Irrigation Cooling Effect on Local Temperatures in the North China Plain Based on an Improved Detection Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets Collection
2.2.1. Meteorological Data
2.2.2. Elevation Data
2.2.3. NDVI and LST
2.2.4. Cropland Map and ET
2.2.5. Irrigation Map
2.3. Method for Measuring Irrigation Effects
2.4. Data Analysis
2.4.1. Linear Regression Analysis
2.4.2. Spatial Variation Trend Test
2.4.3. Correlation Analysis
3. Results
3.1. Spatiotemporal Patterns of ICE Based on LST and DCT
3.1.1. Temporal Variations of ΔLST and ΔDCT
3.1.2. Spatial Variations of ΔLST and ΔDCT
3.2. Comparison of the ICEs Quantified by Different Methods
3.3. Spatiotemporal Patterns of Irrigation Effects on ET, Precipitation, Tem, and NDVI
3.3.1. Temporal Patterns of Irrigation Effects on ET, Precipitation, Tem, and NDVI
3.3.2. Spatial Patterns of Irrigation Effect on ET, Precipitation, Tem, and NDVI
3.4. Spatial-Trend Slopes of Irrigation Effects
3.5. Factors Underlying ICE Variation
3.5.1. Relationships among NDVI, ET, Climate Factors, and ICE
3.5.2. Quantifying the Impact of NDVI, ET, and Climate Factors on ICE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Albaladejo-García, J.A.; Alcon, F.; Martínez-Paz, J.M. The Irrigation Cooling Effect as a Climate Regulation Service of Agroe-cosystems. Water 2020, 12, 1553. [Google Scholar] [CrossRef]
- Li, Y.; Guan, K.; Peng, B.; Franz, T.E.; Wardlow, B.; Pan, M. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob. Chang. Biol. 2020, 26, 3065–3078. [Google Scholar] [CrossRef] [PubMed]
- Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Envi-ron. Res. Lett. 2009, 4, 35006. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. Appraisal and Assessment of World Water Resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; DÖll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef]
- Siebert, S.; Döll, P.; Hoogeveen, J.; Faures, J.M.; Frenken, K.; Feick, S. Development and validation of the global map of irriga-tion areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- Kueppers, L.M.; Snyder, M.A.; Sloan, L.C. Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Lett. 2007, 34, L03703. [Google Scholar] [CrossRef]
- Guimberteau, M.; Laval, K.; Perrier, A.; Polcher, J. Global effect of irrigation and its impact on the onset of the Indian summer monsoon. Clim. Dyn. 2012, 39, 1329–1348. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A.B. Impact of Irrigation on Regional Climate Over Eastern China. Geophys. Res. Lett. 2019, 46, 5499–5505. [Google Scholar] [CrossRef]
- Chen, X.; Jeong, S. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects. Environ. Res. Lett. 2018, 13, 24005. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; Hu, T.; Cui, Y.; Luo, Y.; Luo, H.; Meng, Q. Climate changes in the Lhasa River basin, Tibetan Plateau: Irriga-tion-induced cooling along with a warming trend. Theor. Appl. Climatol. 2020, 140, 1043–1054. [Google Scholar] [CrossRef]
- Fu, J.; Kang, S.; Zhang, L.; Li, X.; Gentine, P.; Niu, J. Amplified warming induced by large-scale application of water-saving techniques. Environ. Res. Lett. 2022, 17, 34018. [Google Scholar] [CrossRef]
- Douglas, E.M.; Niyogi, D.; Frolking, S.; Yeluripati, J.B.; Roger, A.P.S.; Niyogi, N.; Vörösmarty, C.J.; Mohanty, U.C. Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. Geophys. Res. Lett. 2006, 33, L14403. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Tang, Q. Global assessment of the impact of irrigation on land surface temperature. Sci. Bull. 2020, 65, 1440–1443. [Google Scholar] [CrossRef] [PubMed]
- Boucher, O.; Myhre, G.; Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn. 2004, 22, 597–603. [Google Scholar] [CrossRef]
- Chen, L.; Dirmeyer, P.A. Global observed and modelled impacts of irrigation on surface temperature. Int. J. Climatol. 2019, 39, 2587–2600. [Google Scholar] [CrossRef]
- Zhu, X.; Liang, S.; Pan, Y.; Zhang, X. Agricultural irrigation impacts on land surface characteristics detected from satellite data products in Jilin province, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 721–729. [Google Scholar] [CrossRef]
- Zhang, C.; Ge, Q.; Dong, J.; Zhang, X.; Li, Y.; Han, S. Characterizing spatial, diurnal, and seasonal patterns of agricultural irri-gation expansion-induced cooling in Northwest China from 2000 to 2020. Agric. For. Meteorol. 2023, 330, 109304. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A.B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.D.; Gan, T.Y.; Lau, N. Elevated increases in human-perceived temperature under climate warming. Nat. Clim. Chang. 2018, 8, 43–47. [Google Scholar] [CrossRef]
- Wu, L.; Feng, J.; Miao, W. Simulating the Impacts of Irrigation and Dynamic Vegetation Over the North China Plain on Re-gional Climate. J. Geophys. Res. Atmos. 2018, 123, 8017–8034. [Google Scholar] [CrossRef]
- Zou, Z.; Yang, Y.; Qiu, G. Quantifying the Evapotranspiration Rate and Its Cooling Effects of Urban Hedges Based on Three-Temperature Model and Infrared Remote Sensing. Remote Sens. 2019, 11, 202. [Google Scholar] [CrossRef]
- Zhu, P.; Burney, J. Untangling irrigation effects on maize water and heat stress alleviation using satellite data. Hydrol. Earth Syst. Sci. 2022, 26, 827–840. [Google Scholar] [CrossRef]
- Xiao, L.; Asseng, S.; Wang, X.; Xia, J.; Zhang, P.; Liu, L.; Tang, L.; Cao, W.; Zhu, Y.; Liu, B. Simulating the effects of low-temperature stress on wheat biomass growth and yield. Agric. For. Meteorol. 2022, 326, 109191. [Google Scholar] [CrossRef]
- Karimzadeh Soureshjani, H.; Ghorbani Dehkordi, A.; Bahador, M. Temperature effect on yield of winter and spring irrigated crops. Agric. For. Meteorol. 2019, 279, 107664. [Google Scholar] [CrossRef]
- Makowski, D.; Marajo-Petitzon, E.; Durand, J.; Ben-Ari, T. Quantitative synthesis of temperature, CO2, rainfall, and adaptation effects on global crop yields. Eur. J. Agron. 2020, 115, 126041. [Google Scholar] [CrossRef]
- Bonfils, C.; Lobell, D. Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA 2007, 104, 13582–13587. [Google Scholar] [CrossRef]
- Gao, K.; Santamouris, M.; Feng, J. On the cooling potential of irrigation to mitigate urban heat island. Sci. Total Environ. 2020, 740, 139754. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bonfils, C.J.; Kueppers, L.M.; Snyder, M.A. Irrigation cooling effect on temperature and heat index extremes. Ge-ophys. Res. Lett. 2008, 35, L09705. [Google Scholar] [CrossRef]
- Cook, B.I.; Shukla, S.P.; Puma, M.J.; Nazarenko, L.S. Irrigation as an historical climate forcing. Clim. Dyn. 2015, 44, 1715–1730. [Google Scholar] [CrossRef]
- Shiflett, S.A.; Liang, L.L.; Crum, S.M.; Feyisa, G.L.; Wang, J.; Jenerette, G.D. Variation in the urban vegetation, surface temper-ature, air temperature nexus. Sci. Total Environ. 2017, 579, 495–505. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Tang, Q. Irrigation cooling effect on land surface temperature across China based on satellite observa-tions. Sci. Total Environ. 2020, 705, 135984. [Google Scholar] [CrossRef]
- Liu, G.; Wang, W. Irrigation-Induced Crop Growth Enhances Irrigation Cooling Effect Over the North China Plain by In-creasing Transpiration. Water Resour. Res. 2023, 59, e2022WR034142. [Google Scholar] [CrossRef]
- Liu, G.; Wang, W.; Shao, Q. Recent Decline of Irrigation-Induced Cooling Effect Over the North China Plain in Observations and Model Simulations. Geophys. Res. Lett. 2023, 50, e2022GL101973. [Google Scholar] [CrossRef]
- Coll, C.; Wan, Z.; Galve, J.M. Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. J. Geophys. Res. 2009, 114, D20102. [Google Scholar] [CrossRef]
- Duan, S.; Li, Z.; Li, H.; Göttsche, F.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS land sur-face temperature product using in situ measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, A.; Zhao, L.; Zhao, B. Attribution of local land surface temperature variations response to irrigation over the North China Plain. Sci. Total Environ. 2022, 826, 154104. [Google Scholar] [CrossRef]
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, J.P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Balota, M.; Payne, W.A.; Evett, S.R.; Peters, T.R. Morphological and physiological traits associated with canopy temperature depression in three closely related wheat lines. Crop Sci. 2008, 48, 1897–1910. [Google Scholar] [CrossRef]
- Hou, M.; Tian, F.; Zhang, T.; Huang, M. Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery. Agric. Water Manag. 2019, 222, 182–192. [Google Scholar] [CrossRef]
- Xiao, D.X.D.; Tao, F.T.F. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. Eur. J. Agron. 2014, 52, 112–122. [Google Scholar] [CrossRef]
- Zhao, Z.A.; Qin, X.A.; Wang, Z.A.; Wang, E.B. Performance of different cropping systems across precipitation gradient in North China Plain. Agric. For. Meteorol. 2018, 259, 162–172. [Google Scholar] [CrossRef]
- Meng, Q.; Sun, Q.; Chen, X.; Cui, Z.; Yue, S.; Zhang, F.; Rmheld, V. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agric. Ecosyst. Environ. 2012, 146, 93–102. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Cao, W.; Duan, C.; Yang, T.; Liu, R. Daily surface effective radiation at 130 radiation stations in China (1971–2014) [J/DB/OL]. Digital J. Glob. Chang. Data Repository 2018. [Google Scholar] [CrossRef]
- Meier, J.; Zabel, F.; Mauser, W. A global approach to estimate irrigated areas-a comparison between different data and statis-tics. Hydrol. Earth Syst. Sc. 2018, 22, 1119–1133. [Google Scholar] [CrossRef]
- Kumar, S.; Dirmeyer, P.A.; Merwade, V.; DelSole, T.; Adams, J.M.; Niyogi, D. Land use/cover change impacts in CMIP5 climate simulations: A new methodology and 21st century challenges. J. Geophys. Res. Atmos. 2013, 118, 6337–6353. [Google Scholar] [CrossRef]
- Zhao, N.; Han, S.; Xu, D.; Wang, J.; Yu, H. Cooling and Wetting Effects of Agricultural Development on Near-Surface Atmos-phere over Northeast China. Adv. Meteorol. 2016, 2016, 6439276. [Google Scholar] [CrossRef]
- Cook, B.I.; Puma, M.J.; Krakauer, N.Y. Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing. Clim. Dyn. 2011, 37, 1587–1600. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, Z.; Tang, Q. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China. J. Geophys. Res. Atmos. 2017, 122, 7881–7895. [Google Scholar] [CrossRef]
- Nishida, K.; Yoshida, S.; Shiozawa, S. Theoretical analysis of the effects of irrigation rate and paddy water depth on water and leaf temperatures in a paddy field continuously irrigated with running water. Agric. Water Manag. 2018, 198, 10–18. [Google Scholar] [CrossRef]
- Lobell, D.; Bala, G.; Mirin, A.; Phillips, T.; Maxwell, R.; Rotman, D. Regional Differences in the Influence of Irrigation on Cli-mate. J. Clim. 2009, 22, 2248–2255. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, S.; Zhang, Y.; Jørgensen, G.; Vejre, H. Strong contributions of local background climate to the cooling effect of ur-ban green vegetation. Sci. Rep. 2018, 8, 6789. [Google Scholar]
- Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [Google Scholar] [CrossRef]
- Hou, M.; Tian, F.; Zhang, L.; Li, S.; Du, T.; Huang, M.; Yuan, Y. Estimating Crop Transpiration of Soybean under Different Ir-rigation Treatments Using Thermal Infrared Remote Sensing Imagery. Agronomy 2019, 9, 8. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, J.; Leng, G.; Doughty, R.; Zhang, K.; Han, S.; Zhang, G.; Zhang, X.; Ge, Q. Attenuated cooling effects with increasing water-saving irrigation: Satellite evidence from Xinjiang, China. Agric. For. Meteorol. 2023, 333, 109397. [Google Scholar] [CrossRef]
- Lei, H. Distribution maps of crop planting areas in the North China Plain (2001–2018). Natl Tibetan Plateau Data Center 2022. [Google Scholar] [CrossRef]
- Li, J.; Lei, H. Tracking the spatio-temporal change of planting area of winter wheat-summer maize cropping system in the North China Plain during 2001–2018. Comput. Electron. Agric. 2021, 187, 106222. [Google Scholar] [CrossRef]
Data Type | Product | Resolution | Period | Source |
---|---|---|---|---|
Mean Tem | Peng et al. [45] | 1 km, monthly | 2000–2015 | http://www.geodata.cn (accessed on 2 July 2021) |
Pre | ||||
ERA | Cao et al. [46] | sites, daily | 2000–2014 | http://www.geodoi.ac.cn (accessed on 10 March 2022) |
Elevation | SRTM V4.1 | 90 m, / | / | http://www.resdc.cn (accessed on 15 May 2021) |
NDVI | MODND1M | 500 m, monthly | 2000–2015 | http://www.gscloud.cn (accessed on 15 May 2021) |
LST | MODLT1M | 1 km, monthly | 2000–2015 | |
MYDLT1M | 2002–2015 | |||
ET | MOD16A2 | 500 m, 8-day | 2000–2015 | https://ladsweb.modaps.eosdis.nasa.gov (accessed on 10 May 2021) |
Land cover | MCD12Q1 | 500 m, annual | 2001–2015 | |
Irrigation map | Meier et al. [47] | 1 km, / | Spanning 1999–2012 | https://doi.pangaea.de (accessed on 5 May 2021) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, M.; Zhao, L.; Lin, A. Irrigation Cooling Effect on Local Temperatures in the North China Plain Based on an Improved Detection Method. Remote Sens. 2023, 15, 4571. https://doi.org/10.3390/rs15184571
Hou M, Zhao L, Lin A. Irrigation Cooling Effect on Local Temperatures in the North China Plain Based on an Improved Detection Method. Remote Sensing. 2023; 15(18):4571. https://doi.org/10.3390/rs15184571
Chicago/Turabian StyleHou, Mengjie, Lin Zhao, and Aiwen Lin. 2023. "Irrigation Cooling Effect on Local Temperatures in the North China Plain Based on an Improved Detection Method" Remote Sensing 15, no. 18: 4571. https://doi.org/10.3390/rs15184571
APA StyleHou, M., Zhao, L., & Lin, A. (2023). Irrigation Cooling Effect on Local Temperatures in the North China Plain Based on an Improved Detection Method. Remote Sensing, 15(18), 4571. https://doi.org/10.3390/rs15184571