
Citation: Wu, Z.; Wang, B.

Background Reconstruction via

3D-Transformer Network for

Hyperspectral Anomaly Detection.

Remote Sens. 2023, 15, 4592. https://

doi.org/10.3390/rs15184592

Academic Editor: Farid Melgani

Received: 16 August 2023

Revised: 11 September 2023

Accepted: 15 September 2023

Published: 18 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Background Reconstruction via 3D-Transformer Network for
Hyperspectral Anomaly Detection
Ziyu Wu 1,2 and Bin Wang 1,2,*

1 Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University,
Shanghai 200437, China; 19110720029@fudan.edu.cn

2 Image and Intelligence Laboratory, School of Information Science and Technology, Fudan University,
Shanghai 200437, China

* Correspondence: wangbin@fudan.edu.cn; Tel.: +86-21-3124-2507

Abstract: Recently, autoencoder (AE)-based anomaly detection approaches for hyperspectral images
(HSIs) have been extensively proposed; however, the reconstruction accuracy is susceptible to the
anomalies and noises. Moreover, these AE-based anomaly detectors simply compress each pixel into
a hidden-layer with a lower dimension and then reconstruct it, which does not consider the spatial
properties among pixels. To solve the above issues, this paper proposes a background reconstruction
framework via a 3D-transformer (3DTR) network for anomaly detection in HSIs. The experimental
results on both synthetic and real hyperspectral datasets demonstrate that the proposed 3DTR
network is able to effectively detect most of the anomalies by comprehensively considering the spatial
correlations among pixels and the spectral similarity among spectral bands of HSIs. In addition, the
proposed method exhibits fewer false alarms than both traditional and state-of-the-art (including
model-based and AE-based) anomaly detectors owing to the adopted pre-detection procedure and
the proposed novel patch-generation method in this paper. Moreover, two ablation experiments
adequately verified the effectiveness of each component in the proposed method.

Keywords: hyperspectral images (HSIs); anomaly detection; transformer (TR); background reconstruction;
patch; coarse pre-detection

1. Introduction

Hyperspectral images (HSIs) are collected by sensors on airborne or space platforms
that combine imaging and spectroscopy techniques, and can be regarded as 3D data cubes.
Apart from 2D spatial information, each pixel of an HSI with hundreds of bands can be
regarded as a spectral vector [1,2]. Moreover, when disregarding subtle spectral variability,
each material has a corresponding spectral curve, which gives HSIs a unique advantage in
practical applications such as classification [3,4], unmixing [5], target detection [6,7] and
denoising [8,9].

It is worth noting that HSIs are only a mixture of several endmembers due to the
limitation of the category numbers of materials in real reality [10]. Therefore, the spectral
curves of pixels, especially spatially adjacent pixels, are similar. In other words, there are
spectral similarities among pixels from the spatial dimension [11]. For the sake of simplicity,
the “spatial similarity” is utilized to represent this spectral similarity among pixels on the
spatial dimension. In addition, the hundreds of single-band images are highly similar
intuitively, namely, there is a global spatial similarity from the spectral dimension. Likewise,
the “spectral similarity” is utilized to represent this global spatial similarity among bands
on the spectral dimension.

According to whether the prior spectral information of a target is known, hyperspectral
target detection can be divided into supervised and unsupervised types. Unsupervised
target detection is also known as anomaly detection, which detects uncommon objects with
significant different spectra from the background. Considering the difficulty of obtaining
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the specific spectral curves of a target, anomaly detection should be more consistent
when used in practical applications, such as environmental supervision [12], mineral
exploration [13,14], search and rescue [15,16], and military reconnaissance [17,18].

Various hyperspectral anomaly detection methods have been proposed in recent
decades. Among these, the most typical method for anomaly detection is the Reed–Xiaoli
(RX) detector [19], which detects anomalies by computing the Mahalanobis distance be-
tween the mean of the background and the tested pixel under the assumption that the
background obeys a multivariate Gaussian distribution. However, this assumption is diffi-
cult to satisfy in real HSIs, which results in unsatisfactory detection results. To avoid making
assumptions about the distribution of the background, the collaborative-representation-
based detector (CRD) [20] considers that the anomalies cannot be represented by their
spatial neighbors inside the man-set outer window, whereas the background pixels can.
Unfortunately, there is no general rule for choosing the proper dual-window size for HSIs,
which limits the accuracy of this detector in real applications. Moreover, the anomalous
level for each pixel is computed separately in RX-based detectors and CRD; thus, the global
statistic properties of the entire HSIs are ignored.

Recently, robust principal component analysis (RPCA) [21] were utilized to handle
hyperspectral anomaly detection with low-rank background and sparsity of anomalies [22].
Later, low-rank representation (LRR) [23] was used to impose low-rank regularization
on an abundance matrix correlated with a background dictionary; the inherent subspace
structures of complex HSIs were then recovered. Considering that each pixel of an HSI
can be represented by only a few dictionary atoms, low-rank and sparse representation
(LRASR) [24] incorporated the l1-norm on each column of the abundance matrix based
on LRR. In addition, the graph and total variation (TV)-regularized LRR (GTVLRR) [25]
incorporated graph and TV regularizations to characterize the spatial properties of the
background; thus, a relatively good decomposition result was obtained. An anomaly
detector with a local spatial constraint and total variation (LSCTV) [26] was used to make
the pixels’ abundances of background close in each superpixel. However, the complex
distribution of the actual background in real HSIs is difficult to describe with a simple
specific model; thus, the accuracies of the above model-based anomaly detectors are limited.

Compared with the above model-based detectors that seek to describe the background
and anomalies with specific models in detail, most of the neural network (NN)-based
anomaly detectors simply reconstruct the background by only considering the spatial spar-
sity of anomalies. Owing to its excellent accuracy in the extraction of principal components,
the autoencoder (AE) [27] was introduced to solve hyperspectral anomaly detection. An
AE-based hyperspectral anomaly detector called HADGAN [28] introduced the generative
adversarial network [29] to enhance the constraints on reconstruction errors to obtain better
reconstruction accuracy of the background. In addition, a robust graph AE (RGAE) [30]
added the graph regularization on a hidden layer of each superpixel to consider the corre-
lation among pixels. However, the above AE-based detectors have a common drawback
in that the accuracy of the background reconstruction is susceptible to the anomalies. In
terms of this issue, SSLGAN [31] alleviated the contamination of anomalies on the training
procedure through the use of coarse screening. For the same purpose, GAED [32] generated
a guided image to suppress the participation of anomalies. Unfortunately, the spatial
properties between pixels are absent in most of the AE-based anomaly detectors, which is
vital for reconstructing an accurate background.

In a word, the following problems with the aforementioned hyperspectral anomaly
detectors need to be solved: (1) traditional specific model-based algorithms show instability
across various datasets; (2) most of the NN-based detectors do not take spatial properties
into account and easily suffer from the contamination of anomalies as well as noise; and
(3) Both the spectral similarity of HSIs and the spectral dimension have been shown
to improve the accuracies of hyperspectral anomaly detectors due to the global spatial
similarity among hundreds of single-band images; however, these are not considered in all
NN-based detectors.
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To solve the abovementioned problems, this paper proposes a background reconstruc-
tion framework via a 3D-transformer network for anomaly detection in HSIs. Compared
with AE-based algorithms that reconstruct each individual background pixel by compress-
ing it into a hidden layer, the proposed network utilizes the transformer (TR) [33] module
to handle the background pixel reconstruction with other pixels to effectively characterize
the spatial correlations among pixels. Considering that hundreds of single-band images
show high spectral similarity, a spectral TR network is presented to excavate this unique
high-dimensional information of HSIs. By using this 3DTR network, which is combined
with a traditional spatial TR and the proposed spectral TR in series, the background compo-
nent of HSIs can be reconstructed effectively. Further, to reconstruct the background more
precisely, the pre-detection of anomalies is executed by a simple but efficient anomaly de-
tector so that the training procedure can be less contaminated by the pre-removed potential
anomalies. To improve the reconstruction accuracy in each patch, a novel patch-generation
method is proposed, in which a patch is generated by picking out the most similar pixels
around the center pixel within a relatively wide range. Unlike traditional patch-generation
methods [34–36] that include all the pixels around the center pixel within a pre-set single
window, the proposed patch-generation method can alleviate the contamination of weakly
relevant and irrelevant pixels during the reconstruction procedure of each patch. After a
sufficient training procedure by the proposed 3DTR network, an accurate detection result
can be obtained by means of the reconstruction errors of the whole HSIs.

It is worth noting that the strategy of using spatial TR and spectral TR has been utilized
in change detection (SSTTR) [37]. However, the purpose of the two TRs used in SSTTR
is to only extract the features; the results of the change detection procedure are obtained
by comparing the extracted features of two HSIs. The strategy is thus different to the
strategy proposed in this paper, which is to reconstruct a precise background using 3DTR.
Moreover, SSTTR adds linear projections in front of two TR, which subjectively changes the
dimensions of the input. As a result, the two TRs in SSTTR do not actually characterize the
correlations among pixels and the correlations among bands, and the action mechanism
is completely different to that of the 3DTR proposed in this paper. In addition, TR is has
been utilized in hyperspectral anomaly detection (S2DWMT) [38]. However, S2DWMT
only extracts features from a spatial perspective, whereas the 3DTR proposed in this paper
extracts features from both spatial and spectral perspectives.

The main contributions of the proposed method can be summarized as follows:

(1) A 3DTR network is proposed for hyperspectral anomaly detection that aims to recon-
struct the background precisely by reflecting the multi-dimensional similarity in HSIs.
Specifically, the TR module is utilized to handle the similarity among pixels, which is
beneficial for the reconstruction of background compared to AE-based anomaly detec-
tors that handle each pixel separately. Moreover, by fully considering the high spectral
resolution of HSIs and the high spectral similarity among single-band images, a novel
spectral TR network is proposed to reconstruct each band by other bands. To our
knowledge, this is the first time that spectral similarity has been characterized among
hundreds of single-band images by a TR module for hyperspectral anomaly detection;

(2) In view of the potential contamination of anomalies in the reconstruction results
of the background, a pre-detection procedure for anomalies is executed so that the
potential anomalies can be removed in the training process of the 3DTR. Existing patch-
generating methods simply set a single window around the tested pixel and regard all
pixels in this window as a patch, which may include a number of irrelevant pixels and
affect the precision of the background reconstruction. To solve this problem, a novel
patch-generation method is proposed to select the most similar pixels around the
center pixel in each patch, so that contamination from weakly relevant and irrelevant
pixels in the background reconstruction are significantly reduced.

The remainder is arranged as follows. Section 2 briefly describes the related works.
The proposed method is presented in detail in Section 3. In Section 4, the experimental
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results of the two synthetic datasets and six real datasets are shown and analyzed. Finally,
the conclusions are drawn in Section 5.

2. Related Works

It is well known that TR [33] is used to handle the sequence-to-sequence translation
problems in natural language processing (NLP). Recently, TR has been widely used in
various vision tasks, in which the pixels or patches of images are processed into sequences
as the input of TR. The unique long-range self-attention mechanism of TR excavates the
interrelations among these sequences, allowing each sequence to capture the global infor-
mation. Therefore, the TR module is actually a similarity-based reconstruction network,
which produces better results in vision tasks such as human pose estimation [39], segmen-
tation [40,41], target detection [42,43] and image classification [44,45].

A traditional TR module is composed of a layer normalization (LN), a multi-head self-
attention (MSA), and a multiple layer perception (MLP), as shown in Figure 1a. Particularly,
the MSA module shown in Figure 1b is stacked by several self-attention (SA) blocks (heads)
shown in Figure 1c, which play a crucial role in excavating the interrelations among
sequences. Specifically, a head can be carried out according to the following steps:
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Figure 1. The flowcharts of the traditional transformer module: (a) the overall structure of the
traditional transformer module; (b) the multi-head self-attention (MSA) block; and (c) the h-th
self-attention (SA) block.

Step 1: the input xi ∈ RL×1, i = 1, . . . , N is an arbitrary sequence with L elements, which
is processed from a pixel or a patch of the tested image. To avoid the shortcoming
where the position information is missed by the self-attention mechanism, an arti-
ficial or random position code is added to the original input: x′i= xi + pi ∈ RL×1,
i = 1, . . . , N.

Step 2: each input is multiplied by three pre-set transformation matrices Wq ∈ RM×L,
Wk ∈ RM×L, and Wv ∈ RM×L, respectively. Three corresponding vectors are
obtained, i.e., query qi ∈ RM×1, key ki ∈ RM×1, and value vi ∈ RM×1.

Step 3: the attention score si,j is calculated between the input x′i and other arbitrary input x′j
by the above transformed vectors, i.e., si,j = qT

i · kj/
√

L.
Step 4: The softmax activation layer is operated on the attention score si ∈ RN×1.
Step 5: the attention output is computed zi = ∑

j
si,jvj ∈ RM×1.

To summarize, the output of a head for x′i can be integrated into the following formulation:

zh
i = SA(qi, ki, vi) = softmax

(
qiki

T
√

L

)
vi ∈ RM×1 (1)
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where h = 1, . . . , H denotes the h-th head in the MSA module, so that different positions
can be focused on, and the accuracy of self-attention is enhanced. Then, the stacked output
of the MSA module for x′i can be transformed by W ∈ RL×HM as follows:

zi = W
[
z1

i ; . . . ; zM
i

]
∈ RL×1. (2)

3. Proposed Method

This paper proposes a novel hyperspectral anomaly detector, which is based on the fact
that the anomalies have several obvious characteristics: a small quantity, sparse distribution,
and spectral difference with their neighbors. In other words, a background can be well
characterized by the proposed 3DTR network, and then the pixels with relatively large
reconstruction errors can be regarded as anomalies. Specifically, the proposed method is
composed of four major procedures: a search of the representative background pixels by
a coarse anomaly detector; the construction of patches by the proposed patch-generating
method; training of the proposed 3DTR network using only the searched background; and
testing of the original HSIs by the trained 3DTR network. The overall schematic of the
proposed method is illustrated in Figure 2.
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3.1. 3DTR Network for Anomaly Detection

Let D = [d1, d2, . . . , dN ] ∈ RL×N denote the 2D hyperspectral data matrix with
N pixels and L spectral bands, which is also regarded as the testing dataset. Then,
D is severed by a coarse anomaly detector to A = [a1, a2, . . . , aNa ] ∈ RL×Na and

B =
[
b1, b2, . . . , b(N−Na)

]
∈ RL×(N−Na), which denote the potential anomalies and

the representative background, respectively. Each pixel of the training dataset B
generates an independent patch as the input of the proposed 3DTR network. The
specific processes of the coarse anomaly detector and the proposed patch-generating
method will be introduced in the following subsections.

As mentioned previously, pixels, especially spatially adjacent pixels, in the HSIs are
spatially similar because of the limit in the category number of materials in reality. In other
words, each background pixel can be represented by its relevant neighbors. Therefore, the
TR module can be utilized to reconstruct each pixel with other similar pixels due to its
unique long-range self-attention mechanism, which suppresses the heterogeneous noise
and spectral variation.

It is regrettable that all the above examples for vision tasks extract pixels or patches
of a tested image as the inputs of the TR module, and therefore only consider the spatial
interrelations. However, the spectral similarity among spectral bands in HSIs is more
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conspicuous, and each single-band image can apparently be represented by other single-
band images. Therefore, to enable the TR module to more deeply excavate information
about the HSIs, and make the process more suitable for real applications of HSIs, it was
proposed that the spectral TR module would first reconstruct each single-band image using
other single-band images, which fully exploit the spectral interrelations of HSIs.

Without a loss of generality, let us take yi as an example to demonstrate the following
processes of the 3DTR network, which could be an arbitrary pixel in training dataset B or
testing dataset D.

Step 1: By considering that the neighboring region of yi is more important in the recon-
struction process compared to the whole HSIs, this paper uses a patch rather than
the whole HSI to generate the reconstructed pixel ŷi. Moreover, to avoid contam-
ination by uncorrelated pixels, the proposed patch-generating method generates
a one-to-one corresponding patch pi ∈ RL×NP by selecting NP highly correlated
pixels around yi, in which yi comes first in pi.

Step 2: Input pi to the h1-head TR module, in which each pixel of pi is considered as an input
sequence. By considering the interrelations among pixels, the patch p̂i ∈ RL×NP is
reconstructed by this spatial TR module.

Step 3: To characterize the spectral similarity among spectral bands of HSIs, the transposed
patch p̂i

T ∈ RNP×L is fed into the h2-head TR module, in which each band of
p̂i is considered as an input sequence. By considering the interrelations among
spectral bands, the transposed patch ˆ̂pi

T ∈ RNP×L is reconstructed by this spectral
TR module.

Step 4: Then, the first column of the reconstructed patch ˆ̂pi ∈ RL×NP is the reconstructed
pixel ŷi.

The specific network configurations are listed in Table 1. After repeating the above
steps on all pixels and their corresponding patches of training dataset B, the loss function
can be formulated as:

Loss =
N

∑
i=1
‖yi − ŷi‖

2
2 =

N

∑
i=1
‖yi − 3DTR(yi)‖

2
2. (3)

Table 1. Detailed network configurations of the proposed 3DTR.

Network Parameter Value

Spatial Transformer

MSA Head 5

MLP
Input Channel L

Hidden Channel 10

Spectral Transformer

MSA Head 5

MLP
Input Channel 121

Hidden Channel 10

Finally, the HSI D̂ is reconstructed by the trained 3DTR network. It is worth pointing
out that the proposed 3DTR network only learned the characteristics of background owing
to the removal of potential anomalies in the pre-detection process. In other words, the
background can be well reconstructed by the trained 3DTR network, whereas the anomalies
cannot. Thus, the anomalous value of an arbitrary pixel yi can be computed by the
reconstruction error as:

‖∆yi‖
2
2 = ‖yi − ŷi‖

2
2 =

L

∑
l=1

(yil − ŷil)
2. (4)
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3.2. Removing Potential Anomalies

To avoid contamination by anomalies in the training procedure, and provide rough
labels for inputs in the meantime, a simple and efficient anomaly detector is adopted
to handle the coarse pre-detection on the original HSIs, in which the first Na pixels are
marked as potential anomalies. Therefore, by the means of the coarse pre-detection, the
potential anomalies are preliminarily dislodged, and a relatively purified background
dataset, namely, the training dataset B, can be constructed. In addition, due to the limita-
tions of the pre-detection performance, some of the background pixels are also inevitably
removed by setting a relatively loose threshold. Owing to the similar features between
the removed background pixels and the reserved pixels, the well-trained network is able
to reconstruct the removed background pixels by learning the similar features of other
reserved background pixels. Therefore, the small amount of background pixels removed
in the pre-detection process do not affect the detection performance, which is further
demonstrated in the experiments of generalization evaluation.

According to the physical definition of anomalies that the proportion of anomalies is
usually quite low in HSIs, the anomalies can be dislodged by setting a relatively relaxed
threshold. Specifically, the Na is set to 300 in all the following experiments, which is much
greater than the quantity of anomalies in practical HSIs. Therefore, the requirement for
accuracy in the pre-detection process is relatively low; any efficient anomaly detector can
be utilized for the pre-detection process described in this paper.

3.3. Patch-Generating

The long-range self-attention mechanism of TR module can consider the pairwise
interrelations of all inputs but feeding tens of thousands of pixels of HSIs into the TR
module at the same time is extremely time-consuming. Therefore, this paper proposed to
generate a patch around the tested pixel and use the pixels in this patch as the inputs of the
TR module.

Let the sketch map with 7× 7-pixels denote the trimmed hyperspectral imagery shown
in Figure 3, in which green, yellow and blue denote three categories of background and the
purple denotes the anomalies. It is regrettable that most of the existing patch-generating
methods just simply set a single window around the tested pixel (0-th green pixel) and
regard all pixels in this window as a patch, as shown in Figure 3a. As previously mentioned,
the TR module actually realizes the similarity-based reconstruction of pixels in the HSIs,
and thus this simple patch-generating method introduces a number of irrelevant pixels into
this well-shaped patch, and then influences the reconstruction results of the center pixel. As
shown in Figure 3a, two irrelevant background pixels (1-th yellow pixel and 5-th blue pixel),
and even some anomalies (2-th and 3-th purple pixels), are included in the single window.

To avoid the influence of irrelevant pixels and anomalies in the reconstruction proce-
dure, a patch-generating method is proposed to coordinate the similarity-based reconstruc-
tion mechanism of the TR module. As shown in Figure 3b, a relatively large window is
set around the tested pixel to impose restrictions on the spatial positions of other pixels
participating in the reconstruction process. Then, using NP, which is set to 100 (only 9 pixels
in Figure 3a,b for facilitating visual understanding), high-similarity pixels around the tested
pixels are selected to compose the indeterminately shaped patch. In other words, only
pixels with small spatial and spectral distances from the tested pixel can be selected to
participate in the reconstruction process of the tested pixel to realize a better reconstruction
result in the TR module. A real example is shown in Figure 3c,d, where a relatively large
window is set around the center pixel and only similar pixels are selected to compose the
patch, in which the irrelevant pixels of roads and the anomalous pixels of airplanes are
all avoided.
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Figure 3. Difference between traditional and proposed patch-generating methods: (a) the patch
generated by the traditional method in the sketch map; (b) the patch generated by the proposed
method in the sketch map; (c) the patch generated by the proposed method in the real HSIs; and
(d) only highlighted similar pixels are picked out.

4. Experimental Results and Analysis

In this section, two synthetic hyperspectral datasets with different abundances of
anomalies are used to evaluate the detail processes and the performance of the proposed
method comprehensively. Then, six varied real datasets are utilized to validate the effec-
tiveness of the proposed method in practical applications.

In the following experiments, the three-dimensional receiver operating characteristic
(3D ROC) curve [46], the abridged two-dimensional receiver operating characteristic (2D
ROC) curves, and the area under the ROC curve (AUC) are adopted to intuitively evaluate
the detection accuracies of the proposed method and other competitors of anomaly detec-
tion. Specifically, the 3D ROC curve is plotted by three metrics: threshold τ, false alarm
rate PF, and detection rate PD. These can be used to draw 2D ROCs to each other and com-
pute the corresponding AUC values, which are AUC(D,F), AUC(F,τ) and AUC(D,τ), respec-
tively. Furthermore, five additional AUC values, denoted as AUCBS, AUCTD, AUCSNPR,
AUCTD-BS and AUCOD, are calculated by the abovementioned three AUC values as follows:

AUCBS = AUC(D,F) −AUC(F,τ)

AUCTD = AUC(D,F)+AUC(D,τ)

AUCSNPR =
AUC(D,τ)
AUC(F,τ)

AUCTD−BS= AUC(D,τ) −AUC(F,τ)

AUCOD = AUC(D,F)+AUC(D,τ) −AUC(F,τ)

(5)

where AUC(D,F), AUCTD-BS and AUCOD are adopted to evaluate the overall performances
of anomaly detectors. AUC(F,τ), AUCBS and AUCSNPR are adopted to evaluate the back-
ground suppressibility of detectors. AUC(D,τ) and AUCTD are adopted to evaluate the
anomaly detectability of detectors. The smaller the AUC(F,τ), the better the detector; other
AUCs do the opposite.



Remote Sens. 2023, 15, 4592 9 of 23

All the experiments are executed by MATLAB R2018b and Pycharm 2021.3.2 on a
personal computer with an Intel Core i9-11900K CPU at 3.5 GHz and 32 GB RAM.

4.1. Synthetic Data Experiments

The two synthetic datasets used in this paper are generated based on real hyperspectral
imagery collected from San Diego airport by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS). The incipient dataset contains 224 spectral bands but only 186 of them
were retained in the following experiments after eliminating the low signal-to-noise-ratio
(SNR) and water vapor absorption bands (i.e., 1–6, 33–35, 94–97, 107–113, 153–166, and
221–224). As is shown in Figure 4a, the original whole image has a size of 400× 400 and a
subimage with a size of 100× 100 (in the red square) is trimmed to generate the synthetic
datasets. The anomaly pixel with a spectral signature t is selected from an airplane in the
pristine whole image, which is plotted in Figure 4b. Here, the synthetic anomaly pixel z
is produced by proportionally embedding the selected anomaly spectra t into a random
background spectra b on the basis of the linear mixing model, according to the target
implantation method [47]:

z = f · t + (1− f ) · b (6)

where f is the embedding proportion. Four anomaly blocks with different sizes of
1× 1, 2× 1, 1× 2 and 2× 2 are generated for each level of f . In addition, to accord
with the real distributions of anomalies in HSIs, the positions of these generated anomaly
blocks are entirely random.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 23 
 

 

where ( )D,FAUC  , TD-BSAUC   and ODAUC   are adopted to evaluate the overall perfor-

mances of anomaly detectors. ( )F,τAUC  , BSAUC   and SNPRAUC   are adopted to evaluate 

the background suppressibility of detectors. ( )D,τAUC  and TDAUC  are adopted to evalu-

ate the anomaly detectability of detectors. The smaller the ( )F,τAUC , the better the detector; 

other AUCs do the opposite. 

All the experiments are executed by MATLAB R2018b and Pycharm 2021.3.2 on a 

personal computer with an Intel Core i9-11900K CPU at 3.5GHz and 32 GB RAM. 

4.1. Synthetic Data Experiments 

The two synthetic datasets used in this paper are generated based on real hyperspec-

tral imagery collected from San Diego airport by the Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS). The incipient dataset contains 224 spectral bands but only 186 of 

them were retained in the following experiments after eliminating the low signal-to-noise-

ratio (SNR) and water vapor absorption bands (i.e., 1–6, 33–35, 94–97, 107–113, 153–166, 

and 221–224). As is shown in Figure 4a, the original whole image has a size of 400 400  

and a subimage with a size of 100 100  (in the red square) is trimmed to generate the 

synthetic datasets. The anomaly pixel with a spectral signature t  is selected from an 

airplane in the pristine whole image, which is plotted in Figure 4b. Here, the synthetic 

anomaly pixel z  is produced by proportionally embedding the selected anomaly spec-

tra t  into a random background spectra b  on the basis of the linear mixing model, 

according to the target implantation method [47]: 

( )1z t bf f=  + −   (6) 

where f   is the embedding proportion. Four anomaly blocks with different sizes of 

1 1, 2 1,1 2    and 2 2  are generated for each level of f . In addition, to accord with the 

real distributions of anomalies in HSIs, the positions of these generated anomaly blocks 

are entirely random.  

 

Figure 4. The first synthetic hyperspectral dataset: (a) whole pseudocolor image; (b) the selected 

anomaly spectra t from an airplane in the pristine whole scene; (c) pseudocolor image of the first 

synthetic dataset; and (d) ground truth map. 

Here, two synthetic datasets with different abundances are generated. Specifically, 

f  belongs to 0.2, 0.4, 0.6, 0.8    in the first synthetic dataset, and the pseudocolor image 

and the corresponding ground-truth map of the first synthetic dataset are displayed in 

Figure 4c,d, respectively. In the following experiments on the first synthetic dataset, sev-

eral traditional and state-of-the-art (including model-based and AE-based) competitors 

are imported to reflect the detection superiority of the proposed method, and robustness 

to different levels of noise is demonstrated. Next, the multiple choices of the structure of 

the 3DTR network and the parameter settings of the pre-detection and patch-generating 

   

                                                 (a)                        (b)                     (c)                   (d) 

Figure 4. The first synthetic hyperspectral dataset: (a) whole pseudocolor image; (b) the selected
anomaly spectra t from an airplane in the pristine whole scene; (c) pseudocolor image of the first
synthetic dataset; and (d) ground truth map.

Here, two synthetic datasets with different abundances are generated. Specifically,
f belongs to [0.2, 0.4, 0.6, 0.8] in the first synthetic dataset, and the pseudocolor image
and the corresponding ground-truth map of the first synthetic dataset are displayed in
Figure 4c,d, respectively. In the following experiments on the first synthetic dataset, several
traditional and state-of-the-art (including model-based and AE-based) competitors are
imported to reflect the detection superiority of the proposed method, and robustness to
different levels of noise is demonstrated. Next, the multiple choices of the structure of
the 3DTR network and the parameter settings of the pre-detection and patch-generating
methods are compared and analyzed. Then, the generalization ability of the 3DTR network
is evaluated. Moreover, to verify the detection accuracy of the proposed method in the
case of weak signals, a second synthetic dataset with relatively low anomalous abundances
( f = [0.05, 0.1, 0.2, 0.4]) is generated to conduct the experiment assessing the method’s
robustness to noise.

It is worth noting that the generated synthetic datasets are challenging for hyperspec-
tral anomaly detection in three aspects: (1) the sizes of the anomalous blocks are varied,
and their spatial locations are completely random; (2) the false alarms may be serious
due to the sparse backgrounds existing in the scene; and (3) the anomalous abundances
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f are relatively low, especially in the second synthetic dataset, which is difficult for most
anomaly detectors.

4.1.1. Experiments on the First Synthetic Dataset

Comparison of Detection Performances: To reveal the detection performance of the
proposed method, four model- based anomaly detectors (RX [19], CRD [20], GTVLRR [25]
and LSCTV [26]), and three AE-based anomaly detectors (AE [27], RGAE [30] and GAED [32])
are imported. RX is the most common anomaly detector, and assumes that the background
obeys a multivariate Gaussian distribution. However, CRD aims to emphasize collaborative
representation in the local regions. GTVLRR incorporates the graph and TV regularizations
to the LRR-based decomposition model. LSCTV also introduces TV regularization in each
superpixel to make the background abundances close. RGAE and GAED incorporate the
graph regularization and the guided map based on AE, respectively.

The dual window size and the parameter λ are set to (3, 7) and 10−6 in CRD, respec-
tively, after extensive searching. For GTVLRR, this paper sets the involved parameters as
λ = 0.5, β = 0.2 and γ = 0.05, as recommended in [25]. Similarly, this paper sets λ = 10−3,
β = 5× 10−3, P = 20 and S = 15 for the LSCTV, as recommended in [26]. In addition,
the codes of RGAE [30] and GAED [32] were obtained from the authors. All the following
experiments are implemented using shared source codes without any alteration. As men-
tioned above, any simple and efficient hyperspectral anomaly detector can be chosen for
the pre-detection method; here, RX is adopted for its simplicity and efficiency.

The anomaly detection maps and the eight AUC values of the proposed method and
competitors for the first synthetic dataset are shown in Figure 5 and Table 2, respectively.
It can be observed that RX, CRD, AE and RGAE are not able to detect all the anomalies;
in other words, the weak anomalies are challenging for these detectors, which is also
demonstrated by the low AUC(D,τ) and AUCTD values of these detectors. In addition, the
detection maps of GTVLRR, LSCTV and RGAE contain a large number of false alarms,
which corresponds to their high AUC(F,τ) values. Owing to the strong suppression of the
background by the guided map (optimal in AUC(F,τ), AUCBS and AUCSNPR), a relatively
good detection result with scarcely any false alarms is obtained by GAED; however, sev-
eral weak anomalies are also suppressed simultaneously, which results in relatively low
detection accuracy and the second lowest values in AUC(D,τ) and AUCTD. Correspond-
ingly, the proposed method in this paper achieved improved detection results, the highest
values in AUC(D,τ) and AUCTD, and the best overall performance in AUC(D,F), AUCTD-BS
and AUCOD.
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Table 2. AUC values and running times of all the detectors on the synthetic datasets.

Algorithm AUC(D, F)↑ AUC(D, τ)↑ AUC(F, τ)↓ AUCTD↑ AUCBS↑ AUCSNPR↑ AUCTDBS↑ AUCOD↑ Training
Time (s)

Test
Time (s)

RX 0.9912 0.4263 0.0153 1.4176 0.9760 27.9235 0.4111 1.4023 — 0.2168

CRD 0.9686 0.3841 0.0375 1.3527 0.9311 10.2562 0.3466 1.3152 — 3.2920

GTVLRR 0.9969 0.5496 0.0446 1.5465 0.9523 12.3336 0.5051 1.5020 — 101.5662

LSC-TV 0.9954 0.5355 0.0300 1.5309 0.9654 17.8493 0.5055 1.5009 — 405.3491

AE 0.8286 0.1543 0.0680 0.9829 0.7606 2.2688 0.0863 0.9149 8.5587 0.0865

RGAE 0.9588 0.3507 0.0282 1.3095 0.9307 12.4451 0.3225 1.2813 81.5106 0.0679

GAED 0.9978 0.2707 0.0066 1.2686 0.9912 41.0101 0.2641 1.2620 18.8871 0.0630

Proposed 0.9993 0.5574 0.0510 1.5566 0.9433 9.9541 0.5064 1.5056 159.1680 9.7920

The 3D ROC curves and three abridged 2D ROC curves of all detectors are plotted
in Figure 6 to evaluate the anomaly detection accuracies quantitatively. For nearly all
false alarms and τ, the detection rate of the proposed method is higher than that of all
competitors in Figure 6b,c. Moreover, a 100 0

0 detection rate is achieved when the false
alarm rate is very low in the proposed method. In addition, the eight AUC values listed in
Table 2 demonstrate the best detection accuracy and the best overall performance of the
proposed method, quantitatively.
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Figure 6. 3D ROC curves of all the anomaly detectors on the first synthetic dataset: (a) 3D ROC
curves; (b) 2D ROC(D,F) curves; (c) 2D ROC(D,τ) curves; and (d) 2D ROC(F,τ) curves.

The time consumption of all anomaly detectors for the first synthetic dataset are also
listed in Table 2. Compared with the time-saving detectors (RX, CRD, AE and GAED), the
GTVLRR, LSCTV and RGAE incorporate different spatial regularizations, and improve the
estimation of background in multiple iterations, which result in an apparent increase in
time costs in these three algorithms. Similarly, the proposed method trains the network
by patches of pixels in several epochs, which is also time-consuming. In addition, the test
time of the proposed method is within an acceptable range, which indicates its capacity in
practical applications.

For considering the brevity of the charts in the following numerous experiments, only
the ROC(D,F) and the corresponding AUC(D,F), which represent the overall performance,
are utilized to evaluate the detection accuracies of all anomaly detectors.

Robustness to Different Levels of Noise: To verify the stability of the proposed
method, different levels of Gaussian noise (20, 25 and 30 dB, respectively) are utilized to
corrupt the first synthetic dataset. Here, the SNR is defined as follows:

SNR = 10 log10
E
[
yTy

]
E[nTn]

(7)

where E[·] represents the expectation of the contents, y and n denote the incipient pixel and
the added noise, respectively. It can be observed from the ROC curves in Figure 7 that the
proposed method is still superior to other anomaly competitors for almost all false alarms
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and various levels of noise. Moreover, 20 replicates were performed for each level of noise,
and the mean value and the corresponding standard deviation (std) of AUC(D,F) values
are listed in Table 3. It is obvious that the proposed method is more robust in the case of
noise corruption compared with other anomaly detectors, owing to the full consideration
of the similarity among pixels and the global spatial similarity among bands by the two
TR modules.
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Figure 7. ROC curves of all anomaly detectors for the first synthetic dataset with different levels of
noise: (a) 30 dB; (b) 25 dB; and (c) 20 dB.

Table 3. AUC values (mean± std) of all anomaly detectors for the first synthetic dataset with different
levels of noise (20 replicates for each noise level).

Algorithm RX CRD GTVLRR LSCTV AE RGAE GAED Proposed

30 dB 0.9908 ±
0.0017

0.9628 ±
0.0250

0.9952 ±
0.0029

0.9868 ±
0.0031

0.8744 ±
0.0435

0.9578 ±
0.0028

0.9957 ±
0.0022

0.9987 ±
0.0005

25 dB 0.9810 ±
0.0035

0.9450 ±
0.0314

0.9949 ±
0.0030

0.9814 ±
0.0043

0.8623 ±
0.0443

0.9564 ±
0.0040

0.9954 ±
0.0026

0.9975 ±
0.0016

20 dB 0.9569 ±
0.0269

0.9348 ±
0.0340

0.9932 ±
0.0042

0.9762 ±
0.0091

0.8534 ±
0.0494

0.9546 ±
0.0082

0.9930 ±
0.0045

0.9944 ±
0.0039

Ablation on Different Components: An ablation study is conducted to assess the
contribution of each component in the proposed method. Specifically, four cases are listed
in Table 4.

Table 4. Detail settings of different cases in two ablation experiments.

Ablation Cases Details

Ablation on Different
Components

C1 Only spatial TR module with the proposed patch-generating method

C2 Only spectral TR module with the proposed patch-generating method

C3 The proposed 3DTR network with a single window to generate patches

C4 The proposed 3DTR network with the proposed patch-generating method

Ablation on Different
Combination Modes

M1 Add the respective detection results of two TR modules

M2 Multiply the respective detection results of two TR modules

M3 Combine two TR modules in parallel anatomically

M4 Combine two TR modules in series anatomically, namely the proposed 3DTR network

The anomaly detection maps, ROC curves and AUC(D,F) values are summarized in
Figures 8 and 9, respectively. As summarized in Figure 9, the AUC(D,F) values of C1 and C2
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are relatively high, and in the meantime their anomaly detection maps show good anomaly
detection accuracies using the single TR modules. However, the anomaly detection maps
and ROC curves of C1 and C2 also indicate that there are quite a few false alarms in these
two cases. To excavate the similarity of multiple dimensions in HSIs, C4 (the proposed
method) connects two TR modules in series, which achieves an excellent anomaly detection
accuracy and a relatively low number of false alarms. The ROC curve and AUC(D,F) value
of C4 also demonstrate its superiority quantitatively. In addition, compared with the
proposed patch-generating method in C4, C3 generates patches by setting single windows
around pixels, resulting in false alarms due to the introduction of unrelated pixels.
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Figure 9. ROC curves of the proposed method after removing different components.

Ablation on Different Combination Modes: An ablation study is conducted to assess
the accuracies of different combination modes of both TR modules. Analogously, four
cases are listed in Table 4 under the premise of the proposed patch-generating method. In
addition, the abbreviated flowcharts of four cases are shown in Figure 10, in which a purple
dotted box denotes a standalone network.
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Figure 10. Flowcharts of different combination modes. Cases: (a) M1; (b) M2; (c) M3; and (d) M4.

Similarly, the anomaly detection maps, ROC curves and AUC(D,F) values are summa-
rized in Figures 11 and 12, respectively. To utilize the similarities of multiple dimensions
in HSIs, M1 and M2 simply merge the detection results of spatial TR and spectral TR
algebraically, without making a connection in the network structure, which does not fully
integrate the advantages of two single TR modules, and the increases in the detection
results of these two cases are limited. In addition, M3 realizes the connection of two TR
modules in parallel anatomically; however, the mutual constraint between two TR modules
in training process are relatively finite, which limit the detection accuracy of M3. Therefore,
to reinforce the mutual constraint between two TR modules in network, this paper finally
decides to connect two TR modules in series anatomically, namely, the proposed 3DTR
network in this paper, and a superior anomaly detection result is obtained.
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Figure 11. Anomaly detection maps obtained by the proposed method on different combination
modes: cases (a) M1; (b) M2; (c) M3; and (d) M4.
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Figure 12. ROC curves of the proposed method on different combination modes.

Parameter Setting: Na is the parameter in pre-detection used to dislodge the potential
anomalies prior to the training procedure. The value of Na ranges from 100 to 500, at
intervals of 50, and the corresponding AUC(D,F) values are plotted in Figure 13a. In the
case of small Na, the anomalies are not removed completely, and the reconstruction of
the background is contaminated. Therefore, the detection accuracies are affected. On the
other hand, because the number of anomalies is small and constant, the anomalies will
not affect the background reconstruction when Na is relatively large. Thus, the AUC(D,F)
value is almost a constant with the increase of Na. For the sake of simplicity, this paper
fixes Na = 300 in the follow-up experiments.
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Figure 13. Influences of involved parameters on the detection accuracy of the proposed method:
(a) pre-detection parameter Na; and (b) patch-generation parameter Np.

Next, the influence of NP, namely the size of the patch, on the detection accuracies
of the proposed method is analyzed. To match the size of the traditional square patch,
the value of NP is set to the square of each value between 5 and 15, i.e., [25, 36, 49, 64,
81, 100, 121, 144, 169, 196 and 225], and the corresponding AUC(D,F) values are plotted in
Figure 13b. The purpose of our patch is to provide similar pixels with which to reconstruct
the center pixel. There are three cases to discuss: (1) when NP is too small, the number of
similar pixels is insufficient to reconstruct the center pixel adequately; (2) when NP is too
large, the irrelevant pixels and even anomalies may be included in the patch to affect the
reconstruction of the center pixel; and (3) when NP is appropriate, AUC(D,F) values remains
superior and stable over a relatively wide range. Therefore, this paper fixes Np = 100 in
the follow-up experiments for the sake of simplicity.

Generalization Evaluation: To comprehensively verify the generalization ability of
the proposed 3DTR network, the first synthetic dataset is divided into a training set and
validation set. Specifically, a subimage with a size of 100× 90 to the left of the red line in
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Figure 14a (8875 pixels after removing potential anomalies) is regarded as the training set.
Correspondingly, a subimage with a size of 100× 10 to the right of the red line in Figure 14a
(1000 pixels) is regarded as the validation set, and the original image is used as the testing
set. It is worth noting that the proposed 3DTR network is trained only on the training set,
and eventually tested on the validation set and the testing set.
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 Figure 14. The generalization evaluation of the proposed 3DTR network: (a) the segmentation of the
training set and the validation set; (b) the anomaly detection map of the testing set (AUC = 0.9991);
and (c) the anomaly detection map of the validation set (AUC = 1.0000).

The loss curves of the network on the training set and validation set are shown in
Figure 15, and it can be observed that the loss of the validation set decreases and stabilizes
with the loss of the training set, which demonstrates the absence of the overfitting problem.
Moreover, the detection maps of the partly trained 3DTR network on the validation set
and the testing set are shown in Figure 14, and there is no obvious change when compared
with the detection map of the fully trained 3DTR network in Figure 11d. In addition, the
five anomalies in the validation set are detected faultlessly in Figure 14c, and the AUC(D,F)
of the validation set is 1, which further verifies the generalization ability of the proposed
3DTR network.
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Figure 15. Loss curves of the 3DTR network on the training set and validation set.

4.1.2. Experiments on the Second Synthetic Dataset

Likewise, 20 replicates for each level of noise are performed in the case of weak signals.
The ROC curves and AUC(D,F) values are summarized in Figure 16 and Table 5, respectively.
Compared with the case of strong signals, the detection accuracies of all detectors show
varying degrees of decline. Even so, Figure 16 and Table 5 confirm the proposed method’s
robustness to noise in the case of weak signals and its ability to detect weak anomalies.
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Figure 16. ROC curves of all anomaly detectors for the second synthetic dataset with different levels
of noise: (a) 30 dB; (b) 25 dB; and (c) 20 dB.

Table 5. AUC values (mean ± std) of all anomaly detectors for the second synthetic dataset with
different levels of noise (20 replicates for each level of noise).

Algorithm RX CRD GTVLRR LSCTV AE RGAE GAED Proposed

30 dB 0.9846 ±
0.0041

0.9409 ±
0.0338

0.9931 ±
0.0035

0.9408 ±
0.0082

0.8318 ±
0.0571

0.9133 ±
0.0054

0.9875 ±
0.0043

0.9946 ±
0.0019

25 dB 0.9760 ±
0.0073

0.9291 ±
0.0370

0.9835 ±
0.0086

0.9317 ±
0.0092

0.8205 ±
0.0588

0.9102 ±
0.0058

0.9823 ±
0.0078

0.9939 ±
0.0038

20 dB 0.9464 ±
0.0281

0.9199 ±
0.0507

0.9710 ±
0.0112

0.9309 ±
0.0125

0.7946 ±
0.0869

0.9072 ±
0.0068

0.9792 ±
0.0082

0.9912 ±
0.0066

4.2. Real Data Experiments

In this subsection, six widely used real hyperspectral datasets are applied to evaluate
the detection accuracies of the proposed method and other competitors. The most important
characteristics of the utilized six datasets are summarized in Table 6. And the pseudocolor
images and their corresponding ground-truth maps of these six datasets are shown in
Figure 17. It is worth noting that the window sizes of CRD for each dataset are also
listed in Table 6, and that any other parameters of all detectors are set as described in the
synthetic experiments.

Table 6. The image characteristics of the six real hyperspectral datasets.

Datasets Size Bands Number of Anomalies Anomaly Types Window Sizes of CRD

Texas Coast-1 100 × 100 204 67 (0.67%) Buildings (3, 7)

Texas Coast-2 100 × 100 207 155 (1.55%) Buildings (3, 15)

Pavia 100 × 100 102 71 (0.71%) Vehicles (3, 13)

HYDICE 80 × 100 174 21 (0.26%) Buildings and
Vehicles (3, 9)

San Diego 100 × 100 186 72 (0.72%) Airplanes (3, 7)

Hyperion 150 × 150 155 17 (0.08%) Storage
Silo (3, 11)

The detection results of all anomaly detectors on the six real datasets are displayed in
Figure 18. Taking the first dataset (Texas Coast-1) as an example, the CRD and AE failed
to detect all anomalies in the scene. Although RX, GTVLRR, LSCTV, RGAE and GAED
can detect most anomalies, they cannot suppress the background adequately, resulting
in serious false alarms, especially in the cases of LSCTV and GAED. On the contrary, the
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proposed method can detect all the positions of anomalies with a slight false alarm for
the first dataset. Another example is the sixth dataset (Hyperion), whose anomalies are
unevenly distributed and take up a smaller proportion, as listed in Table 6, and thus are
much more difficult to detect. Similarly, the false alarms are severe in the detection results
of CRD, GTVLRR, LSCTV, AE and RGAE. However, owing to the powerful background
reconstruction ability of the TR modules in series, the proposed method not only marks the
positions of all anomalies but also adequately suppresses the detected values of the back-
ground as shown in Figure 18. Although RX and GAED can also suppress the background,
they are unable to distinguish all anomalies in the background faultlessly.
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Figure 17. The pseudocolor images (left) and the corresponding ground truth maps (right) of six real
hyperspectral datasets: (a) Texas Coast-1; (b) Texas Coast-2; (c) Pavia; (d) HYDICE; (e) San Diego;
and (f) Hyperion.

Figure 19 plots the ROC curves for the six datasets based on the eight anomaly
detectors. It can be observed that the ROC curves of the proposed method are located in
the top left corner for most of the datasets. It should be note that although the proposed
method is just higher than others in a small range visually for the fourth dataset (HYDICE),
it actually holds an advantage over a large range by virtue of the logarithmic scale of
abscissa. In addition, the AUC(D,F) values based on these eight anomaly detectors are listed
in Table 7. It is obvious that the proposed method is superior to other competitors.
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Figure 18. Anomaly detection maps of all detectors on the six real hyperspectral datasets.
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Figure 19. ROC curves of all anomaly detectors on the six real hyperspectral datasets: (a) Texas
Coast-1; (b) Texas Coast-2; (c) Pavia; (d) HYDICE; (e) San Diego; and (f) Hyperion.
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Table 7. AUC values of all anomaly detectors on the six real hyperspectral datasets.

Algorithm RX CRD GTVLRR LSC-TV AE RGAE GAED Proposed

Texas Coast-1 0.9810 0.9883 0.9905 0.9818 0.9809 0.9821 0.9909 0.9946

Texas Coast-2 0.9964 0.9918 0.9927 0.9887 0.9819 0.9926 0.9959 0.9991

Pavia 0.9913 0.9917 0.9948 0.9937 0.9712 0.9927 0.9948 0.9972

HYDICE 0.9860 0.9892 0.9930 0.9906 0.9762 0.7949 0.9808 0.9959

San Diego 0.9827 0.9833 0.9945 0.9929 0.8755 0.9940 0.9951 0.9958

Hyperion 0.9925 0.9944 0.9889 0.9908 0.9880 0.9408 0.9949 0.9996

4.3. Summary

The experiments on two synthetic datasets and six real datasets adequately demon-
strated the superiority of the proposed method. The three primary benefits of the method
are briefly summarized as follows:

(1) Effectiveness: Owing to the unique long-range self-attention mechanism of TR, the
spatial similarity among pixels and the spectral similarity among bands are character-
ized precisely by the 3DTR network. This strategy is more effective for reconstructing
a background than AE-based detectors when considering spatial properties. To obtain
a better reconstruction result for a background, coarse pre-detection is executed to
avoid the contamination of anomalies. In addition, the proposed patch-generation
method alleviates the contamination of weakly relevant pixels in the reconstruction
procedure. The experimental results demonstrated that the proposed method is able
to identify all anomalies effectively;

(2) Convenience in Parameter Settings: There is only one loss item in the loss function,
and thus no trade-off parameters need to be set. In addition, an analysis of the
parameter settings indicates that the detection accuracies of the proposed method are
insensitive to changes in the pre-detection parameter Na and the patch-generation
parameter NP over a relatively wide range. Moreover, Na and NP are fixed throughout
all the experiments, and satisfactory anomaly detection results are still achieved;

(3) Robustness to Noise: For a full consideration of the spatial similarity among pixels
and the spectral similarity among bands by the proposed method, random noise is
effectively eliminated by characterizing the spatial properties. Specifically, the experi-
mental results on two group synthetic datasets with different anomalous abundances
and different levels of noise demonstrate that the proposed method is robust.

Additionally, the prominent disadvantage of the proposed method is the relatively
high training time, which is due to the fact that the proposed method trains the network
by patches of pixels in several epochs. However, it is worth noting that the test time is
still within the acceptable range listed in Table 2, which indicates that the 3DTR has real
application value after being trained in advance.

5. Conclusions

In this paper, a novel background reconstruction framework via 3D-Transformer net-
work has been proposed for the hyperspectral anomaly detection. The effectiveness and
robustness of the proposed method have been adequately demonstrated by the experi-
mental results on both synthetic and real hyperspectral datasets. Specifically, two ablation
experiments comprehensively confirmed the contribution of each component in the pro-
posed method. Moreover, the parameter experiments demonstrated that the detection
results of the proposed method are relatively insensitive to the choices of the involved
parameters. Furthermore, the generalization ability of the proposed 3DTR network was
verified by the generalization experiment. Last but not least, the comparison experiments
with other SOTA competitors on both synthetic and real hyperspectral datasets adequately
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demonstrated that most of the anomalies were detected by the proposed method with
relatively few false alarms.

Although the test time of the proposed method is within an acceptable range, the
experimental results indicate that its training time is relatively high; the training time can
be significantly reduced by replacing the CPU with GPU in the running of codes.
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