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Abstract: Data processing of low-altitude remote sensing visible images from UAVs is one of the
hot research topics in precision agriculture aviation. In order to solve the problems of large model
size with slow detection speed that lead to the inability to process images in real time, this paper
proposes a lightweight target detector CURI-YOLOv7 based on YOLOv7tiny which is suitable for
individual citrus tree detection from UAV remote sensing imagery. This paper augmented the
dataset with morphological changes and Mosica with Mixup. A backbone based on depthwise
separable convolution and the MobileOne-block module was designed to replace the backbone of
YOLOv7tiny. SPPF (spatial pyramid pooling fast) was used to replace the original spatial pyramid
pooling structure. Additionally, we redesigned the neck by adding GSConv and depth-separable
convolution and deleted its input layer from the backbone with a size of (80, 80) and its output
layer from the head with a size of (80, 80). A new ELAN structure was designed, and the redundant
convolutional layers were deleted. The experimental results show that the GFLOPs = 1.976, the
parameters = 1.018 M, the weights = 3.98 MB, and the mAP = 90.34% for CURI-YOLOv7 in the UAV
remote sensing imagery of the citrus trees dataset. The detection speed of a single image is 128.83
on computer and 27.01 on embedded devices. Therefore, the CURI-YOLOv7 model can basically
achieve the function of individual tree detection in UAV remote sensing imagery on embedded
devices. This forms a foundation for the subsequent UAV real-time identification of the citrus tree
with its geographic coordinates positioning, which is conducive to the study of precise agricultural
management of citrus orchards.

Keywords: citrus trees; remote sensing; YOLOv7; lightweight; target detector

1. Introduction

Agricultural aviation constitutes a pivotal component of modern agriculture [1]. In
recent years, there has been a notable surge in the development of agricultural aircrafts
in China [2]. In tandem with the inception and advancement of precision agricultural
aviation [3], the utilization of UAV remote sensing has the potential to harness fine-scale
and dynamically continuous monitoring across farmlands [4]. This technology harbors
extensive prospective applications in monitoring crop growth trends [5]. Notably, China
stands as one of the foremost citrus-producing nations [6]. Leveraging UAV imagery
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presents inherent advantages in fruit tree management, encompassing tasks such as quan-
tification [7], surveillance [8], pest and disease monitoring [9], prescription mapping [10],
and identification as well as localization [11]. In the realm of research, endeavors have been
undertaken to amalgamate deep learning with UAV imagery [12], facilitating information
extraction [13] and segmentation [14]. This amalgamation furnishes a potent instrument
for the evolution of precision agriculture, aimed at enhancing productivity and optimizing
resource allocation.

An increasing number of scholars are refining existing deep learning algorithms to
meet the demands of UAV image detection. Wang et al. [15] synergized YOLOX with
migration learning to enhance the accuracy of male cob detection within UAV images,
thereby furnishing a high-precision detection methodology tailored for UAV imagery of
male corn cobs. Bao et al. [16] introduced a wheat count detection model using TPH-YOLO
(YOLO with transformer prediction heads). They employed transformer prediction heads
with transfer learning and other strategies to elevate wheat counting accuracy in UAV
images. Zhang et al. [17] adopted data augmentation through Mixup and replaced the
C3 module with the GhostBottleneck module. Coupled with the Shuffle Attention (SA)
module, this approach heightened the focus on small targets. Their creation, YOLOv5s Pole,
is geared towards the deployment of agricultural UAV airborne equipment. Luo et al. [18]
put forth a YOLO-DRONE that employs distinct activation functions in shallow and deep
networks. This algorithm simplifies the recognition of UAV remote sensing images. Zhu
et al. [19] introduced the YOLOv4 -Mobilenetv3—CBAM—ASFF—P algorithm, which
significantly reduces the model’s size compared to the original YOLOv4 while achieving
a 98.21% mAP. This adaptation enhances the accuracy of detecting canopy layers in UAV
photographs of fruit trees.

The algorithms advanced by scholars in the aforementioned study indeed exhibited
enhanced detection accuracy in comparison to the original algorithms. However, these
algorithms suffer from challenges such as high GFLOPs and parameter counts, as well as
weighty files, resulting in sluggish performance on embedded devices. Consequently, they
are unsuitable for processing UAV aerial images targeting citrus trees. Thus, it is of great
significance to develop a target detector that can be carried on an embedded device and
achieve the imagery processing of citrus orchards. Due to the limited arithmetic power
of the embedded devices carried by agricultural UAVs [20,21], this study concentrates on
a specific application scenario involving UAV aerial images of citrus trees. The primary
emphasis is on strategies to curtail the GFLOPs requirements of the airborne model, opti-
mize the balance between the number of parameters and the model size, and enhance the
model’s detection speed when operating on embedded devices.

This study introduces a lightweight YOLOv7tiny target detector named CURI-YOLOv7,
specifically designed for detecting citrus trees using UAV remote sensing imagery on em-
bedded devices. To achieve this, several key designs choices have been made. First, the
CURI-YOLOv7 utilizes a MobileOne-block based backbone structure, leading to a sub-
stantial reduction in the model’s parameter count. Second, an SPPF structure is employed
in place of the original structure, significantly enhancing the model’s inference speed.
Third, a lightweight ELAN (L-E) structure is adopted as a replacement for ELAN, thereby
mitigating the impact of non-critical information on the model. Finally, the neck struc-
ture is revamped using GSConv and depth-separable convolution techniques, effectively
eliminating the cumbersome target detection layer and thereby resolving the issue of slug-
gish inference speed on embedded devices. In comparison to alternative target detection
algorithms, CURI-YOLOv7 boasts a more lightweight overall network structure. Simul-
taneously, there are reductions in both GFLOPs and parameter counts, accompanied by
a notable improvement in frames per second (FPS). This combination of enhancements
renders CURI-YOLOv7 particularly well-suited for deployment on agricultural UAVs and
associated image processing tasks. Furthermore, it aligns seamlessly with the application
scenario of UAV aerial citrus tree detection, making it an appropriate choice for precision
management of citrus orchards.
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2. Materials and Methods
2.1. Collection and Production of Datasets

The citrus tree images were collected at citrus orchards in Sihui City, Guangdong
Province, China (23◦36′N, 112◦68′E), as shown in Figure 1. The temperature at the time
of the experiment was 35.2 ◦C, and the humidity was 61.7%. A DJI Phantom 4 RTK
quadrotor UAV was selected to collect data. The flight altitude of the aircraft was set to
50 m, the heading overlap rate was 80%, the side overlap rate was 80%, the camera angle
was 90◦, the ground sample distance (GSD) was 1.3699 cm/pixel, and the pixel size was
4864 × 3648 (pixels). After data augmentation, 1640 images were obtained for this experi-
ment. The topography of the citrus groves is close to the plain, with an average slope of less
than 5◦. The citrus trees inside the zones were 1.5–2 m tall with an average crown diameter
of 2 m. The trees were all spaced about 3 m apart. Due to the presence of water tanks and
irrigation pipes throughout the rows of fruit trees, it was not possible for ground equipment
to pass between the rows of citrus trees. Therefore, the dataset could only be collected
using aerial photography from UAVs and could not be collected by ground trolleys or other
ground equipment.
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CNNs often face the risk of overfitting caused by limited data [22]. To address this
problem, this study used various data augmentation methods, including morphological
processing data augmentation, Mosica data augmentation, and Mixup data augmentation.
Morphological processing includes rotation and overturn. It can improve the robustness of
the model and improve models’ performance. Mosica and Mixup data augmentation are the
original data augmentation methods included in the YOLOv7 target detector. Mosica data
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augmentation can effectively improve the model’s ability to learn the correlation between
objects in the dataset. Mixup data augmentation can effectively reduce the overfitting
phenomenon and improve the generalization ability of the model. Figure 2 shows a
demonstration of morphological processing data augmentation.

Remote Sens. 2023, 15, x FOR PEER REVIEW 4 of 18 
 

 

CNNs often face the risk of overfiĴing caused by limited data [22]. To address this 
problem, this study used various data augmentation methods, including morphological 
processing data augmentation, Mosica data augmentation, and Mixup data augmenta-
tion. Morphological processing includes rotation and overturn. It can improve the robust-
ness of the model and improve models’ performance. Mosica and Mixup data augmenta-
tion are the original data augmentation methods included in the YOLOv7 target detector. 
Mosica data augmentation can effectively improve the model’s ability to learn the corre-
lation between objects in the dataset. Mixup data augmentation can effectively reduce the 
overfiĴing phenomenon and improve the generalization ability of the model. Figure 2 
shows a demonstration of morphological processing data augmentation. 

 
Figure 2. Example of morphological data augmentation. 

Manual annotation of images is also required in order to obtain accurate data param-
eters [23]. In this study, labelimg [24] was used as the dataset labelling tool. Rectangular 

Figure 2. Example of morphological data augmentation.

Manual annotation of images is also required in order to obtain accurate data parame-
ters [23]. In this study, labelimg [24] was used as the dataset labelling tool. Rectangular
labels were used for labelling and saved as XML files in Pascal VOC format. A total of
1640 images were divided into (training set:validation set):test set = (9:1):1. At the time of
labelling, citrus trees were not labelled if they were obscured by more than two-thirds in
the corners of the image. Similarly, citrus trees in the seedling stage or smaller-sized citrus
trees were not labeled.
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2.2. CURI-YOLOv7 Structure Detail

CURI-YOLOv7 is a weight-improved target detector based on YOLOv7tiny. It focuses
on enhancing the detection speed on both computer and embedded devices while min-
imizing any potential degradation in target detection precision and recall. Additionally,
CURI-YOLOv7 effectively reduces the number of parameters and GFLOPs required by the
model. The network structure diagram is shown in Figure 3, and the main improvements
reducing its weight are as follows:

(1) Redesigned backbone based on MobileOne-block structure
(2) Replaced the original structure with a faster structure named SPPF
(3) Removed the big target detection layer and redesigned the input structure and output

structure of PANet
(4) Replaced the ELAN structure in YOLOv7tiny with Lightweight-ELAN (L-E).
(5) Replaced the convolutional layer in the neck network using GSConv and depthwise

separable convolution.
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2.2.1. Construction of Backbone

MobileOne [25] is a lightweight backbone developed by Vasu. et al. in 2022 that
features a simple and lightweight architecture. The structure of MobileOne is displayed in
Figure 4. In terms of the concept of reparameterization, MobileOne incorporates a multi-
branch structure that significantly reduces parameters and enhances the computational
speed of the model.

The CURI-YOLOv7 target detector refers to MobileOne, utilizing the MobileOne-block
as the base module of the backbone. Its structure and the number of input and output
channels are shown in Table 1. This paper exclusively employs the training structure of
MobileOne-block. Con_des in the table represents the depthwise separable convolution,
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and the input shape of CURI-YOLOv7 is (640, 640, 3). To adjust the input channels
of the backbone, a depthwise separable convolution is added. The utilization of the
designed CURI-YOLOv7′s backbone instead of YOLOv7’s CSPDARKNET indeed leads
to an improvement in the inference speed of the model. This enables the deployment of
inference models in embedded devices and the real-time target detection of individual trees
in citrus orchards in our study.
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Table 1. Structure and parameters of the backbone for CURI-YOLOv7.

Stage Block-Type Stride Kernel Size Input Channels Output Channels

1 Con des 1 3 16
2 MobileOne-block 2 1 16 32
3 MobileOne-block 2 1 32 64
4 MobileOne-block 2 1 64 128
5 MobileOne-block 2 1 128 256
6 MobileOne-block 2 1 256 512

2.2.2. Spatial Pyramid Pooling and ELAN Improvements

The spatial pyramid pooling used in YOLOv7 is the SPPCSPC structure, which shows
excellent performance, but the number of parameters and GFLOPs computed are substan-
tially higher. Given that this study focuses exclusively on recognizing citrus trees as the
target, it is worth noting that the structure and morphology of citrus trees are relatively
simple. Consequently, it is possible to opt for a spatial pyramid pooling that may result in
a slight decrease in detection accuracy compared to SPPCSPC. However, the advantage lies
in achieving a notable reduction in both the number of parameters and GFLOPs. Jocher
et al. adopted an improved spatial pyramid pooling fast (SPPF) [26] structure to replace
the original SPP. The SPPF achieves the same computation result as the original parallel
MaxPool layers of three different sizes by serializing multiple MaxPool layers of the same
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size, greatly reducing the computation time [27]. The main difference between the two is
that the speed of inference varies greatly. The structures of SPPCSPC and SPPF are shown
in Figure 5.
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ELAN (extended efficient layer aggregation networks), designed by Wang et al. [28],
were first used in the YOLOv7 target detector. Considering the requirements in terms of
inference speed in embedded devices, this study designs a lightweight ELAN structure:
L-ELAN (lightweight-extended efficient layer aggregation networks). By modifying the
paths of ELAN, convolutional layers that are not useful for our target detector are deleted.
However, the design concept of YOLOv7 and the fundamental design concept of the ELAN
structure remain unchanged. By performing tests and identifying convolutional layers
within the ELAN structure that are not useful for this research dataset, these identified
convolutional layers were deleted, and the L-ELAN structure was created. Specifically, the
focus was on identifying convolutional layers that have little impact on the mean average
precision (MAP) after their removal. Figure 6 provides a visual comparison between ELAN
in YOLOv7tiny and L-ELAN.

2.2.3. Construction of the Input and Output Layers of the Neck

In both YOLOv7 and YOLOv7tiny, the output feature layer sizes are (80, 80), (40,
40), and (20, 20), respectively. The corresponding detection target types are small targets,
medium targets, and large targets [29]. Since convolutional kernels of different sizes
can obtain information on different sizes of imagery, when extracting features for small
targets, the effect of retaining more local feature information on small targets can be
achieved by selecting the appropriate perceptual field size or considering multi-scale
perceptual fields [30].

In the dataset constructed for our study, the citrus trees in the images are usually
similar and fixed in size because the height of the aerial photograph is set to 50 m. YOLOv7
has a wide feature receptive field, but in our study, it was not necessary to use all of the
output feature layers in order to obtain a wide receptive field. To reduce the number of
parameters and GFLOPs and improve the inference speed on the embedded device, the
proposed CURI-YOLOv7 target detector deletes the smaller target detection layer with
output feature layer size (80, 80), deletes the feature layer with input size (80, 80) from the
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neck network, and redesigns the neck network to match the number of input and output
channels on the neck of YOLOv7tiny.
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2.2.4. Fusion of GSConv and Depthwise Separable Convolution into the Neck

CURI-YOLOv7 adopts GSConv [31] and depthwise separable convolution [32] instead
of normal convolution in order to reduce the parameters and inference speed, and its
structure diagram is shown in Figure 7. Through extensive experiments, we found the best
alternative solutions for GSConv and depthwise separable convolution within the design
framework of CURI-YOLOv7.
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GSConv is a variant of a convolutional neural network. GSConv retains as many of
these connections as possible while keeping the time complexity small, which reduces
information loss and enables faster operation [33].



Remote Sens. 2023, 15, 4647 9 of 17

Depthwise separable convolution (DSC) [32] is a convolutional operation whose
structure is depicted in Figure 8. The calculation process is described by Equation (1).
G stands for the output feature; K stands for the convolution kernel; F stands for the
input feature; i,j is the feature pixel position; k,l is the output feature resolution; and m
is the number of channels [34]. DSC has gained widespread adoption in recent years for
model lightweighting studies. In comparison to standard convolution, it achieves the same
feature extraction effect. The key advantage of this convolution is its effective reduction of
model parameters.

Gk,l,m = ∑
i,j

Ki,j,m·FK+i−1,l+j−1,m (1)
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2.3. Embedded Device

The embedded device Jetson Xavier Nx (NVIDIA’s GPU edge-computing device to
be released in 2020 [35]) with high performance [36] was chosen for our experiment. The
Jetson Xavier Nx was equipped with the Jetson Xavier Nx Developer Kit with Ubuntu
18.04, and the Python 3.6 and PyTorch environments were configured for this study. The
details of the embedded devices are shown in Table 2.

Table 2. Technical specifications of the embedded devices.

CPU GPU Size DLA Vision
Accelerator

6-core NVIDIA Carmel
Arm v8.2 64-bit CPU

384-core NVIDIA Volta™
architecture GPU with

48 Tensor Cores

69.6 mm ×
45 mm 2 × NVDLA 2 × PVA

2.4. Evaluation Indicators and Training Environment Setting

Deep learning has various evaluation metrics. In order to quantitatively analyze the
performance of target detection algorithms, researchers have formulated many evaluation
indicators, such as precision, recall, F1 score, frames per second (FPS), etc., [37]. Precision
refers to the ratio of samples correctly classified by the classifier to the total number
of samples. It measures the proportion of predicted positive samples that are actually
positive, and it is calculated as shown in Equation (2). Recall represents the ratio of positive
samples correctly classified by the classifier to the total number of true positive samples. It
indicates the ability to correctly identify all positive cases, and it is calculated as shown in
Equation (3). F1 score is a metric that represents the weighted average of accuracy and
recall, reflecting the overall performance of a classifier. A higher F1 score indicates better
classifier performance. The F1 score can be calculated by using Equation (4), as shown in
the paper. AP, on the other hand, stands for average precision and is another evaluation
metric used in object detection tasks. The calculation of AP is outlined in Equation (5), as
presented in the paper.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)
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F1 =
2× Precision× Recall

Precision + Recall
(4)

AP =
∫ 1

0
Precision(Recall)d(Recall) (5)

The training experimental environment is configured as shown in Table 3. In order to
ensure the reliability of the ablation study and the analysis of comparative models, the input
size of the target detectors in this study was uniformly set at 640 × 640. Due to changes in
the model structure, unfreeze training was employed without utilizing pre-trained weights.
The epoch and batch size were set to 610 and 16, respectively. The study utilized SGD as
the optimizer, with a Score_Threshold value set to 0.5.

Table 3. Experimental configuration.

CPU GPU CUDA Pycharm Pytorch Numpy Torchvision

i9-10900KF RTX-3090 11.0 2020.1 × 64 1.7.1 1.21.5 0.8.2

3. Results
3.1. Ablation Study

In order to verify the design rationality of CURI-YOLOv7, an ablation study was
designed in this study, as shown in Table 4.

Table 4. Effect of different modules on CURI-YOLOv7.

Backbone SPPF&L-E Neck GFLOPs Paras
(M)

Weights
(MB)

FPS
(on Computer)

13.181 6.014 23.1 83.07√
6.669 3.726 14.3 95.12√ √
5.877 3.181 12.2 104.29√ √ √
1.976 1.018 3.98 128.83

The backbone in the table refers to the MobileOne-block-based backbone constructed
by CURI-YOLOv7 and discussed in Section 2.2.1. The abbreviations SPPF and L-E represent
the two improvements discussed in Section 2.2.2. “Neck” in Table 4 represents the design
of the neck network and the fusion of GSConv and depthwise separable convolution into
the neck, as discussed in Sections 2.2.3 and 2.2.4. Since both are improvements pertaining
to the neck, they are discussed together in the ablation study.

The experimental data reveal that the parameters and FPS of the YOLOv7tiny model
are 6.014 M and 83.07, respectively, which are characterized by a large number of param-
eters and low computing speed. By gradually incorporating the improvement modules
discussed earlier, Table 3 demonstrates that CURI-YOLOv7, with all improvements added
or replaced, exhibits significant enhancements. Specifically, compared to YOLOv7tiny,
CURI-YOLOv7 showcases an 85.01% reduction in GFLOPs, an 83.07% reduction in the
number of parameters, an 82.77% reduction in model weight size, and a 55.09% increase in
FPS on a computer in the experimental environment.

3.2. The Comparation of CURI-YOLOv7 on Embedded Device

In this study, we selected Faster-Rcnn [38], SSD [39], YOLOv5s, YOLOv7tiny, and
YOLOv8n for conducting comparative experiments alongside the CURI-YOLOv7 proposed
in this paper. As YOLOv8n necessitates pre-trained weights to ensure the accurate compu-
tation of average accuracy (mAP); it was trained using pre-trained weights. The training
process included a freezing training phase with a freeze epoch of 50 and an unfreeze epoch
of 610 for optimal results.
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The operational flow chart testing on the embedded device is presented in Figure 9.
The process begins with training five comparison models and CURI-YOLOv7 separately
on the computer using the processed dataset. After training, the weights obtained from
the computer training process are saved. The results of training the six networks on the
computer are summarized in Table 5. After the completion of training, the weights file is
imported into the embedded device Jetson Xavier Nx, which is deployed with the PyCharm
and PyTorch environment. All images within the test set were employed, and the detection
of an individual image was conducted 100 times consecutively for each FPS test on the
embedded device. This meticulous approach was adopted to accurately ascertain the
detection speed of the images.
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Table 5. Results of six models on a computer.

Models GFLOPs Paras
(M)

Weights
(MB) F1 Recall

(%)
Precision

(%)
mAP@0.5

(%)

Faster-Rcnn 948.122 28.275 108 0.82 82.37 81.38 82.33
SSD 273.174 23.612 90.6 0.90 97.03 83.19 93.86

YOLOv5s 16.477 7.064 27.1 0.92 94.51 89.62 96.93
YOLOv7tiny 13.181 6.014 23.1 0.92 93.40 90.83 96.97

YOLOv8n 8.194 3.011 11.6 0.92 93.26 91.53 97.46
CURI-YOLOv7 1.976 1.018 3.98 0.86 83.70 89.02 90.34

The average FPS values obtained from above tests are shown in Figure 10. The results
indicate that the two classical detectors, Faster R-CNN and SSD, exhibit generally slower
average detection speeds. Faster R-CNN achieves an average detection speed of only 0.77,
while SSD achieves 1.99 FPS. These speeds fall far below the average speed required for this
study. With an average detection speed of 27.01 FPS on embedded devices, CURI-YOLOv7
delivers excellent performance and an 88.61% improvement over the original YOLOv7tiny.

3.3. The Comparison of CURI-YOLOv7 on Computer

Due to the poor performance of Faster R-CNN and SSD on embedded devices, as
observed in Section 3.2, as well as their suboptimal mAP@0.5 results on the computer, it was
determined that they were not suitable for comparison in this study. Additionally, their high
GFLOPs and parameter counts do not meet the real-time image processing requirements of
embedded devices. This is compounded by inadequate FPS. So, this section solely focuses
on the performance comparison between the three YOLO series target detectors and the
CURI-YOLOv7.

Figure 11 shows the PR curves of the four models. The horizontal coordinate is recall
and the vertical coordinate is precision. The PR curves are generated by calculating a
series of precision and recall points at different thresholds. The PR curve coverage areas
for YOLOv8n, YOLOv5s, YOLOv7tiny, and CURI-YOLOv7 are 0.97, 0.96, 0.96, and 0.90,
respectively. CURI-YOLOv7 does not cover as much area as the other three models, but also
has a coverage area of 0.90. This suggests that while the average accuracy of CURI-YOLOv7
may be slightly lower than that of the comparison models, it is still substantial enough for
the purposes of this study.
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Figure 12 illustrates the loss function curves of the four models. An examination
of the loss function indicates that all four models converge within a localized region
after approximately 400 iterations. This observation underscores that the design of CURI-
YOLOv7 is comparably rational and viable, akin to other target detectors within the YOLO
series. Moreover, it is notable that the loss function of CURI-YOLOv7 is the most minimized
among the four models during the training process, converging within the range of 0 to 0.5.
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In order to ensure algorithm robustness and adapt deep learning algorithm models to
different environments [40], in this study, attention heat maps are employed to substantiate
the robustness of CURI-YOLOv7. Figure 13 illustrates the attentional heat map outputs
for the four models using three different test datasets. Coordinates and feature heat
maps in essence output information on the location of key points [41] for the purpose
of data visualization. In this study, the attentional heat map is generated by extracting
the confidence of the predicted maximum value from the output prediction features and
multiplying the two values to produce a visual representation. The output of YOLOv8n
shows the best results among three scenarios, while CURI-YOLOv7 exhibits inferior results
compared to YOLOv8n. However, CURI-YOLOv7 is still able to accurately focus attention
on the correct position of the fruit tree.
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4. Discussion

In this paper, a lightweight target detector named CURI-YOLOv7 is proposed for
deployment on embedded devices. The algorithm is systematically compared and ana-
lyzed against five other models, including Faster-Rcnn, SSD, YOLOv5s, YOLOv7tiny, and
YOLOv8n. This comparison serves to demonstrate the rationality and effectiveness of the
design of CURI-YOLOv7. The experimental results affirm the advantages of CURI-YOLOv7.
It achieves significant reductions in both GFLOPs and parameter quantities, resulting in a
noteworthy improvement in frames per second (FPS). As a result, it is adept at carrying
out real-time target detection when executed on embedded devices. This achievement
effectively caters to the need for recognizing individual trees in UAV aerial images of citrus
orchards while adhering to the limitations of embedded devices. Importantly, this solution
effectively addresses the long-standing challenges related to unwieldy model sizes and
slow image processing speeds. The domain of accurate orchard management has long been
a focal point of research interest. The real-time remote sensing target monitoring facilitated
by the integration of CURI-YOLOv7 into embedded devices emerges as a significant ad-
vancement. This innovation has the potential to extract relevant information from citrus
tree imagery in real time, thereby underscoring the practical significance of the study.

This study does exhibit certain limitations. The dataset generated focuses exclusively
upon UAV remote sensing of citrus trees, and consequently, the proposed model’s applica-
bility may not universally extend to other orchard remote sensing scenarios. Evaluating
the outcomes, CURI-YOLOv7 attains a citrus tree target detection mean average precision
(MAP) exceeding 90%. While marginally trailing behind other target detection algorithms
within the YOLO series, this performance variation is noted.

In the realm of future endeavors, the inference speed of CURI-YOLOv7 will be subject
to further reduction through techniques such as knowledge distillation and model pruning.
These efforts are poised to establish a robust groundwork for subsequent investigations
centered on the realm of automated UAV navigation.

5. Conclusions

This study proposes a lightweight YOLOv7tiny target detector CURI-YOLOv7 for
the UAV aerial photography of citrus trees based on embedded devices. A dataset of
citrus trees from UAV remote sensing imagery was constructed for training. The backbone
is designed based on the MobileOne-block and depthwise separable convolution; the
original spatial pyramid pooling is replaced by the SPPF, and the Lightweight-ELAN
structure is constructed based on the ELAN structure. The neck is redesigned by removing
the smaller target detection layer and fusion depth-separable convolution and GSConv
to construct the proposed CURI-YOLOv7. The results show that the GFLOPs = 1.976,
parameters = 1.018 M, weights = 3.98 MB, and mAP = 90.34% for CURI-YOLOv7. When
executed on a computer, CURI-YOLOv7 displays a substantial enhancement in frames
per second (FPS), at 128.83. Notably, on an embedded device, CURI-YOLOv7 excels with
an impressive FPS improvement, achieving 27.01. This reinforces its adeptness for real-
time processing on embedded devices. The progression of CURI-YOLOv7 establishes
a fundamental basis for the subsequent advancement of low-altitude remote sensing
technology in citrus orchard management and precision agricultural aviation.
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