figure S6a). In the RUS region, the optimal lag
order for atmospheric CH4 concentration change was 1. Except for GFAS1.2, the correlation
coefficients of all other datasets were above 0.8 and indicated a significant correlation when
the lag time was 1 month (Figure S6b).
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The lagging effect of inventory emissions and atmospheric concentration changes in
the CAN and RUS regions were eliminated based on the optimal lag order. As shown
in Figure 13, the satellite ∆ XCH4 exhibited a non-linear temporal variation, which was
consistent with the inventory CH4 emissions. In this study, the change in atmospheric
methane concentrations monitored by satellites was used as the standard to judge the
quality of each inventory dataset. The Euclidean distance in the time series similarity
measurement method was used to compare the satellite-measured concentrations after
eliminating the lagging effects and five emission inventories [35]. As shown in Figure 14,
the “distance” between the estimated CH4 emissions from the QFED2.5 inventory and the
time series of satellite data to eliminate lagging effects was the smallest for both the CAN
and RUS regions, indicating the highest similarity between the two. Based on consistency
analysis of satellite data, the QFED2.5 emission inventory dataset performed better than
other emission inventories (discussed in Section 4.1). It was consistent with the simulation
results of Su et al. (2023) [17].

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

RUS regions, indicating the highest similarity between the two. Based on consistency anal-
ysis of satellite data, the QFED2.5 emission inventory dataset performed better than other 
emission inventories (discussed in Section 4.1). It was consistent with the simulation re-
sults of Su et al. (2023) [17]. 

 
Figure 13. Time variation trend between CH4 emissions inventories and satellite concentrations for 
eliminating lagging effects: (a) CAN; (b) RUS. 

 
Figure 14. Euclidean distance between emissions inventories and satellite concentrations for elimi-
nating lagging effects. 

4. Discussion 
The temporal similarities and differences between the five existing GBBEI datasets 

and satellite monitoring datasets were discussed in this study. As demonstrated in this 
study, the QFED2.5 dataset had temporal trend more similar to that for satellite concen-
tration data compared to the other inventories. Detailed explanations for the differences 
between the five GBBEIs will be discussed in Section 4.1, and explanations for lagging 
effect will be discussed in Section 4.2. The uncertainty in selecting the study area is dis-
cussed in Section 4.3. 

4.1. Possible Explanations for Differences among the GBBEIs 
This study showed that the estimated methane emissions from the QFED2.5 emission 

dataset in the CAN and RUS regions were consistently lower than those based on other 

Figure 13. Time variation trend between CH4 emissions inventories and satellite concentrations for
eliminating lagging effects: (a) CAN; (b) RUS.



Remote Sens. 2023, 15, 4547 14 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

RUS regions, indicating the highest similarity between the two. Based on consistency anal-
ysis of satellite data, the QFED2.5 emission inventory dataset performed better than other 
emission inventories (discussed in Section 4.1). It was consistent with the simulation re-
sults of Su et al. (2023) [17]. 

 
Figure 13. Time variation trend between CH4 emissions inventories and satellite concentrations for 
eliminating lagging effects: (a) CAN; (b) RUS. 

 
Figure 14. Euclidean distance between emissions inventories and satellite concentrations for elimi-
nating lagging effects. 

4. Discussion 
The temporal similarities and differences between the five existing GBBEI datasets 

and satellite monitoring datasets were discussed in this study. As demonstrated in this 
study, the QFED2.5 dataset had temporal trend more similar to that for satellite concen-
tration data compared to the other inventories. Detailed explanations for the differences 
between the five GBBEIs will be discussed in Section 4.1, and explanations for lagging 
effect will be discussed in Section 4.2. The uncertainty in selecting the study area is dis-
cussed in Section 4.3. 

4.1. Possible Explanations for Differences among the GBBEIs 
This study showed that the estimated methane emissions from the QFED2.5 emission 

dataset in the CAN and RUS regions were consistently lower than those based on other 

Figure 14. Euclidean distance between emissions inventories and satellite concentrations for elimi-
nating lagging effects.

4. Discussion

The temporal similarities and differences between the five existing GBBEI datasets and
satellite monitoring datasets were discussed in this study. As demonstrated in this study,
the QFED2.5 dataset had temporal trend more similar to that for satellite concentration
data compared to the other inventories. Detailed explanations for the differences between
the five GBBEIs will be discussed in Section 4.1, and explanations for lagging effect will
be discussed in Section 4.2. The uncertainty in selecting the study area is discussed in
Section 4.3.

4.1. Possible Explanations for Differences among the GBBEIs

This study showed that the estimated methane emissions from the QFED2.5 emission
dataset in the CAN and RUS regions were consistently lower than those based on other
datasets, while estimates based on GFED4.1s were consistently higher than those based on
other datasets. Some possible reasons for these differences could be as follows.

The results for inventories based on FRP (QFED2.5) were lower than those based
on burned area estimation (GFED4.1s) mainly due to the use of different remote sensing
datasets and the physical differences between the forests. Therefore, the FRP generated by
active fire detection was underestimated, while the fire area detected over the burned area
was overestimated [36]. The reasons for this phenomenon are as follows: The locations, sizes
and numbers of individual fires within the active fire pixels were unknown, and the active
fire pixel may have been smaller than the occupied area of the actual fire perimeter. This
was particularly significant in the northern forest areas [37]. Due to the spatial resolution
of satellite data, the burned area is often overestimated. As the spatial resolution of MODIS
burned area products is 500 m, when a small fire occurs (less than 500 m × 500 m), the
entire pixel is assigned as burned out. This indicates that pixels are often misclassified
as completely burned-out pixels [38]. Moreover, when using FRP derived from MODIS
sensors, the average radiation power of northern forest fires is significantly lower compared
to other regions (ex: North America), and this difference is related to the physical differences
between forests. MODIS could not detect low-intensity fires in high-latitude areas and was
also hindered by cloud cover [39]. Based on the above analysis, our results showed a high
GFED4.1s and a low QFED2.5, mainly due to overestimation of the over fire area of the



Remote Sens. 2023, 15, 4547 15 of 20

burned area products, as well as limitations in extracting fire radiative power from FRP
derived from MODIS active fire products in high-latitude areas of northern forests.

There may be discrepancies in the input parameters when estimating the five types of
inventories. The burned-area-based approach supports the monitoring of areas and can
effectively evaluate the combustion emissions of large fires [40]. For example, compared to
other inventories, GFED4.1s uses the MCD64A1 product, covering small fires that may be
missed and resulting in higher estimated methane emissions. Although FINN1.5 is also
a burned-area-based product, its combustion area estimation is relatively simple without
complex spatial and temporal variability. It estimates the burned area of each fire pixel for
all biomass types under one square kilometer. Compared to the estimation method based
on area, the FRP-based approach has better monitoring effectiveness for small fires and
short-term agricultural fires [41]. For FEER1.0, the process of deriving Ce (coefficient of
smoke emission) is limited by MODIS AOD, which limits the impact of other emission
sources [42]. Although GFAS1.0 uses the FRP method to estimate emissions, its emission
coefficient is obtained through linear regression with the GFED3.1 dry matter combustion
rate. Therefore, its emissions calculation is similar to that of the GFED series. Compared
to other datasets, QFED2.5 combines the cloud correction method developed in GFAS1.0
and adopts more complex non-observational (ex: cloud obscuration) land area processing
methods [43]. Therefore, this operation can filter out misjudged fire point pixels to a
higher extent. In addition, the estimation method based on FRP can directly estimate the
fuel consumption of energy released from fires, without being affected by uncertainties
related to estimated fuel load and combustion integrity. Its combustion conversion rate
is not affected by surface vegetation types [44] and could prevent the accumulation of
multiple factor errors and reduce the uncertainty of emission estimation [45,46]. Although
there were differences in the values between inventories in this study, they showed good
consistency in their temporal trends. At the same time, it is currently difficult for the
datasets to evaluate accurate emission values. Most studies compared the superiority of the
inventory dataset to the trend consistency between the datasets [47,48]. Therefore, the level
of the values cannot be used as a standard to measure the accuracy of inventory estimation.
Moreover, in Section 3.3.2, we found that the coefficient of correlation for QFED2.5 with
each inventory was above 0.8 (Figure S5), and its “similarity distance” with satellite data
was the shortest (below 0.14). Based on the above possible reasons and the similar results
with QFED2.5 as well as satellite concentration data obtained in this study, QFED2.5 was
found to be superior to other biomass-burning emission inventories.

4.2. Explanation of the Lagging Effect

Considering the above analysis results, lagging effects were found to be present
between the atmospheric methane concentration monitored by satellite and methane
emissions estimated in the inventory. In this section, this phenomenon is verified, and a
trend analysis is conducted on the atmospheric methane concentration as well as methane
emissions before and after the severe forest fire events in the CAN and RUS regions from
2010 to 2020.

According to Figure 9b, the methane emissions from GBBEI in the RUS region
were highest in 2012. The number of hotspots in the region from 2011 to 2013 was
obtained (Figure 15) based on the FIRMS Active Fires on Earth Engine APP (https://
globalfires.earthengine.app/view/firms (accessed on 14 July 2023)). As shown in Figure 15,
699,218 hotspots were detected in 2012, with the highest number of hot spots being 240,746
in July 2012, followed by May and June. The number of hotspots detected in these three
months accounted for 72.02% of all hotspots detected in 2012. According to the Global
Disaster Data Platform statistics (https://www.gddat.cn/newGlobalWeb/#/DisasBrowse
(accessed on 6 July 2023)), a severe forest fire occurred in Siberia, Russia, in the summer of
2012. Based on the obtained fire points, a consistent analysis was conducted on the methane
emissions and satellite concentrations before and after the wildfires in the RUS region in
2012. Similarly, based on Figure 9b and historical fire events, the year (2015) with consistent

https://globalfires.earthengine.app/view/firms
https://globalfires.earthengine.app/view/firms
https://www.gddat.cn/newGlobalWeb/#/DisasBrowse
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peak values for each inventory was designated as the year of severe fire occurrence in the
CAN region. As shown in Figure 16, the atmospheric methane concentrations monitored by
satellite lagged the methane emissions estimated by the inventories by about 2–3 months
in the CAN area in 2015, whereas the serious forest fire event in the RUS area in 2012
lagged by about 0–1 month. This result is consistent with the multi-year monthly average
data in Section 3.3.2. Therefore, two main reasons for the lagging effect can be proposed.
First, there could be a corresponding time difference in the concentration changes received
by carbon-monitoring satellites due to the distance required for the transmission of gas
emissions to carbon satellite sensors. Second, the length of the lag time could be related
to the amount of gas emissions. As shown in Figure 16, the methane emissions in the
RUS region were about twice those of the CAN region. The larger the gas emissions in the
region, the more severe the forest fire. This could be attributed to the greater heat released
by the fire, the higher the rate of gas production [49] and the shorter the time to reach the
carbon satellite sensor.
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4.3. Uncertainty in the Selection of Research Areas

Due to the uncertainty in selecting reference data for the study area such as the
MCD64A1 burned area map, MCD12Q1 land cover type map and the global forest loss
driver classification map, our results were affected to some extent. MCD64A1 burned area
data usually have a certain degree of overestimation because of their spatial resolution
(500 m). When a small fire occurs (less than 500 m × 500 m), the entire pixel needs to be
assigned as burned, which affected the selection of our research area [38]. The classification
accuracy of MCD12Q1 land cover type data is lower than official standards [50]. At the same
time, we chose the land cover from 2015 to represent the period from 2010 to 2020, which
may have presented some shortcomings. The classification map of global forest loss drivers
showed that in northern forests, especially in Russia, wildfires spread to previously logged
areas or occurred after the fire. In these cases, it was difficult to attribute a single driving
factor to these regions, as there were patterns of multiple driving factors within the same
unit, despite being in different years during the analysis period (2001–2015). Moreover,
the time range involved in this map had a certain impact on our research results [25]. We
used the method of geographic weighted overlay analysis to determine our research areas.
According to the setting of weight coefficients, the MCD64A1 burned area map contributed
15%, the MCD12Q1 land cover type map contributed 35%, and the global forest loss driver
classification map contributed 50% to the uncertainty of the results.

5. Conclusions

Five commonly used GBBEIs, atmospheric concentration satellite data and ground
station observation concentration data were selected in this study. Considering the typical
area of global forest fires—the boreal forest as an example—CH4 with a lifespan of 10 years
was used as the research object, and methods such as numerical comparison, trend con-
sistency analysis and time lag cross-correlation analysis were adopted. The consistency
and differences in time scales between different datasets from 2010 to 2020 were shown
at the regional scale. The connection between emissions and atmospheric concentrations
was thoroughly investigated. Using atmospheric concentrations observed by satellites
as the standard, the datasets among existing GBBEIs were evaluated. In this study, we
found a lagging effect to be present between the methane emissions estimated from the
inventory datasets and the atmospheric methane concentrations observed by satellites. The
lag time was not consistent in different regions. Furthermore, based on the measurement of
time series similarity and previous research results, the QFED2.5 was found to be a more
reliable inventory.

The relationship between CH4 emissions and atmospheric concentration changes in
forest fire areas was investigated. By using the method of “atmospheric concentration
measurement assisting inventory validation”, the reliability of existing GBBEIs was qualita-
tively evaluated, providing a reference for selecting appropriate GBBEIs in “bottom-up”
inventory estimation research. Given the uncertainty and shortcomings of the existing
inventory estimation, our analysis work could be helpful in the future by applying a higher
spatiotemporal resolution and smaller unit fire events.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15184547/s1, S1: Detrended fluctuation analysis calculation steps
and formulas; Figure S1: Global forest disturbance drivers map; Figure S2: Distribution map of CAN
regional stations; Figure S3: Seasonal box chart of CH4 emissions from 2010 to 2020 (black hollow
circle: mean value, red solid line: median value, black diamond: outlier): (a) CAN; (b) RUS; Figure S4:
Ground station data and observed remote sensing atmospheric concentration data; Figure S5: Cor-
relation analysis between inventory dataset and atmospheric CH4 concentration data from 2010 to
2020: (a) CAN; (b) RUS; Figure S6: Correlation number between atmospheric concentration change
and gas emission under optimal lag number (red star represents p < 0.01): (a) CAN; (b) RUS; Table S1:
Data collection details; Table S2: Characteristics of two atmospheric background stations and MLO
stations in the CAN region; Table S3: Summary of five biomass burning emission inventories; Table S4:
Average CH4 emissions and standard deviation in CAN and RUS regions from 2010 to 2020.
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