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Abstract: Irrigation has excellent potential for altering surface characteristics and the local climate.
Although studies using site observations or remote sensing data have demonstrated an irrigation
cooling effect (ICE) on the air temperature (Tem) and land surface temperature (LST), it is difficult to
eliminate other stress factors due to different backgrounds. We characterized the irrigation effect as
the differences (∆) of LST and DCT (DCT = LST − Tem) between irrigated and adjacent non-irrigated
areas. An improved method was proposed to detect it over the North China Plain (NCP) based on
satellite observations. We also investigated the effects of irrigation on Tem, precipitation, NDVI, and
ET, and explored the relationships between them. The results show that irrigation induced a decrease
in the daytime/nighttime LST and DCT (−0.13/−0.09 and −0.14/−0.07 ◦C yr−1), Tem (−0.023 ◦C
in spring), and precipitation (−1.461 mm yr−1), and an increase in NDVI (0.03 in spring) and ET
(0.289 mm yr−1) across the NCP. The effect on nighttime LST and NDVI increased by 0.04 ◦C 10 yr−1

and 0.003 10 yr−1, and that on ET weakened by 0.23 mm 10 yr−1 during 2000–2015. The ICE on the
LST had evident spatiotemporal heterogeneity, which was greater in the daytime, in the spring, and
in the northern area of the NCP (dry–hot conditions). The daytime ICE in the NCP and northern
NCP was 0.37 and 0.50 ◦C during spring, respectively, with the strongest ICE of 0.60 ◦C in Henan;
however, the ICE was less evident (<0.1 ◦C) in the southern NCP throughout the year. The ∆NDVI,
∆ET, and ∆Tem were the main factors driving ICE, explaining approximatively 22%, 45%, and 25%
of the daytime ICE, respectively. For every unit of these measures that was increased, the daytime
ICE increased by about 7.3, 4.6, and 1.5 ◦C, respectively. This study highlights the broad irrigation
effect on LST, ET, NDVI, and the climate, and provides important information for predicting climate
change in the future. The improved method is more suitable for regions with uneven terrain and a
varying climate.

Keywords: irrigation effect; LST; NDVI; ET; climate; North China Plain

1. Introduction

Irrigation is a considerable adaptation strategy to improve the ability of crops to resist
global climate change [1],which is crucial to maintain crop production in water-deficient
areas. Irrigation water can benefit crops by meeting their water demand; in addition,
it can also mitigate crop heat stress through the cooling produced by evaporation [2].
Globally, agricultural irrigation accounts for about 70% of freshwater withdrawals and
90% of consumption [3–5], and irrigated agriculture produces 40% of the grain yield [6].
Moreover, irrigation also constitutes an artificial land-use change [7]; therefore, irrigation is
considered to be the most extensive anthropogenic use of water and one of the primary
agricultural practices [8]. Due to land–atmosphere interactions, irrigation has substantial
effects on the local climate [9].

At present, previous research on the impact of irrigation on climate have mainly
focused on near-surface temperatures [9–12], energy fluxes [13,14], water vapor [15], surface
parameters [16–18], and precipitation [9]. For instance, irrigation can transform the water
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and energy fluxes from the land surface to the atmosphere by enhancing soil moisture
and evapotranspiration (ET). This can increase atmospheric humidity, causing additional
heat stress to human bodies in some humid areas [19,20]. It has been demonstrated that
irrigation has a cooling effect on the air temperature (Tem) and land surface temperature
(LST) through potentially shifting sensible heat flux to latent heat flux [7,14,16,21]. At the
same time, shading from the vegetation canopy reduces heat storage, which could also cool
the LST [22]. On the positive side, a lower LST can help reduce heat stress on crops, which
is particularly beneficial during heatwaves or in regions with high temperatures [2,23].
On the negative side, in some cases, excessively low LST can slow down crop growth,
and crops may experience delayed development and maturity under consistently lower
temperatures [24,25]. Moreover, a lower LST may affect the adaptability of certain crops
for a region, and it may become more beneficial to cold-tolerant varieties [26]. In addition,
irrigation might enhance precipitation by significantly increasing regional atmospheric
water vapor content [9]; however, its cooling effect enhances the atmosphere’s stability,
which has a negative influence on the local precipitation [21]. In some areas, the irrigation
cooling effect (ICE) has been found to alleviate and even offset the warming effect from
anthropogenic greenhouse gas emissions [7,11,27–29].

Irrigation should be considered as another crucial anthropogenic climate element
that should be considered in the next generation of historical climate simulations and
multi-model assessments [30]. The ICE can be used as a climate regulation service [1], and
disregarding its effects may lead to bias or even opposite conclusions when projecting
irrigation-driven climate change. The ICE on LST can modulate the near-surface Tem
through the interaction of heat flux between the land and atmosphere [10,31]. Although
Tem and LST are related, their influencing factors and physical meaning are different. The
Tem is mainly determined by atmospheric conditions, but LST is also greatly affected by
soil moisture, surface energy fluxes, and surface properties. LST is more sensitive to surface
changes caused by human activities (e.g., irrigation). It can be regarded as an excellent
indicator of climate change, which provides a new perspective for us to understand the
impact of irrigation on the land surface [32].

On a large regional scale, the ICE on surface temperatures has been studied mainly
through climate models and observation data of meteorological stations over the past few
decades [10,12,33,34]. With the development of remote sensing technology, a lot of remote
sensing and reanalysis data have appeared. The MODIS LST was widely evaluated by
using field observations and other remote sensing data in China and worldwide [35–37]. It
overcomes the challenge of widely measuring LST over a large area and has been used to
evaluate the impact of irrigation on LST around the globe [14,16]; however, the relationship
between the ICE on regional LST and other irrigation effects needs further investigation.
What is more, the conclusions about the influence direction of irrigation on LST and Tem
are inconsistent, or the magnitudes of the ICE are greatly different in some areas with
extensive irrigation [10,16,32,34,38]. This may be caused by different methods used to
detect irrigation effects, and each method has its limitations. For instance, the simulation
results are overly dependent on the simulation capability of the model for irrigation. As for
remote sensing observations, it is difficult to eliminate the influence of other stress factors
due to the difference of the distribution location and the background climate between
irrigated and non-irrigated areas in a large region. This study is mainly based on multi-
source remote sensing data; therefore, we have attempted to separate the irrigation effects
from the effect of other factors as much as possible.

Generally speaking, the irrigation effect on LST is mainly characterized by the LST
difference between irrigated and adjacent non-irrigated areas [14,38]. At the regional scale,
researchers use a moving window strategy to control background differences between the
comparisons. The moving window refers to a virtual rectangular or circular window that
can slide or move in geographic space and is originally used to calculate statistical data
within a specific range around each location in geographic space. Recently, researchers
added elevation constraints to an adaptive moving window to study the irrigation effect
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on LST [32,38]. To some extent, this controlled the background differences between the
irrigated and non-irrigated areas used for comparison; however, directly eliminating
meteorological differences or using a new index to describe ICE are promising methods.
The canopy temperature depression is the difference between the canopy temperature and
air temperature [39], and it is the result of the energy balance of the leaves, which are more
sensitive to the changing environment [40]. It can indicate the ability of transpiration to cool
the leaves [41]. Similarly, the difference between the cropland LST and the corresponding
Tem (DCT = LST − Tem) can characterize the ability of ET to cool the surface. DCT links
LST with Tem, making it more meaningful to study the irrigation effect, and the DCT
difference between irrigated and non-irrigated areas (∆DCT) can also be used to assess
the ICE.

Based on this information, we propose an improved moving window searching strat-
egy to detect the ICE and use the two indexes (∆LST and ∆DCT) to evaluate the impact of
irrigation on LST. With this algorithm, we determined the size of the moving window. In
addition to limiting the elevation of the pixels, meteorological data were added in the mov-
ing window to control the Tem difference between the irrigated pixels and non-irrigated
pixels. Based on multi-source remote sensing data of the NCP, the objectives of this study
are (1) to use ∆LST and ∆DCT to comprehensively investigate the spatiotemporal patterns
of the irrigation effect on the LST and compare our results with those obtained by a pre-
vious detection algorithm; (2) to determine the irrigation-induced differences of ET, the
meteorological and vegetation conditions, and their spatiotemporal variability; and (3) to
explore the relationships among the irrigation effects on LST, Tem, precipitation, NDVI,
and ET and identify the key driving factors of the ICE.

2. Materials and Methods
2.1. Study Area

The NCP, located in the eastern part of mid-latitude Eurasia, is the heartland of
modern China. It covers seven provinces or municipalities (Hebei, Shandong, Henan,
Anhui, and Jiangsu provinces, Beijing and Tianjin; Figure 1). It has a warm and semi-humid
continental monsoon climate with noticeable seasonal differences and abundant light and
heat resources. It is an important base of grain, cotton, and oil production in China and is
dominated by irrigated agriculture [42]. The primary cropping system is the winter wheat
and summer maize rotation [43]. Precipitation mainly occurs in the corn growing season
(June–September), and only 20–30% of it occurs in the winter wheat growing season [44].
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2.2. Datasets Collection
2.2.1. Meteorological Data

The 1 km resolution dataset of the monthly mean air temperature and precipitation
from 2000 to 2015 used in this study was provided by Peng et al. (2019) [45], and can
be obtained from the National Earth System Science Data Center, National Science and
Technology Infrastructure of China (http://www.geodata.cn (accessed on 2 July 2021)).
It has been verified to be reliable by the data from 496 independent meteorological ob-
servation stations. The 2000–2014 daily effective radiation dataset (Figure S1) based on
18 radiation observation sites distributed across the NCP were obtained from the Global
Change Research Data Publishing and Repository (http://www.geodoi.ac.cn (accessed on
10 March 2022)) provided by Cao et al. (2018) [46].

2.2.2. Elevation Data

The 90 m Shuttle Radar Topography Mission (SRTM version 4.1) digital elevation
data (Figure 1) was sourced from the Resource and Environment Science and Data Center,
Chinese Academy of Science (http://www.resdc.cn (accessed on 15 May 2021)). It was
used to reduce the influence of topographic relief when quantifying the cooling effect
of irrigation.

2.2.3. NDVI and LST

The 2000–2015 dataset of the monthly normalized difference vegetation index (NDVI,
500 m) and land surface temperature (LST, 1 km) were the composite products of China
provided by the Geospatial Data Cloud site, Computer Network Information Center,
Chinese Academy of Sciences (http://www.gscloud.cn (accessed on 15 May 2021)). The
NDVI dataset was derived by converting daily MOD09GA data based on Terra satellite
observations to NDVI, and then aggregating the daily NDVI data into monthly maximum
values. The composite LST products, including MODLT1M (started in February 2000) and
MYDLT1M (started in July 2002), were derived from the MODIS version-6 LST products
from the Terra satellite (MOD11A1, 1 km and 8-day) and the Aqua satellite (MYD11A1,
1 km and 8-day), respectively. The monthly MODLT1M product is ready-made. The
MYDLT1M product was obtained by calculating the monthly average of the daily LST. We
filtered the temperature products according to their data quality control (QC) layers to
remove data with an error >1 ◦C. The data included the temperatures observed during
daytime (local solar time ~10:30 from Terra and ~13:30 from Aqua) and nighttime (~22:30
from Terra and ~1:30 from Aqua) under a clear sky. If the LST data were available from
both Terra and Aqua, we used the mean value of MODLT1M and MYDLT1M; otherwise,
we used the data from the available satellite.

2.2.4. Cropland Map and ET

The MODIS 2001–2015 annual Land Cover Type product (MCD12Q1) and 2000–2015
8-day evapotranspiration (ET) product (MOD16A2) with 500 m resolution (https://ladsweb.
modaps.eosdis.nasa.gov (accessed on 10 May 2021)) were used to generate the yearly dom-
inant land cover types and monthly ET, respectively. The ET product has been proven to
perform well when validated against eddy covariance flux towers over the NCP [38]. Based
on the yearly IGBP classification (LC_Type1), we extracted the pixels that were constant
croplands in the NCP from 2001 to 2015 as the cropland map.

2.2.5. Irrigation Map

The spatial distribution of the irrigated and non-irrigated areas in the NCP was
obtained from the irrigation map provided by Meier et al. (2018) [47]. The irrigation map
covers the period from 1999 to 2012 and depicts the irrigated and non-irrigated areas with
a high spatial resolution (~1 km). It has been validated to reflect the actual irrigated area
on global and regional scales. It has been used in research both globally and in regions

http://www.geodata.cn
http://www.geodoi.ac.cn
http://www.resdc.cn
http://www.gscloud.cn
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
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of China [14,32,38]. In this study, only the irrigated and non-irrigated pixels within the
cropland map were investigated.

All of the datasets used in this study are summarized in Table 1. The preprocessing of
the raster data, including mosaic, reprojection, resampling, and clipping, was completed
in ArcGIS 10.2. In order to match the spatial resolution, all the spatial datasets were
uniformly resampled to 1 km. The land cover data were resampled using the nearest
neighbor interpolation, and the other data were resampled with a bilinear interpolation.

Table 1. The datasets used in this study. Tem = air temperature, Pre = precipitation,
ERA = effective radiation.

Data Type Product Resolution Period Source

Mean Tem Peng et al. [45] 1 km, monthly 2000–2015 http://www.geodata.cn (accessed on 2 July 2021)
Pre
ERA Cao et al. [46] sites, daily 2000–2014 http://www.geodoi.ac.cn (accessed on 10 March 2022)
Elevation SRTM V4.1 90 m, / / http://www.resdc.cn (accessed on 15 May 2021)
NDVI MODND1M 500 m, monthly 2000–2015

http://www.gscloud.cn (accessed on 15 May 2021)
LST

MODLT1M 1 km, monthly 2000–2015
MYDLT1M 2002–2015

ET MOD16A2 500 m, 8-day 2000–2015 https://ladsweb.modaps.eosdis.nasa.gov (accessed on 10 May 2021)
Land cover MCD12Q1 500 m, annual 2001–2015

Irrigation map Meier et al. [47] 1 km, / Spanning
1999–2012 https://doi.pangaea.de (accessed on 5 May 2021)

2.3. Method for Measuring Irrigation Effects

In this study, the ∆LST and ∆DCT were used to characterize the ICE on LST, respec-
tively. They were defined as

∆LST = LSTirrigated − LSTnon-irrigated (1)

DCT = LST − Tem (2)

∆DCT = DCTirrigated − DCTnon-irrigated (3)

where LST is the land surface temperature; Tem is the air temperature; and the subscripts
“irrigated” and “non-irrigated” represent the irrigated pixel and adjacent non-irrigated
pixel, respectively; all the units are in ◦C. The key element is determining how to select
the irrigated and non-irrigated pixel for comparison. Based on the self-adaptive moving
window searching strategy of Yang et al. (2020) [32], we adapted their “self-adaptive
moving window” to a fixed-size moving window suitable for the NCP. When detecting the
irrigation effect, it is necessary to constrain the influence of different background conditions
in the window, such as terrain fluctuation and meteorological differences; therefore, the
irrigated and non-irrigated pixels must be close enough to have a similar climate, and their
elevation difference and meteorological difference are small. To satisfy the criteria above,
Yang et al. limited the elevation difference (∆E) between irrigated and non-irrigated pixels
when detecting the effect of irrigation on LST. On this basis, we eliminated the influence of
meteorological differences on ∆LST by restraining the average air temperature difference
(∆aveTem) between the irrigated and non-irrigated pixels in the window. In addition,
we used a similar module to detect the ICE based on ∆DCT. The effects of irrigation on
NDVI, ET, Tem, and precipitation were also studied using the same strategy. The searching
strategy of the improved moving window algorithm is provided in Figure 2.

http://www.geodata.cn
http://www.geodoi.ac.cn
http://www.resdc.cn
http://www.gscloud.cn
https://ladsweb.modaps.eosdis.nasa.gov
https://doi.pangaea.de
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Figure 2. Algorithm for detecting the effects of irrigation on multiple indexes (LST, NDVI, ET, etc.).
p = 31 pixels, E0 = 50 m, T0 = 0.3 ◦C, N = 15 pixels. Negative (positive) ∆LST indicate a cooling
(warming) effect on LST; negative (positive) ∆NDVI and ∆ET indicate that irrigation has an inhibiting
(a promoting) effect on them.

We created a square window centered on an irrigated pixel and searched for non-
irrigated pixels around the irrigated pixel in the window. At each window, when ∆E
and ∆aveTem were greater than E0 and T0, the non-irrigated pixels were removed. The
number (Nnon-irr) of the remaining non-irrigated pixels was expected to be larger than the
threshold value (N) to ensure the representation of the non-irrigated areas. Otherwise,
this window was excluded. The default values of these parameters in this method were
set as p = 31 pixels, E0 = 50 m, T0 = 0.3 ◦C, and N = 15 pixels. The ∆ refers to Yang et al.
(2020) [32]. Before deciding the other parameters, we tested their sensitivity by setting
different values around the default values (Text S1). The results show that although their
values had different influences on the detection of the ICE in different seasons, the ∆LSTs
identified under the default parameter values were stable at an average level (Figure 3a)
and have high correlations with those identified under other settings (Figure 3b). This
reflects the robustness of the default parameter values in the method.
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Figure 3. Sensitivity analysis of parameters p, ∆Tem, and N. The default setting is E with p = 31,
∆Tem = 0.3, and N = 15. The comparison settings fix two parameters and set different values for
the other parameter; p is 51, 41, and 21 in A, B, and J; ∆Tem is 0.2, 0.5, and 0.7 in °C, H, and I;
N is 10, 20, and 5 in D, F, and G. (a) Comparison of the average annual daytime and nighttime
∆LSTs obtained under different settings; (b) correlation between the ∆LSTs of the default setting and
comparison settings.

2.4. Data Analysis

In this study, IBM SPSS Statistics 26, MATLAB R2019b, Origin 2019b, and R 4.04 were
used for the statistical analysis and creating the figures.

2.4.1. Linear Regression Analysis

A unary linear regression model was used to estimate the slope of the variable at
the regional scale to analyze the temporal change trend of the variable. A multivariable
linear regression model was used to determine the influence amplitude and direction of the
other factors on the ICE. The issues of multicollinearity and autocorrelation were assessed
based on the variance inflation factor (VIF) and the Durbin–Watson (DW) test. The results
indicate that there were no significant multicollinearity and autocorrelation issues among
the variables. In the regression model, the slope coefficient represents the change of the
dependent variable as the independent variable changes by one unit, which can be used to
explain the sensitivity of the dependent variable to the driving factors. A slope < 0 indicates
that the dependent variable decreases as the independent variable increases. The relative
importance of the variables in the multivariable linear regression model was calculated by
the “relaimpo” package in R 4.04.

2.4.2. Spatial Variation Trend Test

Sen’s slope has the advantages of eliminating outlier interference and avoiding missing
data. It is commonly used to detect the changing trend of long time series data. In the study,
Sen’s slope was estimated to detect the spatial variation trends of the irrigation effects at a
pixel scale from 2000 to 2015, and the Mann–Kendall test was used to test the significance
of the variation trend estimated by Sen’s method. The significance level is p < 0.05, i.e., the
absolute value of the Mann–Kendall test result is greater than 1.96.
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2.4.3. Correlation Analysis

The Pearson correlation can describe the degree of linear correlation between two
variables. We used the “rcorr” package in R 4.04 to calculate the Pearson correlation
coefficient matrixes to explore the relationship between the irrigation effects.

3. Results
3.1. Spatiotemporal Patterns of ICE Based on LST and DCT
3.1.1. Temporal Variations of ∆LST and ∆DCT

The daytime ∆LST and ∆DCT (∆LSTd and ∆DCTd) had the same apparent seasonal
variation (Figure 4A). They showed a stronger ICE during the growing season (March–
September) than the non-growing season, and the daytime ICE (ICEd) was much higher
than the nighttime ICE (ICEn, mean value < 0.1 ◦C, Figure 4B(f)), especially during spring;
however, the nighttime ∆LST (∆LSTn) was generally smaller than the nighttime ∆DCT
(∆DCTn) during the growing season (Figure 4A(b1)), which indicates that ICEn based on
LST was stronger than that based on DCT. The strongest ICEd occurred from April to
May, with an average ∆LSTd and ∆DCTd of −0.47 ◦C (Figure 4A(a1)). The strongest ICEn
based on LST and DCT occurred in May and June–August, with an average ∆LSTn and
∆DCTn of −0.13 and −0.08 ◦C, respectively (Figure 4A(b1)). During the growing season,
the percentage of negative ∆LSTd varied from 55% to 78%, with more than 15% less than
−1 ◦C (Figure 4A(a2)), and the average ICEd varied from −0.06 to −0.47 ◦C, with an
average of about −0.22 ◦C (Figure 4A); however, during the non-growing season, the
percentage of ∆LST < −1 ◦C was only around 4%, and the average ICE was about
−0.03 ◦C (Figure 4A).

During spring, the average ∆LSTd and ∆DCTd varied from −0.15 to −0.47 ◦C and
−0.17 to −0.47 ◦C, with an average of about −0.37 ± 0.79 ◦C and −0.36 ± 0.94 ◦C, re-
spectively. During the whole year, the average annual ∆LSTd and ∆DCTd were about
−0.13 ± 0.46 ◦C and −0.14 ± 0.47 ◦C, respectively (Figure 4B(c)). At night, the ICEn
fluctuated gently throughout the year; about 70–88% of the ∆LSTn were negative, but only
about 2% were less than <−1 ◦C (Figure 4A(b2)). The ∆LSTn and ∆DCTn were mainly
between −0.04 and −0.13 ◦C, with an average ICEn ranging from −0.06 to −0.10 ◦C in the
spring and throughout the year (Figure 4B(f)). In general, irrigation had different cooling
effects with seasonal changes. From 2000 to 2015, the average ICEd decreased insignifi-
cantly by about 0.01 ◦C 10 yr−1 in the spring (Figure 4B(a)), and increased insignificantly
by about 0.03 ◦C 10 yr−1 throughout the year (Figure 4B(b)); however, the average ICEn
increased significantly by about 0.04–0.05 ◦C 10 yr−1 in both the spring- and year-scales
(Figure 4B(d,e)).

3.1.2. Spatial Variations of ∆LST and ∆DCT

The spatial patterns of the average ∆LST and ∆DCT from 2000 to 2015 all showed
great spatial heterogeneity in different seasons, especially during daytime in the spring
(Figure 5A). For example, the range of spring ∆LST and ∆DCT was relatively large
(−6.92–5.42 ◦C and −7.05–5.15 ◦C, Figure 5A(a1,f1)). The obvious ICE mainly appeared
in the northern NCP (Figure 5A(a1)). From north to south, the ICE tended to weaken
as the climate changed from dry and cold to humid and hot (Figure 5). In addition, it
was found that at the edge of the agricultural areas, where the cropland was more frag-
mented, the ICE was usually much weaker, even transforming into a warming effect
(Figure 5A( 1©–
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)). Across the NCP, about 60% of the irrigated cropland experienced the
ICE, with about 65% of the spring ∆LSTd and ∆DCTd being negative. About 16–20% and
37–42% showed a stronger average ICE (<−0.5 ◦C) in the year- and spring-scale, respec-
tively (Figure 5B). As the percentage of the stronger ICE decreased, the average ICE in
different seasons decreased gradually (Figure 5). The spatial heterogeneity of ∆LSTn and
∆DCTn was not as noticeable as ∆LSTd and ∆DCTd, with a range of −2.00–4.83 ◦C (∆LSTn)
and −2.32–5.00 ◦C (∆DCTn) (Figure 5A(d2,e2)). About 52% and 40% of the irrigated areas
showed that ∆LSTn and ∆DCTn were between −0.5 and 0 ◦C, but less than 13% showed a
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stronger ICE (Figure 5B). The average ICEn was also almost zero over the NCP (no more
than −0.1 ◦C, Figure 5A(a2–f2)).
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∆LST and ∆DCT indicate the irrigation cooling effect (ICE). (A) Spatial patterns of the average
seasonal and annual ∆LST and ∆DCT. (a1–d1) and (a2–d2) are the daytime and nighttime ∆LST
during spring, summer, growing season and the whole year, respectively; (e1,f1) and (e2,f2) are the
daytime and nighttime ∆DCT during spring and the whole year, respectively. The insets 1©–
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In the northern NCP (Henan, Hebei, Shandong, and Tianjin), the strongest aver-
age ICEd was as high as −0.50/−0.43 ◦C (∆LSTd/∆DCTd) during spring (Figure 6a),
which was then followed by an average ICE of −0.25 ◦C (∆LSTd) during the growing
season (Figure 6d), −0.18/−0.17 ◦C (∆LSTd/∆DCTd) during the whole year (Figure 6b),
and −0.14 ◦C (∆LSTd) during summer (Figure 6c). The most apparent ICE occurred in
Henan and Hebei province, with an average ∆LSTd/∆DCTd of −0.60/−0.53 ◦C and
−0.56/−0.42 ◦C during spring and −0.21/−0.20 ◦C and −0.23/−0.18 ◦C during the
whole year, respectively (Figure 6a,b). For Shandong and Tianjin, the average ICEd
(∆LSTd/∆DCTd) was −0.50/−0.43 and −0.34/−0.35 ◦C during spring and −0.15/−0.13
and −0.13/−0.17 ◦C during the whole year, respectively (Figure 6a,b). The average ICEn
was also weak (about −0.09 ◦C) in different provinces (Figure 6). In Beijing, irrigation
had little effect on LST, with an annual average ICE of about −0.08 ◦C. In the southern
NCP (Anhui and Jiangsu), although the ICE was still dominant, the average magnitude
of diurnal ICE was small (about −0.07 ◦C), varying from −0.04 to −0.11 ◦C in different
seasons. The magnitude of the ICEn was almost the same as that of ICEd, or even higher
(Figure 6a,b).
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Figure 6. The annual average ICEs (∆LST and ∆DCT ± SD) in different administrative districts of
the NCP during spring (a), the whole year (b), summer (c) and growing season (d). The North and
South represent the northern and southern parts of the NCP, respectively. ∆LST and ∆DCT indicate
the land surface temperature (LST) and DCT (LST−air temperature) differences between irrigated
and non-irrigated areas.
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3.2. Comparison of the ICEs Quantified by Different Methods

The spatiotemporal pattern of the LST difference (∆LSTdem, Figure S2) between the
irrigated and non-irrigated areas calculated by the previous algorithm [32] was similar to
that calculated by our improved algorithm (∆LST, Figure 5A) in different seasons; however,
their magnitudes at the pixel scale were very different in some areas, with over 50% and 70%
of the ∆LSTdem greater than ∆LST during nighttime and daytime, respectively (Figure 7).
The average difference varied between 0.005 ◦C and 0.034 ◦C, which accounted for 4.55–
18.89% of the average ICE quantified by ∆LST in the different seasons across the NCP
(Figure 7 and Tables S1 and S2). The difference was more evident (>0.1 ◦C) in areas with
large topographic relief, especially in spring (Figure 7(1–4)). Although the average ∆LSTdem
of Tianjin was lower than the average ∆LST, that of other provinces was generally higher
(Table S1). The average differences mainly occurred during spring, which accounted for
10.47–20.43% and 17.13–17.29% of the ∆LST in the northern and southern NCP, respectively
(Figure 7 and Table S2). Throughout the year, it was as high as 12.0–21.59% in the northern
NCP, but was also found to be negligible during daytime in the southern NCP (only
0.60%, Table S2). The results above indicate that, except for Tianjin, a coastal city that is
greatly affected by oceanic climate, the ICE measured by ∆LSTdem was generally lower
than that measured by ∆LST; therefore, it is necessary to add a meteorological restriction to
the algorithm.
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Figure 7. The differences between ∆LSTdem and ∆LST in the different seasons over the NCP
cropland; (a1–d1) and (a2–d2) are the daytime and nighttime differences between ∆LSTdem and
∆LST during spring, summer, growing season and the whole year, respectively; (1)–(3) show
the details within the box in the subfigures (a1,a2,d1); and (4) shows the elevation within the
box. ∆LSTdem was calculated by the previous algorithm (Yang et al. [32]), which does not di-
rectly control the meteorological difference between irrigated and non-irrigated pixels in the mov-
ing window; ∆LST was the land surface temperature (LST) differences calculated in this study.
Difference = ∆LSTdem − ∆LST, ◦C.
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The average ∆LSTs were generally lower than the ∆DCTs (i.e., the ICE quantified
by ∆DCT was weaker than that quantified by ∆LST) at different time scales across the
NCP (Table S3). The nighttime differences (∆ICE) were relatively large, with a range and
MAPE of −0.016–−0.032 ◦C and 17.5–33.07%, respectively; however, the daytime ∆ICE
were almost negligible, with a range of −0.004–0.004 ◦C (MAPE < 4%, Table S3). The same
pattern appeared in the south and north of the NCP and in different administrative districts
(Table S4). In general, the diurnal ∆ICE was acceptable at different time scales, with a range
and MAPE of −0.006–−0.018 ◦C and 5.19–7.73%, respectively (Table S3). The ∆DCT can
capture the irrigation effect in a more detailed way at the spatial pixel scale, with a broader
range of −2.60–4.35 ◦C in spring and −2.32–5.00 ◦C throughout the year, while that of the
corresponding ∆LST was −1.98–4.03 ◦C and −2.0–4.83 ◦C, respectively (Figure 5A).

3.3. Spatiotemporal Patterns of Irrigation Effects on ET, Precipitation, Tem, and NDVI
3.3.1. Temporal Patterns of Irrigation Effects on ET, Precipitation, Tem, and NDVI

Irrigation had an inhibiting effect on Tem and precipitation (∆Tem and ∆Pre were
generally negative) and a promoting effect on ET and NDVI (∆ET and ∆NDVI were generally
positive) (Figure 8A). The effects had a similar seasonal variation to the ICE (i.e., stronger in
the growing season, especially in spring), and their variation trends were synchronous in
spring (Figures 4 and 8A). During the growing season, the ∆Pre showed a bimodal curve
and ranged from −0.069 mm (March) to −0.392 mm (July), with the other peak appearing in
April (about −0.154 mm) with an average of about −0.153 mm month−1 (Figure 8A). The
∆Tem, ∆ET, and ∆NDVI showed a unimodal pattern, peaking in April–May. Their ranges
were 0.012 ◦C (June)–−0.039 ◦C (May), 0.003 mm (September)–0.106 mm (May), and 0.005
(June)–0.035 (April), with an average of about −0.005 ◦C month−1, 0.035 mm month−1, and
0.021 month−1, respectively. During the non-growing season, the magnitude of ∆Pre, ∆tem,
∆ET, and ∆NDVI was negligible, averaging about −0.078 mm month−1, 0 ◦C month−1,
0 mm month−1, and 0.015 month−1, respectively.
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Figure 8. Seasonal (A) and annual (B,C) variations of the average ∆ET, ∆Pre, ∆Tem, and ∆NDVI
over the NCP cropland from 2000 to 2015; (a–d) are box plots showing the dispersion of spring and
annual ∆ET, ∆Pre, ∆Tem and ∆NDVI during 2000–2015. ∆ET, ∆Pre, ∆Tem, and ∆NDVI are the differ-
ence of ET, precipitation, air temperature, and NDVI between irrigated and adjacent non-irrigated
areas. Negative numbers indicate that irrigation had an inhibiting effect on the index. *, p < 0.05;
***, p < 0.001.
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From 2000 to 2015, the spring and annual ∆Pre varied from −0.112 to −0.451 mm and
−1.230 to −1.797 mm, with a mean value of about −0.319 and −1.461 mm (Figure 8B,b).
The spring and annual average ∆Tem varied around the mean values, about −0.023 and
−0.005 ◦C, respectively (Figure 8C,c). The variation range of ∆ET and average ∆NDVI
during the spring were 0.012–0.206 mm and 0.026–0.035, averaging about 0.133 mm and
0.03; and those throughout the year were −0.151–0.744 mm and 0.014–0.020, averaging
0.289 mm and 0.018, respectively (Figure 8). Statistically, the annual ∆ET and annual
average ∆NDVI respectively showed a significant negative (slop = −0.23 mm 10 yr−1,
p < 0.05) and positive (slop = 0.003 10 yr−1, p < 0.001) trend during the 16 years. This
indicates that the effects of irrigation on ET and NDVI enhanced over time.

3.3.2. Spatial Patterns of Irrigation Effect on ET, Precipitation, Tem, and NDVI

The effects of irrigation on ET, precipitation, Tem, and NDVI had similar spatial
heterogeneity as the ICE across the NCP, with some pixels experiencing an inhibiting effect
(negative) and some experiencing a promoting effect (positive) (Figure 9A). From the north
to the south of the NCP, the average ∆ET, ∆Tem, and ∆NDVI decreased, while the ∆pre
increased (Figure 9B). Spatially, about 61% and 55% of the irrigated cropland showed
negative ∆pre and ∆tem (Figure 9A(b,c)), and more than 51% and 70% showed positive
∆ET and ∆NDVI, respectively (Figure 9A(a,d)). Throughout the year, the promoting
effects on ET and NDVI were mainly 2–20 mm and 0–0.05 (about 30% and 55%), and
the inhibiting effects on precipitation and Tem were mainly −2–12 mm and 0–−0.1 ◦C
(about 41% and 48%), respectively (Figure 9A(a1,b1)). In the northern NCP, irrigation
also generally inhibited precipitation and Tem, and promoted ET and NDVI, with a ∆Pre,
∆Tem, ∆ET, and ∆NDVI of −1.229 mm yr−1, −0.044 ◦C month−1 (in spring), 0.316 mm
yr−1, and 0.033 (in spring), respectively (Figure 9B); however, in the south, the irrigation
effects on Tem and ET transformed into slight inhibition (∆Tem = 0.002 ◦C month−1) and
promotion (∆ET = −0.056 mm yr−1), respectively. The promoting effect on NDVI was
weakened (∆NDVI = 0.008 month−1), which was only 40.0% of that in the north; however,
the inhibiting effect on annual precipitation was about −1.879 mm, up to 152.9% of that
in the north. It is noteworthy that the effects of irrigation on ET, precipitation, and Tem
in Beijing were contrary to the results above, i.e., it promoted precipitation and Tem, and
inhibited ET (∆ET = −2.454 mm yr−1). This may be one of the reasons why the ICE was
weak in Beijing. Excluding Beijing, the most obvious irrigation effects on ET, precipitation,
Tem, and NDVI occurred in Henan (0.632 mm), Jiangsu (−2.779 mm), Tianjin (−0.077 ◦C),
and Shandong (0.039), respectively (Figure 9B).

3.4. Spatial-Trend Slopes of Irrigation Effects

Since the irrigation effects mainly occurred in spring, the Theil–Sen median slope
analysis and Mann–Kendall test of the irrigation effect in spring were performed pixel by
pixel from 2000 to 2015 (Figure 10). The results show that the trend slopes of the irrigation
effects were spatially heterogeneous, as well. The trend slopes of some ∆LSTd were −0.1–
−0.65 ◦C yr−1, and others were 0–0.1 ◦C yr−1. More than half of the NCP cropland (about
52%, 60%, 51%, and 53%) showed a mean trend of −0.05 ◦C yr−1, −0.02 ◦C yr−1, 1.20 mm
10 yr−1, and 0.03 10 yr−1 for ICEd (∆LSTd and ∆DCTd), ICEn (∆LSTn and ∆DCTn), ∆ET,
and ∆NDVI, respectively (Figure 10(a1–e1,h1)). Among them, about 15%, 14%, 5%, and
14% were significant, with a mean trend of about −0.10 ◦C yr−1, −0.04 ◦C yr−1, 2.90 mm
10 yr−1, and 0.06 10 yr−1, respectively (Figure 10(a2–e2,h2)). This means that the irrigation
cooling effect on LST and promotion effect on ET and NDVI were strengthened. Meanwhile,
the rest of ICEd, ICEn, ∆ET, and ∆NDVI showed the opposite trends of about the same rate,
of which about 14%, 8%, 5%, and 18% were significant trends (Figure 10a–e,h). In terms
of the climate factors, although the positive (negative) trends of ∆Pre and ∆Tem occupied
approximately 66% (34%) and 51% (49%), the magnitude of the trends was small, averaging
about 0.28 (−0.16) mm 10 yr−1 and 0.006 (0.006) ◦C 10 yr−1, respectively (Figure 10(f1,g1)).
The significant positive (negative) trends of them only occupied 1.30% (0.50%) and 3.01%
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(3.01%), with a mean trend of 0.66 (−0.39) mm 10 yr−1 and 0.015 (−0.016) ◦C 10 yr−1

(Figure 10(f2,g2)). This significant trend was mainly distributed in western Shandong and
the adjacent eastern Henan (Figure 10), where the irrigated areas are concentrated and flat.
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Figure 9. Spatial patterns of irrigation effects on precipitation, Tem, NDVI and ET (i.e., ∆ET, ∆Pre,
∆Tem and ∆NDVI) during 2000–2015. (A) Spatial patterns and stacked frequency distributions of
the annual (a1–d1) and spring (a2–d2) average ∆ET, ∆Pre, ∆Tem and ∆NDVI; ∆ET, ∆Pre, ∆Tem and
∆NDVI are the difference of ET, precipitation, air temperature and NDVI between irrigated and
adjacent non-irrigated areas; (B) the irrigation effects on precipitation, Tem, NDVI and ET in different
administrative districts throughout the year and spring. The North and South represent the northern
and southern parts of the NCP. The colored dotted and solid lines are the mean values of the indexes
across the NCP.



Remote Sens. 2023, 15, 4571 16 of 24Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 25 
 

 

 
Figure 10. The distributions of spatial-trend slopes of spring ΔLST, ΔDCT, ΔET, ΔPre, ΔTem and 
ΔNDVI over the NCP cropland from 2000 to 2015. (a1–h1), the spatial-trend slopes of spring ΔLSTd, 
ΔDCTd, ΔLSTn, ΔDCTn, ΔET, ΔPre, ΔTem and ΔNDVI, respectively; (a2–h2), the frequency 
distributions of the positive and negative slopes of ΔLSTd, ΔDCTd, ΔLSTn, ΔDCTn, ΔET, ΔPre, ΔTem 
and ΔNDVI, respectively. “Δ” means the difference between irrigated and adjacent non-irrigated 
areas. LSTd and LSTn, daytime and nighttime land surface temperature (LST); DCT = LST−air 
temperature; Pre, precipitation; Tem, air temperature. The trend slopes were measured by the Theil–
Sen median method coupled with the Mann–Kendall test. Significant trend is indicated as * (p < 
0.05); non-significant trend is indicated as NS. 

3.5. Factors Underlying ICE Variation 
3.5.1. Relationships among NDVI, ET, Climate Factors, and ICE 

The relationships between the crop factor (e.g., ΔNDVI), climate factors (e.g., ΔTem, 
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Figure 10. The distributions of spatial-trend slopes of spring ∆LST, ∆DCT, ∆ET, ∆Pre, ∆Tem and
∆NDVI over the NCP cropland from 2000 to 2015. (a1–h1), the spatial-trend slopes of spring
∆LSTd, ∆DCTd, ∆LSTn, ∆DCTn, ∆ET, ∆Pre, ∆Tem and ∆NDVI, respectively; (a2–h2), the frequency
distributions of the positive and negative slopes of ∆LSTd, ∆DCTd, ∆LSTn, ∆DCTn, ∆ET, ∆Pre, ∆Tem
and ∆NDVI, respectively. “∆” means the difference between irrigated and adjacent non-irrigated
areas. LSTd and LSTn, daytime and nighttime land surface temperature (LST); DCT = LST−air
temperature; Pre, precipitation; Tem, air temperature. The trend slopes were measured by the Theil–
Sen median method coupled with the Mann–Kendall test. Significant trend is indicated as * (p < 0.05);
non-significant trend is indicated as NS.

3.5. Factors Underlying ICE Variation
3.5.1. Relationships among NDVI, ET, Climate Factors, and ICE

The relationships between the crop factor (e.g., ∆NDVI), climate factors (e.g., ∆Tem,
∆Pre, and ERA), water consumption (e.g., ∆ET), and ICE (e.g., ∆LST and ∆DCT) were
investigated using a correlation matrix and network at a monthly scale (Figure 11). The
results show that there were complex interactions among them. For example, there were
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negative correlations between ∆Tem, ∆LSTd, ∆DCTd, ∆LSTn and ERA, ∆NDVI, ∆DCTn,
and ∆ET, with a correlation coefficient (r) between −0.01 and −0.95. ∆Tem, ∆LSTd, ∆DCTd,
and ∆LSTn were positively correlated with each other (0.27 ≤ r ≤ 1), as were ERA, ∆NDVI,
∆DCTn, and ∆ET (0.29 ≤ r ≤ 0.77) (Figure 11a). ∆Pre was positively correlated with ∆LSTd,
∆DCTd, ∆DCTn, and ERA (0.02 ≤ r ≤ 0.47), but negatively correlated with ∆LSTn, ∆ET,
∆NDVI, and ∆Tem (−0.01 ≤ r ≤ −0.48). The relationships between the daytime ICE
(∆LSTd and ∆DCTd), nighttime ICE (∆DCTn), ∆Tem, ∆NDVI, and ∆ET were significant
(mostly p < 0.01). From the correlation network (Figure 11b), we can see that ∆NDVI
and ∆ET were strong negative predictors for the daytime ICE, with an r of about −0.73
(p < 0.01) and −0.90 (p < 0.001) but were strong positive predictors for ∆DCTn (r = 0.71
and 0.77, p < 0.01), respectively. On the contrary, ∆Tem was a strong positive and negative
predictor for the daytime and nighttime ICE (r = 0.80, p < 0.01, and r = −0.95, p < 0.001),
respectively. Although ∆LSTn, ∆Pre, and ERA were insignificantly correlated with other
indicators, they were moderately correlated with each other. In addition, ∆LSTn was
moderately correlated with ∆DCTn and ∆Tem, and ERA was also moderately correlated
with ∆DCTn, ∆Tem, and ∆NDVI, respectively.
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Figure 11. Correlation analysis for examining the driving factors underlying the ICE variation over
the NCP cropland. ERA: effective radiation. “∆” represents the difference of these indicators between



Remote Sens. 2023, 15, 4571 18 of 24

irrigated and adjacent non-irrigated areas over the NCP cropland. (a) Color-coded correlation
coefficient (Pearson’s r) matrix indicating the interactions of ∆NDVI, ∆ET, ∆Tem, ∆Pre, ERA, and ICE
(e.g., ∆LST and ∆DCT) over NCP cropland; *, p < 0.05; **, p < 0.01; ***, p < 0.001. (b) path diagram of
correlation network exploring the intrinsic factors driving the ICE. The red, green, and gray arrows
indicate negative, positive, and unrelated (|r| < 0.1) relationships, respectively. The solid arrows
represent a significant relationship (thick, p < 0.001; thin, p < 0.05); the dotted arrows represent an
insignificant relationship (p > 0.05). Numbers adjacent to each arrow are the correlation coefficients.
The purple, yellow, and black arrows represent strong (|r| > 0.7), medium (0.4 < |r| < 0.7), and
weak (|r| < 0.4) correlations, respectively.

3.5.2. Quantifying the Impact of NDVI, ET, and Climate Factors on ICE

At the regional scale, we quantified the impact of ∆NDVI, ∆ET, ∆Pre, ∆tem, and
ERA on ICE, as well as their total contribution and relative importance to explain the ICE
variation by multiple regression and variance decomposition analyses (Figure 12). The
results show that 92.4%, 74.6%, 89%, and 90.2% variation of ∆DCTn, ∆LSTn, ∆DCTd, and
∆LSTd, respectively, could be significantly explained by other variables in the regression
model. ∆ET was the most important factor to explain ∆LSTd and ∆DCTd, accounting for
43.8% and 45.4% of R2, followed by ∆Tem (25.9% and 25%), ∆NDVI (22.8% and 22.1%),
ERA (4.5% and 4.6%), and ∆pre (3% and 2.8%). For ∆DCTn and ∆LSTn, ∆tem was the
most important factor to explain them, accounting for 49.3% and 33.3% of R2, followed
by ET (24%), NDVI (18%), ERA (7.3%), Pre (1.4%) and Pre (23.8%), NDVI (21.1%), ET
(11.1%), and ERA (10.6%), respectively. ∆LSTd, ∆DCTd, ∆LSTn, and ∆DCTn all showed
negative sensitivity to ∆ET. When ∆ET increased by 1 mm, these measurements decreased
by 4.458 (p < 0.01), 4.672 (p < 0.01), 0.015, and 0.018 ◦C, respectively. That is, the ICE
on LST enhanced with the increase in the irrigation-promoting effect on ET. In addition,
∆LSTd and ∆DCTd showed negative sensitivity to ∆NDVI, ∆Tem, and ∆Pre, and positive
sensitivity to ERA. Both ∆LSTn and ∆DCTn showed positive and negative sensitivity to
∆NDVI and ERA, respectively. ∆LSTn showed positive and negative sensitivity to ∆Tem
and ∆Pre respectively, while ∆DCTn showed the opposite. Precisely speaking, for every
unit increased in the irrigation promoting effect on NDVI, ICEd enhanced by 7.453 (∆LSTd,
p < 0.05) and 7.173 (∆DCTd, p < 0.05) ◦C, but ICEn weakened by 1.945 (∆LSTn, p < 0.05)
and 0.198 (∆DCTn) ◦C, and even turned into warming effect. For every unit of ∆Tem
and ∆Pre increased, ∆LSTd (∆DCTd) decreased by 1.066 (1.935) and 0.179 (0.213) ◦C (i.e.,
ICEd enhanced), and ∆LSTn (∆DCTn) changed by 1.643 (−1.025) ◦C and −0.107 (0.023) ◦C,
respectively. For every 100 MJ m−2 increased in ERA, ICEd weakened by about 0.1 ◦C, but
ICEn enhanced by about 0.01–0.02 ◦C.
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Figure 12. Contributions of other irrigation effects on crop growth, ET and climate (i.e., ∆NDVI, ∆ET,
∆Pre and ∆Tem) and effective radiation (ERA) to ICE based on multiple linear regression model. The
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heat map shows the sensitivity of ICE to these factors; the R2 in the left block diagram shows their
total contribution to explaining ICE variation; and the bar chart above shows the relative importance
of each variable, which was calculated via variance decomposition analysis. *, p < 0.05; **, p < 0.01.

4. Discussion

At the regional scale, due to the different geographical locations between the irri-
gated areas and non-irrigated areas, the meteorological conditions are different, and the
differences could also influence the LST (Figures S3 and S4). Researchers have proposed
a self-adaptive moving window method to try to eliminate the influence by controlling
the window size [16,48], and Yang et al. further eliminated the influence by limiting the
elevation of the pixels in the window [14,32], which, when applied to a cropland irrigation
map, can successfully extract the ICE. Most studies, however, have mainly used ∆Tem or
∆LST to characterize the ICE, and the effect of different Tem on LST was not eliminated
directly [10,11,14,16,49]. In this study, in addition to controlling the window size and pixel
elevation, we added Tem to the moving window algorithm to further eliminate the effect
of the meteorological difference directly. The method can be applied to other regions,
especially in areas with large topographic relief and meteorological variation. Based on
the improved method and satellite observations, we used ∆LST to quantify the ICE on LST
and used ∆NDVI and ∆ET to evaluate the effect of irrigation on NDVI and ET. In addition,
based on the moving window method, we also quantified the irrigation effect on Tem and
precipitation and used a new index ∆DCT (DCT = LST − Tem) connecting LST and Tem
to quantify the ICE. In addition, we compared the differences between the ICEs on LST
quantified by different indexes and methods and explored the impact of other irrigation
effects on ICE across the NCP’s cropland.

Chen and Dirmeyer (2019) and Yang et al. (2020) performed sensitivity tests for the
previous moving window algorithm at different scales, and they reported ∆LST was not
significantly affected by their choice of parameters in the moving window [16,32]. In this
study, the sensitivity of the window size, the threshold of the Tem difference, and the
number of remaining non-irrigated pixels were also tested before the experiment. The
results show that although the choice of parameters had some effect on ∆LST, the default
values we determined were robust in the NCP (Figure 3). Overall, the identified patterns of
∆LST were not significantly affected by the choice of parameters, reflecting the robustness
of our findings. The Tem in the irrigated area was higher than that in the non-irrigated area
(Figures S3 and S4), which could increase the LST of the irrigated area and mask the ICE
to a certain extent; therefore, the ICE based on ∆LST assessed by the previous algorithm
was generally weaker than that assessed by our proposed algorithm, especially in areas
with large topographic relief (Figure 7), but it was stronger in a coastal city (e.g., Tianjin,
Table S2). This may be because the climate changes greatly in the area with large relief, and
the coastal area is obviously affected by the marine climate. The ICEs assessed based on
∆LST and ∆DCT were essentially the same, with the difference mainly occurring at night
(Figures 4–6); however, due to the weak ICE on night LST, the intraday difference between
∆LST and ∆DCT can be ignored (Table S3). It is therefore necessary to control the Tem
difference between the irrigated pixel and the non-irrigated pixel in the moving window,
and ∆DCT had an excellent performance to assess the ICE.

Like many experimental results [9,14,33,38], our results also clearly support that
irrigation induces a cooling effect on LST with spatial and temporal heterogeneity (Figure 4).
This is supported by higher soil moisture, higher ET, and contrasting vegetation conditions
over the irrigated area [16]. For instance, the ICE across China in the growing season,
daytime, and arid region was stronger than that in the non-growing season, night, and
humid area [32]. The results of our study over the NCP also show the same spatiotemporal
pattern, but the magnitude of the ICE varied greatly, with the daytime ICE reaching 0.37 ◦C
across the NCP and 0.50 ◦C in the northern NCP during spring. At present, there are two
main reasons for the widely observed ICE. One is that irrigation increases soil moisture
and promotes crop growth, which can enhance ET. As a result, more sensible heat fluxes
are redistributed to latent heat fluxes, which directly cools the LST [14,50,51]. The other
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is that irrigation can increase the atmospheric water vapor, which will lead to an increase
in the cloud cover in the irrigated areas. This reduces the total downwelling radiation
and indirectly cools the LST [14,30]. Yang et al. (2020) further believed that the net impact
of irrigation on LST resulted from the competition between the potential warming effect
induced by the lower albedo and the cooling effect created by the higher ET [14]. Moreover,
other human agricultural activities (e.g., fertilization, cropping system, and agricultural
development) may also have a specific impact on the ICE. For example, the ICE of a paddy
was positively associated with the irrigation rate and negatively associated with the water
depth [52].

In the study, the widely observed ICE over NCP can be reasonably explained by
the mechanisms highlighted above. The combined effect of these mechanisms results
in the spatiotemporal variation of the impact of irrigation on LST. For instance, the ICE
during the growing season, especially during spring, was generally more extensive than
that during the non-growing season (Figures 4 and 5). This is because irrigation occurs
during the growing season, especially in spring, with less rainfall and the enormous water
consumption of winter wheat [44]. During this period, irrigation promotes crop growth
(higher NDVI) and ET (Figure 8), which can lead to more surface net radiation converted
into latent heat fluxes, resulting in an extensive cooling effect [51]. In addition, irrigation
also cools the Tem most obviously during this period (Figure 8). The ICE during the
daytime is usually stronger than that at night, which is mainly because ET is large in the
daytime and small at night [29], and clouds play opposite roles in the land–atmosphere
heat fluxes in the daytime and nighttime [30]. Cloud cover reduces downwelling solar
radiation in the daytime and emits longwave radiation fluxes at night.

According to Lobell et al. and Yu et al. [53,54], the apparent spatial difference of ICE
across the NCP (Figure 5) is related to the local background. In the northern NCP, the
additional water from irrigation can significantly increase the soil water content, which
greatly affects the local biophysical processes (e.g., air humidity, NDVI, ET, etc.), resulting
in noticeable differences in the LST between the humid irrigated areas and adjacent dry
non-irrigated areas. In the southern NCP, which experiences more rainfall (Figure S4), the
soil moisture is high under natural conditions, rendering the impact of irrigation water
on LST weaker than that in the northern NCP. The spatial heterogeneity of the irrigation
effects on NDVI, ET, and climate (∆NDVI, ∆ET, ∆Tem, and ∆Pre, Figure 9) may be one
of the reasons for the spatial differences of ICE on LST, because we found that the ICEs
were correlated with them (Figure 11). For the marginal areas of the agricultural areas,
the irrigation facilities may be imperfect when croplands are remote. In Beijing, a highly
modernized city, the widespread use of water-saving irrigation technology has led to a
decrease in agricultural water consumption. This can reduce the total ET in the irrigated
areas; therefore, the ICEs in these areas were weak or even turned into a warming effect
(Figure 5).

In addition, irrigation had a promoting effect on NDVI and ET and an inhibiting effect
on Tem and precipitation (Figure 8). This is related to the fact that irrigation promotes
crop growth by enhancing the soil moisture and modulates LST and near-surface Tem
through energy and water exchange between the surface and atmosphere [10]. The ICE
can strengthen the atmosphere’s stability, which has a negative influence on the local
precipitation [21]. In the interaction of ∆NDVI, ∆ET, ∆Tem, ∆Pre, ERA, and ICE (∆LST
and ∆DCT), we found that ∆ET, ∆NDVI, and ∆Tem were the main factors driving ICE,
and ICE was very sensitive to their changes (Figures 11 and 12). Among them, ∆Tem was
significantly positively correlated with ∆LSTd and ∆DCTd, but all of them were significantly
negatively correlated with ∆NDVI and ∆ET; therefore, the increase in ∆Tem in the multiple
regression model can also cause the decrease in ∆LSTd and ∆DCTd (Figure 12). ∆NDVI
and ∆ET can explain about 20% and 18% of nighttime ICE on average, and they showed
a significant trend of 0.003 10 yr−1 and −0.23 mm 10 yr−1 at yearly scale, respectively;
therefore, the increase in ∆NDVI may be one reason why the ICE showed a significant
enhancement trend (0.04 ◦C 10 yr−1) at night from 2000 to 2015 (Figure 4). Spatially, more
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than half of the pixels showed an increased ∆NDVI, ∆ET, ∆Tem, and ∆Pre, which may be
the cause of more than half of the pixels showing enhanced ICE (Figure 10).

Several limitations of this study need to be addressed. Firstly, due to the lack of reliable
dynamic irrigation maps of the NCP at present, the research is based on a static irrigation
map. This limits the research on spatiotemporal variation of ICE caused by irrigation
expansion and intensity. Secondly, the crop types in the non-irrigated pixels were not
distinguished in this study, which may cause biases to our results. To clarify this issue, we
compared the LST of mixed non-irrigated crop pixels with that of non-irrigated wheat and
corn pixels within the same moving window, respectively. The results show that without
distinguishing the crop types, the ICE would be slightly overestimated; however, the biases
caused by different crops in non-irrigated areas (about 0.21 and 0.04 ◦C, Figure TS2 of Text
S2 in supplementary material) are much smaller compared to the detected ICE magnitudes
(about −0.53 and −0.16 ◦C, Figure TS2a,d of Text S2) over the irrigated winter wheat and
summer corn areas during the growing season. This indicates that the uncertainty caused
by different crops is acceptable, and it is unlikely to have had a significant influence on the
identified ICE. Thirdly, with the development of water-saving irrigation [55], many water-
saving irrigation technologies have emerged, such as sprinkler irrigation, drip irrigation
under mulch, etc. Generally, the ET of the same crop is different under different irrigation
methods [56], leading to various ICEs. It has been proved that the ICE was attenuated with
the large-scale application of water-saving technology in northwest China [12,57]; however,
it is difficult to consider the differences in irrigation techniques and irrigation schedules
in this study. To further understand the mechanism behind the ICE, researchers should
conduct a comprehensive analysis in the future.

5. Conclusions

A novel moving window algorithm was used to identify the irrigation effect on
LST, and we used ∆LST and a new index ∆DCT to quantify the ICE on the LST. Based
on satellite observations, this study has provided observational evidence that irrigation
affected the climate, crop growth, ET, and LST over the NCP from 2000 to 2015. The novel
moving window algorithm further eliminated the influence of air temperature on LST. The
assessments of the irrigation effect on LST based on ∆LST and ∆DCT were consistent, and
∆DCT had an excellent performance.

Irrigation generally had a cooling effect on LST, and the ICE had apparent spatiotem-
poral heterogeneity. It was strong in the northern NCP, daytime, and the growing season,
especially in spring, whereas it was weak (<0.1 ◦C) in the southern NCP. In spring, the
average ICE was around 0.37 ◦C and 0.50 ◦C during the daytime in the NCP and northern
NCP, respectively. Irrigation also inhibited precipitation and Tem (−1.461 mm yr−1 and
−0.023 ◦C in spring) and promoted ET and NDVI (0.289 mm yr−1 and 0.03 in spring).
These effects had a similar spatiotemporal heterogeneity to the ICE. The ∆NDVI, ∆ET, and
∆Tem were the main factors driving the ICE and explained about 22.1–22.8%, 43.8–45.4%,
and 25.0–25.9% of ICEd. For every unit of them increased, the ICEd enhanced by about
7.2–7.5, 4.5–4.7, and 1.1–1.9 ◦C, respectively. From 2000 to 2015, more than half of the
pixels showed an enhanced ICE; the irrigation effect on nighttime LST and NDVI enhanced
significantly (0.04 ◦C 10 yr−1 and 0.003 10 yr−1), but that of ET weakened significantly
(0.23 mm 10 yr−1). Our findings provide useful information for studying the effects of
irrigation on LST and regional climate. The method provides a new research perspective
for quantifying irrigation effects on climate and surface properties, which is more suitable
for regions with uneven terrain and climate.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs15184571/s1, Text S1: Sensitivity tests of parameters in
the moving window; Text S2: Assess the impact of crop type differences in non-irrigated areas on our
result; Figure S1. Effective radiation (ERA) in the North China Plain; Figure S1: Effective radiation
(ERA) in the North China Plain; Figure S2: Spatial patterns (a–d) of the average seasonal and annual
LST difference (∆LSTdem) between irrigated area and non-irrigated area obtained by the previous
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algorithm in the NCP from 2000 to 2015; Figure S3: Temporal patterns of the precipitation (Pre),
air temperature (Tem), NDVI, ET, daytime LST (DLST), and nighttime LST (NLST) in irrigated and
non-irrigated crop areas of the NCP from 2000 to 2015; Figure S4: Spatial patterns and frequency
distributions of the annual average precipitation (Pre), air temperature (Tem), NDVI, ET, daytime
and nighttime LST (DLST and NLST) in irrigated and non-irrigated areas of the NCP cropland
from 2000 to 2015; Table S1: Differences between ∆LSTdem and ∆LST in the different seasons and
administrative districts of the NCP; Table S2: The percentage (%) of the difference between ∆LSTdem
and ∆LST in the ∆LST; Table S3: The differences of the annual average irrigation cooling effect (ICE)
in the NCP quantified by ∆LST and ∆DCT; Table S4: Difference of the annual average irrigation
cooling effect (ICE) in the different administrative districts of the NCP quantified based on ∆LST and
∆DCT. References [32,58,59] are cited in the supplementary materials.

Author Contributions: Methodology, M.H. and L.Z.; Formal analysis, M.H.; Writing—original draft,
M.H.; Writing—review & editing, L.Z. and A.L.; Supervision, A.L.; Funding acquisition, L.Z. and A.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by [National Natural Key Research and Development Program
of China] grant number [2019YFE0127600] and [Fundamental Research Funds for the Central Univer-
sities] grant number [2042022gf0012]. And The APC was funded by [Fundamental Research Funds
for the Central Universities].

Acknowledgments: This paper benefits from data provided by the National Earth System Science
Data Center, Geospatial Data Cloud site, and Global Change Research Data Publishing and Repository,
National Science and Technology Infrastructure of China, and Resource and Environment Science
and Data Center, Chinese Academy of Science.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Albaladejo-García, J.A.; Alcon, F.; Martínez-Paz, J.M. The Irrigation Cooling Effect as a Climate Regulation Service of Agroe-

cosystems. Water 2020, 12, 1553. [CrossRef]
2. Li, Y.; Guan, K.; Peng, B.; Franz, T.E.; Wardlow, B.; Pan, M. Quantifying irrigation cooling benefits to maize yield in the US

Midwest. Glob. Chang. Biol. 2020, 26, 3065–3078. [CrossRef] [PubMed]
3. Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: A global-scale assessment. Envi-ron.

Res. Lett. 2009, 4, 35006. [CrossRef]
4. Shiklomanov, I.A. Appraisal and Assessment of World Water Resources. Water Int. 2000, 25, 11–32. [CrossRef]
5. Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; DÖll, P.; Portmann, F.T. Groundwater use for irrigation—A global

inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [CrossRef]
6. Siebert, S.; Döll, P.; Hoogeveen, J.; Faures, J.M.; Frenken, K.; Feick, S. Development and validation of the global map of irriga-tion

areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [CrossRef]
7. Kueppers, L.M.; Snyder, M.A.; Sloan, L.C. Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res.

Lett. 2007, 34, L03703. [CrossRef]
8. Guimberteau, M.; Laval, K.; Perrier, A.; Polcher, J. Global effect of irrigation and its impact on the onset of the Indian summer

monsoon. Clim. Dyn. 2012, 39, 1329–1348. [CrossRef]
9. Kang, S.; Eltahir, E.A.B. Impact of Irrigation on Regional Climate Over Eastern China. Geophys. Res. Lett. 2019, 46, 5499–5505.

[CrossRef]
10. Chen, X.; Jeong, S. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects.

Environ. Res. Lett. 2018, 13, 24005. [CrossRef]
11. Li, D.; Chen, Y.; Hu, T.; Cui, Y.; Luo, Y.; Luo, H.; Meng, Q. Climate changes in the Lhasa River basin, Tibetan Plateau: Irriga-tion-

induced cooling along with a warming trend. Theor. Appl. Climatol. 2020, 140, 1043–1054. [CrossRef]
12. Fu, J.; Kang, S.; Zhang, L.; Li, X.; Gentine, P.; Niu, J. Amplified warming induced by large-scale application of water-saving

techniques. Environ. Res. Lett. 2022, 17, 34018. [CrossRef]
13. Douglas, E.M.; Niyogi, D.; Frolking, S.; Yeluripati, J.B.; Roger, A.P.S.; Niyogi, N.; Vörösmarty, C.J.; Mohanty, U.C. Changes in

moisture and energy fluxes due to agricultural land use and irrigation in the Indian Monsoon Belt. Geophys. Res. Lett. 2006,
33, L14403. [CrossRef]

14. Yang, Q.; Huang, X.; Tang, Q. Global assessment of the impact of irrigation on land surface temperature. Sci. Bull. 2020, 65,
1440–1443. [CrossRef] [PubMed]

15. Boucher, O.; Myhre, G.; Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn.
2004, 22, 597–603. [CrossRef]

https://doi.org/10.3390/w12061553
https://doi.org/10.1111/gcb.15002
https://www.ncbi.nlm.nih.gov/pubmed/32167221
https://doi.org/10.1088/1748-9326/4/3/035006
https://doi.org/10.1080/02508060008686794
https://doi.org/10.5194/hess-14-1863-2010
https://doi.org/10.5194/hess-9-535-2005
https://doi.org/10.1029/2006GL028679
https://doi.org/10.1007/s00382-011-1252-5
https://doi.org/10.1029/2019GL082396
https://doi.org/10.1088/1748-9326/aa9dea
https://doi.org/10.1007/s00704-020-03146-y
https://doi.org/10.1088/1748-9326/ac4b52
https://doi.org/10.1029/2006GL026550
https://doi.org/10.1016/j.scib.2020.04.005
https://www.ncbi.nlm.nih.gov/pubmed/36747400
https://doi.org/10.1007/s00382-004-0402-4


Remote Sens. 2023, 15, 4571 23 of 24

16. Chen, L.; Dirmeyer, P.A. Global observed and modelled impacts of irrigation on surface temperature. Int. J. Climatol. 2019, 39,
2587–2600. [CrossRef]

17. Zhu, X.; Liang, S.; Pan, Y.; Zhang, X. Agricultural irrigation impacts on land surface characteristics detected from satellite data
products in Jilin province, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 721–729. [CrossRef]

18. Zhang, C.; Ge, Q.; Dong, J.; Zhang, X.; Li, Y.; Han, S. Characterizing spatial, diurnal, and seasonal patterns of agricultural
irri-gation expansion-induced cooling in Northwest China from 2000 to 2020. Agric. For. Meteorol. 2023, 330, 109304. [CrossRef]

19. Kang, S.; Eltahir, E.A.B. North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun.
2018, 9, 2894. [CrossRef]

20. Li, J.; Chen, Y.D.; Gan, T.Y.; Lau, N. Elevated increases in human-perceived temperature under climate warming. Nat. Clim.
Chang. 2018, 8, 43–47. [CrossRef]

21. Wu, L.; Feng, J.; Miao, W. Simulating the Impacts of Irrigation and Dynamic Vegetation Over the North China Plain on Re-gional
Climate. J. Geophys. Res. Atmos. 2018, 123, 8017–8034. [CrossRef]

22. Zou, Z.; Yang, Y.; Qiu, G. Quantifying the Evapotranspiration Rate and Its Cooling Effects of Urban Hedges Based on Three-
Temperature Model and Infrared Remote Sensing. Remote Sens. 2019, 11, 202. [CrossRef]

23. Zhu, P.; Burney, J. Untangling irrigation effects on maize water and heat stress alleviation using satellite data. Hydrol. Earth Syst.
Sci. 2022, 26, 827–840. [CrossRef]

24. Xiao, L.; Asseng, S.; Wang, X.; Xia, J.; Zhang, P.; Liu, L.; Tang, L.; Cao, W.; Zhu, Y.; Liu, B. Simulating the effects of low-temperature
stress on wheat biomass growth and yield. Agric. For. Meteorol. 2022, 326, 109191. [CrossRef]

25. Karimzadeh Soureshjani, H.; Ghorbani Dehkordi, A.; Bahador, M. Temperature effect on yield of winter and spring irrigated
crops. Agric. For. Meteorol. 2019, 279, 107664. [CrossRef]

26. Makowski, D.; Marajo-Petitzon, E.; Durand, J.; Ben-Ari, T. Quantitative synthesis of temperature, CO2, rainfall, and adaptation
effects on global crop yields. Eur. J. Agron. 2020, 115, 126041. [CrossRef]

27. Bonfils, C.; Lobell, D. Empirical evidence for a recent slowdown in irrigation-induced cooling. Proc. Natl. Acad. Sci. USA 2007,
104, 13582–13587. [CrossRef]

28. Gao, K.; Santamouris, M.; Feng, J. On the cooling potential of irrigation to mitigate urban heat island. Sci. Total Environ. 2020,
740, 139754. [CrossRef]

29. Lobell, D.B.; Bonfils, C.J.; Kueppers, L.M.; Snyder, M.A. Irrigation cooling effect on temperature and heat index extremes. Ge-ophys.
Res. Lett. 2008, 35, L09705. [CrossRef]

30. Cook, B.I.; Shukla, S.P.; Puma, M.J.; Nazarenko, L.S. Irrigation as an historical climate forcing. Clim. Dyn. 2015, 44, 1715–1730.
[CrossRef]

31. Shiflett, S.A.; Liang, L.L.; Crum, S.M.; Feyisa, G.L.; Wang, J.; Jenerette, G.D. Variation in the urban vegetation, surface temper-ature,
air temperature nexus. Sci. Total Environ. 2017, 579, 495–505. [CrossRef]

32. Yang, Q.; Huang, X.; Tang, Q. Irrigation cooling effect on land surface temperature across China based on satellite observa-tions.
Sci. Total Environ. 2020, 705, 135984. [CrossRef]

33. Liu, G.; Wang, W. Irrigation-Induced Crop Growth Enhances Irrigation Cooling Effect Over the North China Plain by In-creasing
Transpiration. Water Resour. Res. 2023, 59, e2022WR034142. [CrossRef]

34. Liu, G.; Wang, W.; Shao, Q. Recent Decline of Irrigation-Induced Cooling Effect Over the North China Plain in Observations and
Model Simulations. Geophys. Res. Lett. 2023, 50, e2022GL101973. [CrossRef]

35. Coll, C.; Wan, Z.; Galve, J.M. Temperature-based and radiance-based validations of the V5 MODIS land surface temperature
product. J. Geophys. Res. 2009, 114, D20102. [CrossRef]

36. Duan, S.; Li, Z.; Li, H.; Göttsche, F.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS land sur-face
temperature product using in situ measurements. Remote Sens. Environ. 2019, 225, 16–29. [CrossRef]

37. Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens.
Environ. 2014, 140, 36–45. [CrossRef]

38. Zhang, Z.; Lin, A.; Zhao, L.; Zhao, B. Attribution of local land surface temperature variations response to irrigation over the
North China Plain. Sci. Total Environ. 2022, 826, 154104. [CrossRef]

39. Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, J.P.J. Canopy temperature as a crop water stress indicator. Water Resour. Res. 1981,
17, 1133–1138. [CrossRef]

40. Balota, M.; Payne, W.A.; Evett, S.R.; Peters, T.R. Morphological and physiological traits associated with canopy temperature
depression in three closely related wheat lines. Crop Sci. 2008, 48, 1897–1910. [CrossRef]

41. Hou, M.; Tian, F.; Zhang, T.; Huang, M. Evaluation of canopy temperature depression, transpiration, and canopy greenness in
relation to yield of soybean at reproductive stage based on remote sensing imagery. Agric. Water Manag. 2019, 222, 182–192.
[CrossRef]

42. Xiao, D.X.D.; Tao, F.T.F. Contributions of cultivars, management and climate change to winter wheat yield in the North China
Plain in the past three decades. Eur. J. Agron. 2014, 52, 112–122. [CrossRef]

43. Zhao, Z.A.; Qin, X.A.; Wang, Z.A.; Wang, E.B. Performance of different cropping systems across precipitation gradient in North
China Plain. Agric. For. Meteorol. 2018, 259, 162–172. [CrossRef]

44. Meng, Q.; Sun, Q.; Chen, X.; Cui, Z.; Yue, S.; Zhang, F.; Rmheld, V. Alternative cropping systems for sustainable water and
nitrogen use in the North China Plain. Agric. Ecosyst. Environ. 2012, 146, 93–102. [CrossRef]

https://doi.org/10.1002/joc.5973
https://doi.org/10.1109/JSTARS.2011.2106152
https://doi.org/10.1016/j.agrformet.2022.109304
https://doi.org/10.1038/s41467-018-05252-y
https://doi.org/10.1038/s41558-017-0036-2
https://doi.org/10.1029/2017JD027784
https://doi.org/10.3390/rs11020202
https://doi.org/10.5194/hess-26-827-2022
https://doi.org/10.1016/j.agrformet.2022.109191
https://doi.org/10.1016/j.agrformet.2019.107664
https://doi.org/10.1016/j.eja.2020.126041
https://doi.org/10.1073/pnas.0700144104
https://doi.org/10.1016/j.scitotenv.2020.139754
https://doi.org/10.1029/2008GL034145
https://doi.org/10.1007/s00382-014-2204-7
https://doi.org/10.1016/j.scitotenv.2016.11.069
https://doi.org/10.1016/j.scitotenv.2019.135984
https://doi.org/10.1029/2022WR034142
https://doi.org/10.1029/2022GL101973
https://doi.org/10.1029/2009JD012038
https://doi.org/10.1016/j.rse.2019.02.020
https://doi.org/10.1016/j.rse.2013.08.027
https://doi.org/10.1016/j.scitotenv.2022.154104
https://doi.org/10.1029/WR017i004p01133
https://doi.org/10.2135/cropsci2007.06.0317
https://doi.org/10.1016/j.agwat.2019.06.005
https://doi.org/10.1016/j.eja.2013.09.020
https://doi.org/10.1016/j.agrformet.2018.04.019
https://doi.org/10.1016/j.agee.2011.10.015


Remote Sens. 2023, 15, 4571 24 of 24

45. Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci.
Data 2019, 11, 1931–1946. [CrossRef]

46. Cao, W.; Duan, C.; Yang, T.; Liu, R. Daily surface effective radiation at 130 radiation stations in China (1971–2014) [J/DB/OL].
Digital J. Glob. Chang. Data Repository 2018. [CrossRef]

47. Meier, J.; Zabel, F.; Mauser, W. A global approach to estimate irrigated areas-a comparison between different data and statis-tics.
Hydrol. Earth Syst. Sc. 2018, 22, 1119–1133. [CrossRef]

48. Kumar, S.; Dirmeyer, P.A.; Merwade, V.; DelSole, T.; Adams, J.M.; Niyogi, D. Land use/cover change impacts in CMIP5 climate
simulations: A new methodology and 21st century challenges. J. Geophys. Res. Atmos. 2013, 118, 6337–6353. [CrossRef]

49. Zhao, N.; Han, S.; Xu, D.; Wang, J.; Yu, H. Cooling and Wetting Effects of Agricultural Development on Near-Surface Atmos-phere
over Northeast China. Adv. Meteorol. 2016, 2016, 6439276. [CrossRef]

50. Cook, B.I.; Puma, M.J.; Krakauer, N.Y. Irrigation induced surface cooling in the context of modern and increased greenhouse gas
forcing. Clim. Dyn. 2011, 37, 1587–1600. [CrossRef]

51. Zhang, X.; Xiong, Z.; Tang, Q. Modeled effects of irrigation on surface climate in the Heihe River Basin, Northwest China. J.
Geophys. Res. Atmos. 2017, 122, 7881–7895. [CrossRef]

52. Nishida, K.; Yoshida, S.; Shiozawa, S. Theoretical analysis of the effects of irrigation rate and paddy water depth on water and
leaf temperatures in a paddy field continuously irrigated with running water. Agric. Water Manag. 2018, 198, 10–18. [CrossRef]

53. Lobell, D.; Bala, G.; Mirin, A.; Phillips, T.; Maxwell, R.; Rotman, D. Regional Differences in the Influence of Irrigation on Cli-mate.
J. Clim. 2009, 22, 2248–2255. [CrossRef]

54. Yu, Z.; Xu, S.; Zhang, Y.; Jørgensen, G.; Vejre, H. Strong contributions of local background climate to the cooling effect of ur-ban
green vegetation. Sci. Rep. 2018, 8, 6789.

55. Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What drives the vegetation restoration in Yangtze River basin, China: Climate change
or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [CrossRef]

56. Hou, M.; Tian, F.; Zhang, L.; Li, S.; Du, T.; Huang, M.; Yuan, Y. Estimating Crop Transpiration of Soybean under Different
Ir-rigation Treatments Using Thermal Infrared Remote Sensing Imagery. Agronomy 2019, 9, 8. [CrossRef]

57. Zhang, C.; Dong, J.; Leng, G.; Doughty, R.; Zhang, K.; Han, S.; Zhang, G.; Zhang, X.; Ge, Q. Attenuated cooling effects with
increasing water-saving irrigation: Satellite evidence from Xinjiang, China. Agric. For. Meteorol. 2023, 333, 109397. [CrossRef]

58. Lei, H. Distribution maps of crop planting areas in the North China Plain (2001–2018). Natl Tibetan Plateau Data Center 2022.
[CrossRef]

59. Li, J.; Lei, H. Tracking the spatio-temporal change of planting area of winter wheat-summer maize cropping system in the North
China Plain during 2001–2018. Comput. Electron. Agric. 2021, 187, 106222. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.5194/essd-11-1931-2019
https://doi.org/10.3974/geodb.2018.03.02.V1
https://doi.org/10.5194/hess-22-1119-2018
https://doi.org/10.1002/jgrd.50463
https://doi.org/10.1155/2016/6439276
https://doi.org/10.1007/s00382-010-0932-x
https://doi.org/10.1002/2017JD026732
https://doi.org/10.1016/j.agwat.2017.11.021
https://doi.org/10.1175/2008JCLI2703.1
https://doi.org/10.1016/j.ecolind.2018.03.029
https://doi.org/10.3390/agronomy9010008
https://doi.org/10.1016/j.agrformet.2023.109397
https://doi.org/10.1016/j.compag.2021.106222
https://doi.org/10.1016/j.compag.2021.106222

	Introduction 
	Materials and Methods 
	Study Area 
	Datasets Collection 
	Meteorological Data 
	Elevation Data 
	NDVI and LST 
	Cropland Map and ET 
	Irrigation Map 

	Method for Measuring Irrigation Effects 
	Data Analysis 
	Linear Regression Analysis 
	Spatial Variation Trend Test 
	Correlation Analysis 


	Results 
	Spatiotemporal Patterns of ICE Based on LST and DCT 
	Temporal Variations of LST and DCT 
	Spatial Variations of LST and DCT 

	Comparison of the ICEs Quantified by Different Methods 
	Spatiotemporal Patterns of Irrigation Effects on ET, Precipitation, Tem, and NDVI 
	Temporal Patterns of Irrigation Effects on ET, Precipitation, Tem, and NDVI 
	Spatial Patterns of Irrigation Effect on ET, Precipitation, Tem, and NDVI 

	Spatial-Trend Slopes of Irrigation Effects 
	Factors Underlying ICE Variation 
	Relationships among NDVI, ET, Climate Factors, and ICE 
	Quantifying the Impact of NDVI, ET, and Climate Factors on ICE 


	Discussion 
	Conclusions 
	References

