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Abstract: The increased demand for and use of autonomous driving and advanced driver assistance
systems has highlighted the issue of abnormalities occurring within the perception layers, some of
which may result in accidents. Recent publications have noted the lack of standardized independent
testing formats and insufficient methods with which to analyze, verify, and qualify LiDAR (Light
Detection and Ranging)-acquired data and their subsequent labeling. While camera-based approaches
benefit from a significant amount of long-term research, images captured through the visible spectrum
can be unreliable in situations with impaired visibility, such as dim lighting, fog, and heavy rain. A
redoubled focus upon LiDAR usage would combat these shortcomings; however, research involving
the detection of anomalies and the validation of gathered data is few and far between when compared
to its counterparts. This paper aims to contribute to expand the knowledge on how to evaluate
LiDAR data by introducing a novel method with the ability to detect these patterns and complement
other performance evaluators while using a statistical approach. Although it is preliminary, the
proposed methodology shows promising results in the evaluation of an algorithm’s confidence score,
the impact that weather and road conditions may have on data, and fringe cases in which the data
may be insufficient or otherwise unusable.

Keywords: autonomous driving; perception algorithms; LiDAR; anomaly detection; COPOD

1. Introduction

The last decade has seen an exponential increase in the application of embedded
systems within the automotive industry; this modernization has allowed for deeper and
more complex integration of electronics, in part fueled by higher interest in electric and
hybrid vehicles. This phenomenon has led to a wave of demand for vehicles equipped
with ADAS (Advanced Driver Assistance Systems) and “self-driving vehicles”, shifting
automated driving into a particularly pertinent field of research. This increased interest has
been accompanied by a requirement for better and more accurate machine learning models,
in turn necessitating new performance indicators and metrics, higher quality and diversity
of evaluation methods, and higher quality and realism of the datasets used to train these
models, among others.

Nevertheless, accidents involving autonomous vehicles have been reported as a result
of errors in the perception computing layers [1–3]. One such example involved an accident
between one of Uber’s vehicles and a pedestrian holding a bike while crossing a street.
Reports suggest that while both the LiDAR (Light Detection and Ranging) and RADAR
(Radio Detection and Ranging) systems detected the pedestrian about six seconds before
the registered impact, a misclassification of the pedestrian as an “unknown object” led
to the unfortunate crash [3]. Despite development efforts held in the past years, further
research is required to prevent these failures. Special attention must be paid to ways in
which researchers may improve or characterize the performance of perception algorithms,
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especially under diversified driving situations. Notably, the literature cites an acute lack of
research involving holistic LiDAR data [4].

This may be due to the fact that LiDAR usage within vehicles is a fairly new field
of application, with the required technology having improved steadily over time. Earlier
versions of integrated LiDAR systems showed a lack of fidelity and resolution in the
obtained point clouds, with each subsequent iteration providing denser and more precise
measurements that allow for fewer mistakes within the perception layer. As noted in [4],
an overwhelming amount of research effort has been placed on multi-source imagery
obtained with cameras, RADAR, LiDAR, and multimodal research being scarce at best.

Fundamental requirements in obtaining robust and accurate perception algorithms
lie in expanding availability and size of datasets, improving the effectiveness of testing
methods and relevance of key performance metrics, and mitigating risks by better assessing
the performance and evolution of these algorithms. There are a few ways to achieve
this, notably by comparison of the layer’s output against a “ground truth” (labeled data)
that makes up part of the dataset. Other notable approaches involve the collection of
detailed and relevant data via thorough testing, analysis of correlations between metrics,
detection of anomalies and outliers, identification of fringe cases, and notable exceptions,
among others [4,5].

This paper reports preliminary results obtained through a novel multifaceted approach
based entirely on LiDAR data. The proposed algorithm shows the ability to outline points
of concern within a dataset by highlighting likely anomalous point clouds, the discernment
and classification of which can be difficult for perception algorithms, as well as to comple-
ment other performance evaluators. By coupling this methodology with other techniques,
different and more effective analysis can be obtained. As an example, by coupling a simple
IOU (intersection-over-union) analysis with the proposed methodology, it is possible to
know which inferred bounding boxes fail to match the ground truth as well as why such
a mismatch may have occurred. In this case, should the anomaly score prove low (i.e., a
false positive), it can be inferred that the misclassification occurred as a result of similarities
between the object’s point cloud and the idealized point cloud for that category, such as a
vaguely car-shaped piece of architecture or vegetation. Otherwise, it can be inferred that
the anomaly occurred solely due to an error in the algorithm’s classification.

With this approach in mind, we may leverage its unique characteristics to aid in the
training and evaluation of perception algorithms. Its ability to identify possible outliers
within a particular category allows for the detection and removal of data which may prove
unsuitable for a given purpose, facilitating the building and use of a dataset. Furthermore,
through a similar process this method is able to calculate the probability of a given LiDAR
point cloud (PC) belonging to a certain category.

1.1. Mathematical Copulas

In probability theory and statistics, a cumulative distribution function (CDF) provides
the probability of a given variable X taking a value less than or equal to p. A copula
C : [0, 1]2 → [0, 1] is a distribution function having marginal laws that are uniform in
[0, 1]. This is a special multivariate cumulative distribution function case; the marginal
probability distributions for each of the variables that define it are uniform on this interval,
allowing them to be separated from the dependency structure associated with a multivariate
distribution [6] and the following three conditions to be verified:

C(u, 0) = C(0, u) = 0 : f or : all : u, in [0, 1], (1)

C(u, 1) = u : and : C(1, u) = u : f or : all : u in [0, 1], (2)

For all (u1, v1), (u2, v2) in [0, 1]2 : with : u1 ≤ u2 : and : v1 ≤ v2. (3)

Thus, we have

C(v1, v2)− C(v1, u2)− C(u1, v2) + C(u1, u2) ≥ 0. (4)
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If C is a copula related to a random vector (X1, X2), then C couples the distribution
functions in the sense that

Pr(X1 ≤ x1, X2 ≤ x2) = C(Pr(X1 ≤ x1), Pr(X1 ≤ x1)) (5)

While at first glance copulas may appear to be niche, they can be applied in a wide
variety of ways. First, it is known that by leveraging the Central Limit Theorem via
the sampling of a given distribution, it can be transformed into a uniform distribution.
Furthermore, any uniform distribution can be transformed into any given function via
inverse sampling [6]. Considering this, Sklar’s Theorem [7] can be introduced, stating that
any given multivariate joint distribution can be written in terms of a univariate marginal
distribution, and as such can be described by a copula [6].

Due to these properties, copulas have long been used to describe the correlation
between seemingly random variables, finding applications in many fields. Most notably,
they are widely used in finance to manage and optimize investment risk. Recently, copulas
have found new applications in a variety of fields, including outlier detection [6], software
quality assessment [8], automotive component failure [9], testing of analog and mixed-
signal circuits [10], and fault detection in mechanical engineering [11].

For the purpose of automated driving, LiDAR scanners operate by firing a sequence of
laser beams with a wavelength in the infrared spectrum towards the surrounding environ-
ment. After calculation of the laser beams’ roundtrip time considering the beam intensity
upon reaching the scanner, the LiDAR software is then able to map the surrounding area
using a specific amount of points that depends on the LiDAR’s resolution. Sensors specifi-
cally made for advanced vehicle safety provide vertical × horizontal surround angle views
of 360◦ × 40◦ with 0.1–0.4◦ resolutions and 100 m to 300 m range with ±3 cm accuracy.
Each of the points in a PC represents a radial distance, identified by polar coordinates,
which can be translated into their Cartesian counterparts. With this information, LiDARs
are able to obtain a reflectivity index from the aforementioned captured beam intensity.

1.2. LiDAR Data Analysis

The task of a LiDAR data perception algorithm is to interpret and process the in-
formation conveyed by the captured PC in order to detect and track objects. Accurately
segmenting the captured PC into the various objects that compose a scene and locating
them in the 3D space is not a trivial task, especially when the relative distance, shape, and
size of objects are required. At times, the assessment accuracy of an algorithm may be
directly correlated with the available LiDAR data resolution and the quantity of captured
points, with sparser PCs leading to greater gaps in the PC density and as such being more
error-prone. It is equally as important to note that captured PCs are usually noisy, sparse,
and inconsistent due to extrinsic factors such as complex geometries, unforeseen occlusions,
differences in reflectivity, and severe weather conditions. Performance degradation due to
aging, wear, and tear on the LiDAR system are other possible reasons for poor quality of the
PC. Due to these issues, it is not uncommon to find scattering within PCs and displacement
of points into positions that may be seen as anomalous.

Prior to presenting the obtained preliminary results, the following section provides
a summary revision of several methods used to test and evaluate different aspects of
automated driving system functionality, including perception algorithms and the associated
data. Section 3 presents an in-depth explanation of the proposed methodology, including
an overview of outlier detection and the detector developed in this work, as well as a
presentation of the analyzed data and the method we wish to outline. Section 4 discusses
the preliminary results obtained after applying the proposed methodology, making use
of the KITTI dataset [12]. Finally, Section 5 highlights our main conclusions and identifies
additional ongoing work being carried out on the ways in which LiDAR resolution and
point cloud density can impact the performance of perception algorithms.
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2. Overview of LiDAR Data Testing Methods

The correctness of a LiDAR PC is usually evaluated by calculating the minimum
Euclidean distance between equivalent points in both a reference and the captured PC. Four
metrics are typically used: the Hausdorff Distance [13], Modified Hausdorff Distance [14],
Chamfer Distance, and Earth Mover’s Distance [15]. The LiDAR’s accuracy is then provided
by the Root Mean Square Error of the calculated distances. However, the simple calculation
of these distances does not allow for the detection of outliers or their probabilities.

The detection of outliers in LiDAR data in agricultural applications has been previously
discussed in [16]. The authors evaluated two methods. One is based on a geometric
approach in which noisy point cloud data are fitted to a surface via normal and curvature
estimation in a local neighborhood. The other relies on the PointCleanNet (PCN) deep
learning framework. It is considered a simple data-driven method for removing outliers
and reducing noise in unordered point clouds while being able to handle large densely
sampled point clouds. While the first method requires the specification of input parameters
that are sensitive to the distribution and density of the points in the dataset, the second
proves to be more robust against changes in the point cloud density, shape, and level of
noise. Nevertheless, PCN typically requires point densities greater than about 600 points
per m2; moreover, as a supervised learning method, it is unlikely to succeed when the
training noise characteristics differ from those of the test data.

A 2020 publication analyzed the performance of various LiDAR types available on the
market [17]. The authors sought to better understand how their respective performance
differences would impact the safety of future automated driving systems. The capabilities of
ten LiDARs were evaluated using various metrics that encompassed twelve manufacturers’
specifications: channels, frames-per-second (FPS), precision, maximum range, minimum
range, vertical field of view (vFOV), vertical resolution (vRes), horizontal resolution (hRes),
wavelength (λ), sensor diameter (d), weight, and price.

First, the authors began with a set of qualitative observations to analyze each LiDAR’s
performance regarding secondary reflections, intensity-based aberrations, blooming, miss-
ing points, and traffic line visibility issues. These observations were intended to identify
the main contributors to PC noise, measurement errors, artifacts, scarcity, and missing
information. A statistical method was used to measure the respective overall accuracy and
precision. The methodology was detailed, allowing for reproducible results by using the
relative error and root mean square error across three different targets for each LiDAR. This
same methodology was then extended to measure the impact of surface reflectivity on the
LiDAR data by making use of the different material properties of each target [17].

A similar analysis was used on a smaller scale to assess the impact of each individual
laser on the overall PC. The end goal was to ascertain whether accuracy errors resulted
from faults in the calibration procedure of individual lasers or from the sensor’s attempts
to compensate for differences between its laser emitters. It was found that most LiDAR
errors are due to the latter [17]. A final point of concern addressed the density of points
within a given PC, seeking to compare experimental results with the expected maximum
provided by the datasheet specifications. The expected density of points can be calculated
using the LiDAR’s sampling rate and frequency, field of view, and resolution specifications.
By knowing how many points are obtained after a given amount of frames, verification
of successfully returned laser beams allowed the authors to compare the theoretical and
practical density of the beams as well as the differences in their intensity [17].

In 2021, a review of the methods used to test environmental perception in auto-
mated driving systems was published in [18]. In this work, the authors found that while
much of the testing and evaluation present at the time conformed to ISO 26262 [19] and
ISO 21448 [20], this became insufficient when vehicles received a greater degree of au-
tomation. They highlighted several points regarding the interdependence of criteria and
the inability of existing metrics to account for points of failure which, while not formally
regarded as catastrophic failures, may nonetheless result in accidents.
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One such highlighted example involves a metric dubbed the “statistical safety im-
pact” [18], which evaluates a system’s safety impact in individual scenes. Unfortunately,
this metric depends on whether the system itself correctly recognizes and reports its un-
certainty. If a failure-induced mischaracterization occurs, an uncertainty may never be
detected, in which case the abnormality remains undetected. Similarly, there are times
in which the perception layer may encounter uncertainties around a false positive, such
as cases involving “ghost pedestrians”. This may cause the subsequent layers to behave
erratically, leading to emergency maneuvers and dangerous breaking that can place other
vehicles and drivers at risk. Most of all, their review highlights that despite the existence of
safety criteria and metrics which fulfill them, including those independent from the system
itself, there exists a pressing need to produce new and more apt indicators that do not rely
on the system itself, are able to consider the impact that a misclassification might have on
the entirety of the system pipeline, and are scalable to higher degrees of autonomy.

In 2022, a thorough survey was published by [4] that delved into the many forms in
which anomaly detection has been leveraged to tackle this specific context, outlining an
extensive list of previous methodologies developed throughout the years. They identified
five distinct categories: confidence score, reconstruction, generation, feature extraction,
and prediction. For each category, the authors searched extensively for any methods
that could be applied in a given context, identifying three main modalities for data cap-
ture: camera, LiDAR, and RADAR. Additionally, analyses were conducted regarding the
detection of anomalies across multimodal facets and object-level data. The former encom-
passed data captured with two or more of the previous three modalities, while the latter
involved abstract abnormalities such as behavioral patterns and other data not bound to
any given modality.

Within their survey, the authors highlighted the differentiation between the quantity
and the quality of effective methods, especially concerning data captured by LiDAR. Of
all the modalities, LiDAR presents the least technological development when it comes
to the identification of anomalous data, comprising only four total methods, three in the
confidence score category and one reconstructive approach. While per-point detection is a
well-explored field of anomaly detection, object-level and pattern-based approaches remain
few and far between.

3. Materials and Methods

To better contextualize this description, a basic overview of the utilized tools and
materials is introduced before presenting the actual procedures, starting with a brief
explanation of the COPOD algorithm.

3.1. Outlier Detection

Outliers, typically regarded as anomalies, are commonly understood as instances,
actions, or objects which fall outside the norm. In the field of statistics this refers to
unexpected datapoints or patterns which do not conform to an expected behavior [21].
This definition can be further explored by taking an abstract set of data describable via a
given number of functions. In this case, outlier designates any point unable to be fit into
at least one such function, originating instead from an unknown distribution foreign to the
remaining data. Conversely, any points which can be fit into these describing functions are
regarded as inliers.

Outlier detection refers to any process which may be used to accurately identify such
anomalies through the separation of inliers and outliers [6]. Depending on the quantity,
type, labeling, and other such characteristics of a given dataset, the manner in which such
anomalies are identified necessarily varies. With this in mind, it is possible to distinguish
between three main types of algorithms which are fundamentally characterized by the
availability of labels in the dataset [21].

• Supervised detection relies on fully labeled data, and often benefits from the use of
classifiers to deal with unbalanced class distribution.
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• Semi-supervised detection is characterized by training data which consist only of
normal instances without anomalies.

• Unsupervised detection is performed on unlabeled data, taking only the intrinsic
properties of a dataset.

Copula-Based Outlier Detection

An outlier detection algorithm based upon copulas was first introduced in Li et al. [6].
In this publication, the authors provided a comparison between their at the time novel
approach and its closest competitors. Highlighted in the showcased results are direct com-
parisons between these algorithms focusing on the differences in speed and performance,
both of which COPOD excels at. Notably, the authors highlighted its statistical approach
and complete lack of hyperparameters as two of the most distinguishing factors [6].

These characteristics allow for ease of use, removing any need for manual tweaking
or tinkering, which in turn leaves little margin for user error. Furthermore, as it is able
to function either with and without learning splits, it can operate as a supervised, semi-
supervised, or unsupervised algorithm. It has been integrated into the pyOD (Python
Outlier Detection) [22] suite, which allows for further accessibility.

The algorithm itself is based on the exploitation of properties intrinsic to empirical
copulas, which can be derived from eCDFs (empirical Cumulative Distribution Functions).
A CDF is a descriptor of the probability of a given variable X taking a value less than
or equal to p. The continuous nature of this probability distribution, however, imposes
rather expensive computational requirements which do not scale well in multivariate
cases. An eCDF can be used instead, defined as a step function which approximates the
true CDF via a sampling system with a frequency of 1/n, with n being the total amount
of samples. Figure 1 shows the eCDFs obtained from a CDF when considering 25, 100,
1000, and 5000 samples, respectively. As can be seen, the reduction in the number of
samples implies higher deviation from the original CDF, and the confidence interval is
wider. A copula is a special case of a multivariate CDF defined by the uniformity of each
variable’s marginal probability in the interval of [0, 1].

The COPOD algorithm works through a three-stage process, taking a dataset of a
given dimension and size and outputting a linear vector of that same size that contains the
outlier score for each datapoint. These scores, represented by a positive real number, are
not an indication of a given datapoint’s outlier probability; instead, they provide a relative
measure of the likelihood that a given datapoint is an outlier in relation to the rest of the
dataset [6].

The first step in achieving this output begins with the algorithm fitting emperical
CDFs for both the left and right tails. A skewness vector is calculated as well, which is
used later on to combat any inherent biases presented by the dataset. Then, the algorithm
computes the empirical copula observations for each datapoint while using the previously
acquired skewness vector as needed to correct any possible bias. With these observations,
the algorithm can proceed to the final step, calculating the probability of observing a point
at least as extreme as each other datapoint across each of the dataset’s dimensions. In this
context, extremity can be defined via the tail probability; the smaller the tail probability,
the higher the likelihood that a given datapoint is an outlier [6].
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Figure 1. Original CDF and derived eCDF with n-samples (reused under free licensing agreement [23]).

The previously computed observations allow the algorithm to know the degree of
extremity of each datapoint, and consequently the relational value between them. Using
this, it calculates the maximum of the negative log of the probability generated by each tail
and the skewness-corrected empirical copulas, then uses it to represent the outlier score.
Taking the definition of extremity into account, this is intuitive, as the minus log is inversely
proportional to the tail probability [6]. The pseudocode of the algorithm is provided in
Algorithm 1.

3.2. Data

For the purposes of this first introduction to the methodology, we elected to use the
KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) dataset [12].
KITTI has been a benchmark of autonomous driving datasets ever since it was made
available in 2012, providing a stereo camera and LiDAR data (four features: x, y, z, and in-
tensity) via a 360◦ Velodyne Laserscanner [12]. The 2017 version of the 3D Object Detection
Evaluation dataset provides 7481 training images and 7518 testing images, corresponding
to a total of 80,256 labeled objects across multiple categories such as ’Car’, ’Van’, ’Truck’,
’Pedestrian’, ’Person (sitting)’, ’Cyclist’, ’Tram’, and ’Miscellaneous’ [24].

The data are separated across different .zip files, which contain left color images, right
color images (stereo dataset), Velodyne point clouds, and the labeling data for the training
portion of the dataset [12]. Pictured in Figures 2 and 3 are a single frame’s LiDAR point
cloud and the associated camera views.
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Algorithm 1 COPOD Algorithm [6]

Input: Data Xd
n

Output: Vector O(X)
1: for each dimension d do
2: Compute left tail ECDFs: F̂d(x) = 1

n ∑n
1 I(Xi ≤ x)

3: Compute right tail ECDFs: ˆ̄Fd(x) = 1
n ∑n

1 I(−Xi ≤ −x)

4: Compute the skenewss coefficient: bi =
1
n ∑n

i=1(xi−xi)
3√

1
n−1 ∑n

i=1(xi−xi)
2

3

5: end for
6: for each i in 1,...n do
7: Compute the Empirical Copula Observations:
8: Ûd,i = F̂d(xi)

9: V̂d,i =
ˆ̄Fd(xi)

10: Ŵd,i = Ûd,i if bd < 0 otherwise V̂d,i
11: Calculate tail probabilities of Xi as follows:
12: pl = −∑d

j=1 log
(
Ûj,i
)

13: pr = −∑d
j=1 log

(
V̂j,i
)

14: ps = −∑d
j=1 log

(
Ŵj,i

)
15: Outlier Score O(xi) = max{pl , pr, ps}
16: end for
17: return O(X) = [O(x1), . . . , O(xd)]

T

Figure 2. LiDAR sample from the KITTI dataset corresponding to the timestamp 26-09-2011
13:02:27.004432.
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Figure 3. Camera sample from the KITTI dataset corresponding to the timestamp 26-09-2011
13:02:27.004432.

There are a few ways in which to extract and organize the available LiDAR data. One
is to extract the data pertaining to each point within a given bounding box, thereby shaping
the coordinates into a position relative to the bounding box’s center. This is a necessary
step when eliminating inconsistencies in an object’s point cloud that may arise due to
the distance to the scanner itself, and allows each resulting collection to better describe
the captured object’s shape. These data can be stored in individual NumPy arrays for
later processing.

3.3. Methodology

The peculiarities of COPOD as a multivariate statistical method render it unable to
parse the previously acquired data. Its input is constrained, accepting only a collection of
one or more features or variables that it can relate and process. The associated matrix must
be strictly uniform, and must be either one- or two dimensional.

This poses a problem, and required restructuring of the data to ensure proper pro-
cessing by the algorithm itself. To this end, we looked to the x, y, and z coordinates as
individual features through which to fit the algorithm. In this way, the eCDF and sub-
sequent copula derived from the conjunction of all these points were able to accurately
describe the shape of a given category. Looking at the granularity present in the KITTI
dataset, cars and vans are regarded as different entities, as are trucks and other vehicles.
This means that a ‘Car’ is a somewhat defined entity with a shape that, while different
individually, can be characterized by telltale characteristics easily picked up by a LiDAR
point cloud.

With this in mind, it is important to note that this approach disregards crucial infor-
mation and granularity derived from individual contexts or from the intrinsic properties of
distinct cars, which could help to better identify outliers or in preventing misclassification.
In these first experiments, the intensity data were not considered; however, because a
copula is a multivariate distribution function, this information could be included as long as
the intensity data are restructured as well.

The data treatment process can be seen in Figure 4. First, we proceeded by extracting
the data for a single category in individual NumPy arrays, as outlined previously. These
were then gathered into a singular matrix containing as many samples as there were points
within all the collected point clouds. Using the fit function, a copula specific to this category
was produced and then used to evaluate single points in one of the three following ways
for a single point cloud of size N × 3 , where N denotes the number of points that form
that point cloud:

• Prediction Method: predicts whether a given point is anomalous or not. The output of
this method is a list of size N containing 1s and 0s, with the former denoting outliers
and the latter inliers.
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• Probability Method: predicts the probability of a given point being anomalous.
The output of this method is a list of size N containing the computed probabilities
and, if requested, a confidence value for the prediction.

• Scoring Method: computes the raw anomaly score of a given point. The output of this
method is a list of size N containing numbers; those with higher values denote more
anomalous points.

Regardless of the method, this algorithm only provides analysis on a per-point basis.
As such, a way must be devised to extend these evaluations such that meaningful data on a
point-cloud level can be extracted from the individual values. This can be done for each of
the above methods as follows:

• Prediction: an assessment of the number of outliers present in the cloud is necessary.
For this, a simple OutP (Outlier Percentage) is computed by taking the number of
outliers and dividing them by the total number of points in the cloud.

• Probability: the AAP (Average Anomalous Probability) can be obtained by adding all
individual probabilities and using the result to evaluate the whole point cloud.

• Scoring: similar to the probability method, an AAS (Average Anomaly Score) can be
produced to evaluate the point cloud.

Regardless of the chosen analysis, the resulting output can be equated to a perception
algorithm’s confidence score, serving as a measure of the likelihood of any given point
cloud belonging (or not) to the category used to fit the copula. When working only
with LiDAR data, this method may be implemented alone or supplemented by others;
comparing its results to an algorithm’s confidence score provides a way of evaluating the
algorithm’s performance.

Figure 4. Visual outline of the proposed methodology.

4. Results

The results presented herein are preliminary, yet show the promising nature of this
methodology. They were obtained using four categories: Car, Truck, Pedestrian, and
Cyclist. First, the PCs for all bounding boxes present in the 7481 training images were
extracted. This extraction was done by identifying every bounding box within a given
image corresponding to the targeted category. Next, every point contained within these
boxes was collected and the bounding boxes were normalized, with the center serving as
the origin point in a Cartesian coordinate system and the corresponding points fitted under
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it. This allows for dispensing with depth as a parameter, focusing only on how the x, y, and
z dimensions of each point relate to the bounding box, resulting in the following sample
size for the respective categories:

• Car: 27,393 point clouds
• Truck: 1084 point clouds
• Pedestrian: 3623 point clouds
• Cyclist: 1616 point clouds

For the car PCs, approximately 10%, 2841 in total, were extracted for validation.
The rest were appended to one another, producing a single array that was then used to
train the algorithm and produce a fitted copula. Then, the prediction algorithm was run PC
by PC in order to determine whether or not a given point was anomalous. Before moving
on to the next cloud, the percentage of anomalous points (OutP) was calculated and stored
to produce the graphs shown below.

Before proceeding to a discussion of the specific results, it should be noted that inherent
imbalances can be found within most if not all available datasets containing real-world
LiDAR data. The prevalence of cars far outweighs that of even pedestrians, and in turn
pedestrians often outnumber the remaining categories. This is due to the nature of real-
world vehicle diversity and the situations in which these datasets are obtained, which
primarily make use of cities and their outskirts. In order to account for this inherent
imbalance in the data, there is a need to understand whether it matters for the algorithm’s
performance. To find an answer to this question, all categories were truncated to the lowest
common denominator by selecting random datapoints from each category.

If these sample populations turn out to be statistically representative of the greater
whole, then it is likely that imbalances can be conceivably ignored in the future, as this
result indicates that the category used to fit the algorithm contained enough samples for
training. Even when statistical significance might have to be proven for each individual
dataset, the methodology would remain adequate regardless of any inherent imbalances.

Taking this in consideration, for this first case the amount of samples was truncated
to the lowest common denominator, in this case the “truck” category. As this category
contained 1084 bounding boxes, the same number of random samples was selected from
every other category for comparison via scatter plots, box plots, and relevant statistics
such as the quartile, minimum, maximum, and average values for the outlier percentages.
The standard deviation and variance were calculated as well. As with the rest of the
implementation, these results were obtained via Python using the COPOD algorithm
available in pyOD [22]. Multithreading was not enabled, and the contamination value was
set to the default value of 0.1.

Figure 5 presents an unfiltered showcase of the data, with the following PCs shown
from top to bottom: car, truck, pedestrian, cyclist. The graphs show the percentage of
points classified as outliers, with the x-axis identifying the individual PC instances and
the y-axis plotting their respective OutP. Figure 6 is the associated boxplot, outlining the
median(in orange), minimum and maximum values as well as the respective quartiles. This
repeates for Figures 7 and 8 except without the aforementioned PC truncation.

Through analysis of both figures and Table 1, it is possible to draw the following
conclusions. First, there exists a sizable occurrence of outliers in both the pedestrian and
cyclist samples, with the ensuing percentage being considerably higher than that of the
other two categories. The same conclusion cannot be extended to the truck point clouds,
however; whether this is due to the density of their samples, the shape of the respective
LiDAR point clouds, or a mixture of both, they do not appear to be easily distinguishable
from car point clouds, and the algorithm fails to provide any meaningful data. The larger
size of the objects in the truck category and the higher resolution provided by a larger
surface area result in better performance than even the validation samples. Thus, for a given
random point cloud it is possible to identify whether it belongs to the “Car–Truck” pair
or the “Pedestrian–Cyclist” pair with a fair degree of certainty, in other words, to identify
whether or not it is a four-wheeled road vehicle.
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Figure 5. Scatter plot containing the truncated samples.

Figure 6. Associated box plot for Figure 5.
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Figure 7. Scatter plot depicting the 42 car point clouds and 3623 pedestrian point clouds; higher
scores represent a higher percentage of anomalous points.

Figure 8. Associated box plot for Figure 7.
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That said, anomalies exist in both the Truck and Car samples. The anomalies derived
from point clouds are often scarce, abnormal, or completely lacking in suitable context.
As an example, the lowest-performing point cloud for the Car category, with above a
90 percent outlier incidence (Figure 5), consisted of a handful of random points in space
which are entirely disconnected from any manner of shape or object; as can be seen in
Figure 9, these are correctly identified by the algorithm as outliers. A detailed view of the
statistical data for this graph can be seen in Table 1.

Concerning the means of computation, the machine that we used was an ASUS ROG
STRIX G173QM personal laptop with a Ryzen 9 5900HX CPU, 16 GB of SODIMM DDR4
RAM, and a core frequency of 3200 MHz. The operating system was Windows 11 using
a Jupyter Notebook in VS Code. Each batch of 100 frames contained a varied amount of
data and was processed in 80 to 100 min, with only occasional variance in particularly
sparse frame batches. These results were obtained without multithreading enabled due to
the use of a personal computer and the need for enough resources to be kept available for
regular use.

After the preliminary tests were concluded, the relevant sample (the pedestrian PCs)
was scaled to include all of the available data for that category, making for a total of 3623.
The goal was to determine whether this trend continued, and if it did to discern whether
the first results were statistically significant, in which case it could be fairly assumed that
the same pattern would be present in the car samples.

Figure 9. Point cloud of the car sample with the worst performance. The bounding box is in red with
the LiDAR points in green.

Figure 7 provides a comparison between the results obtained considering the entirety
of the data without any sample size truncation. The data appear to accurately portray the
expected distribution obtained with the truncated sample size. Notably, the pedestrian
point clouds demonstrate a large concentration of points gravitating around the 50% OutP
value. An incidence of samples with more than 60% OutP suggests that the algorithm can
identify anomalous points that do not belong to the fitted copula describing an idealized Car
PC. This ability enables the algorithm to indicate possible points of contention within the
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Car category as well as similar ones such as the Truck category while correctly identifying
most pedestrians as falling outside the expected parameters, with only a few exceptions.
Furthermore, the cyclist samples follow a similar, albeit less drastic pattern to the pedestrian
category, which further serves as an indication of the algorithm’s ability to distinguish
between PCs.

Table 1. Comparison of the obtained statistical data, with pedestrian samples shown on the left and
car samples on the right. The number of samples was truncated to 1084, as this was the maximum
number samples available for the category (Truck) with the lowest number of samples.

Statistics Truncated Car
Samples Truck Samples

Truncated
Pedestrian
Samples

Truncated
Cyclist Samples

Sample Size 1084 1084 1084 1084
Minimum 0 0 0 0

1st Quartile 0 0 42.49 25.74
Average 0 0 47.92 31.53

3rd Quartile 0.61 0 52.84 37.35
Maximum 90.74 27.78 100 100
Std. Dev. 6.44 2.31 13.51 12.22
Variance 41.44 5.34 182.59 149.37

The aforementioned exceptions can be denoted as Car samples with abnormally high
scores and non-Car or Truck samples with abnormally low scores, anomalies which can
be explained through the quality and density of the point clouds associated with these
samples. An example of this is shown in Figure 9, where the reason behind the high OutP
score is made apparent through the lack of extractable context given such a sparse and
insignificant point cloud. A detailed look into the statistics is provided in Table 2.

Table 2. Comparison of the obtained statistical data, with pedestrian samples shown on the left and
car samples on the right. No truncation was performed in this case.

Statistics Car Samples Truck Samples Pedestrian
Samples Cyclist Samples

Sample Size 2841 1084 3623 1616
Minimum 0 0 0 0

1st Quartile 0 0 42.86 25.76
Average 0 0 47.60 31.77

3rd Quartile 0.58 0 52.64 37.65
Maximum 100 27.78 100 100
Std. Dev. 6.54 2.31 12.54 12.11
Variance 42.83 5.34 157.24 149.73

Comparisons with other methods that operate within the same area are hard to draw.
As previously noted, the amount of research within the realm of data validation and
evaluation regarding solely LIDAR data is scarce. Furthermore, most methods rely on the
usage of machine learning algorithms, making direct comparisons of each approach limited.
At most, the confidence score provided by an object detection algorithm can be compared
to the outlier score produced by the same algorithm, or the categorical assertions of the
former score can be compared to the statistics of the latter. Thus, most of the high-fidelity
algorithms used for machine learning purposes are either multimodal or rely mostly on
traditional cameras, making it difficult to obtain fair comparisons.
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5. Conclusions and Future Work

Solutions for advanced driver-assistance systems and autonomous driving are cur-
rently being developed to improve driving comfort and safety in newly developed vehicles
and next-generation automated and autonomous vehicles. While these systems resort to
LiDAR technology to capture three-dimensional data, it is the underlying perception layer
that interprets and understands the scanned surroundings. Recently reported accidents
involving autonomous vehicles have often been shown in studies to be due to failures
within the perception layer. As driving environments are often uncontrolled and complex,
there are many factors which may contribute to data corruption, such as LiDAR laser beam
divergence from backscattering, adverse weather conditions, the state of the road, sensor
performance degradation, and varied sources of external interference.

Robust and accurate LiDAR perception algorithms must be produced in order to
achieve safety in assisted and automated driving systems. Part of this process lies in creating
robust and thorough methodologies to evaluate their performance and guarantee the
integrity of training data. This work presents results of a method proposed for this purpose
which is capable of detecting anomalous patterns in LiDAR data. The results obtained
through the proposed method can be used to complement other performance evaluations
and metrics. This method relies on the Copula-based Outlier Detection algorithm (COPOD)
to identify outliers in a given object category. Three types of metrics are used: those that
predict whether or not a given point is anomalous; those that predict the probability of a
point being anomalous; and those used to compute the raw anomaly score of a given point.
The proposed method can be used to evaluate an algorithm’s confidence score. In addition,
it shows the potential to identify the impact that adverse conditions may have on LiDAR
data, as adverse conditions can increase data scattering. Finally, it can detect cases in which
the data may be insufficient or otherwise unusable.

Further work is being carried out to include other datasets in an effort to better
study the manner in which LiDAR resolution and point cloud density impact algorithm
performance. This primarily involves including data on the intensity of the LiDAR captured
laser beam and the use of datasets containing different weather conditions. Another
prospect is to combine the results of the proposed methodology with other metrics, such as
intersection-over-union, in order to exclude point clouds which contain only the silhouette
or outline of a car as opposed to an actual car. The ultimate objective of this future research is
to generate key performance indicators that can be used to evaluate perception algorithms.
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Abbreviations
The following abbreviations are used in this manuscript:

AAP Average Anomalous Probability
AAS Average Anomaly Score
CDF Cumulative Distribution Function
COPOD Copula-based Outlier Detector
eCDF Empirical Cumulative Distribution Function
OutP Outlier Percentage
LiDAR Laser Imaging, Detection, and Ranging
PC Point Cloud
pyOD Python Outlier Detection Suite
RADAR Radio Detection and Ranging
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