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Abstract: Lithological classification is a pivotal aspect in the field of geology, and traditional field
surveys are inefficient and challenging in certain areas. Remote sensing technology offers advantages
such as high efficiency and wide coverage, providing a solution to the aforementioned issues. The
aim of this study is to apply remote sensing technology for lithological classification and attempt
to enhance the accuracy of classification. Taking a study area in Jixi, Heilongjiang Province, China,
as an example, lithological classification is conducted using high-resolution satellite remote sensing
data from GF-2 and texture data based on gray-level co-occurrence matrix (GLCM). By comparing
the accuracy of lithological classification using different methods, the support vector machine (SVM)
method with the highest overall accuracy is selected for further investigation. Subsequently, this
study compares the effects of combining GF-2 data with different texture data, and the results
indicate that combining textures can effectively improve the accuracy of lithological classification.
In particular, the combination of GF-2 and the Dissimilarity index performs the best among single-
texture combinations, with an overall accuracy improvement of 7.8630% (increasing from 74.6681%
to 82.5311%) compared to using only GF-2 data. In the multi-texture combination dataset, the Mean
index is crucial for enhancing classification accuracy. Selecting appropriate textures for combination
can effectively improve classification accuracy, but it is important to note that excessive overlaying of
textures may lead to a decrease in accuracy. Furthermore, this study employs principal component
analysis (PCA) and independent component analysis (ICA) to process the GF-2 data and combines
the resulting PCA and ICA datasets with different texture data for lithological classification. The
results demonstrate that combining PCA and ICA with texture data further enhances classification
accuracy. In conclusion, this study demonstrates the application of remote sensing technology in
lithological classification, with a focus on exploring the application value of different combinations of
multispectral data, texture data, PCA data, and ICA data. These findings provide valuable insights
for future research in this field.

Keywords: GF-2; lithological classification; GLCM; SVM; ICA; PCA

1. Introduction

Geological research holds undeniable significance for human society, with close ties to
socioeconomic development and numerous benefits for various aspects of human produc-
tion and life. Geological maps, serving as vital instruments for communicating geological
research findings, have witnessed continuous advancement and refinement since the early
19th century, when British geologist William Smith laid the groundwork for modern geo-
logical mapping.

A key aspect of geological mapping is the identification and classification of lithology.
Although traditional field investigation and mapping are relatively accurate, they are
inefficient and difficult to implement in certain areas [1–3]. Remote sensing technology pos-
sesses advantages, such as high efficiency, cost-effectiveness, and wide coverage, providing
a solution to the aforementioned issues [4–14]. By utilizing remote sensing technology,
a broad range of surface information can be obtained, enabling large-scale lithological
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classification and providing fundamental data for geological research. Remote sensing
lithological classification can also guide mineral resource exploration, improving efficiency
and accuracy in exploration efforts. Additionally, remote sensing lithological classification
can facilitate the prediction and assessment of potential geological hazards, allowing for
the timely implementation of corresponding disaster prevention and mitigation measures,
thereby reducing the impact of geological disasters on human activities and the ecological
environment. Furthermore, remote sensing lithological classification can be employed in
environmental monitoring, such as detecting rock dissolution pollution in water bodies
and mapping wetland vegetation distribution, among others. In conclusion, the use of
remote sensing technology for lithological classification holds significant practical impor-
tance in geological research, resource exploration, disaster prediction and prevention, and
environmental monitoring [15–21].

Theoretically, each type of rock has its own unique spectral characteristics, but in
practical remote sensing applications, these spectra are affected by many factors, such
as atmospheric effects, coverage of soil and vegetation, and resolution of multispectral
data [22]. These factors can limit the accuracy of lithological classification.

Some studies have found that combining texture information can enhance classifica-
tion accuracy [23,24]. Texture, as an important spatial feature of images, has been widely
used in various image processing fields [25,26]. However, texture does not have a precise
mathematical definition [27], which is also why there are various texture analysis meth-
ods [28]. Although there are many studies on image texture, few have focused on the effect
of different combinations of texture information from remote sensing data on improving
lithological mapping accuracy.

The GF-2 satellite is China’s first civil optical remote sensing satellite with a spatial
resolution of over 1 m [29]. Since its launch in August 2014, GF-2 has continuously provided
remote sensing data for relevant work. Regrettably, the potential of GF-2 data in the field of
lithological classification has remained largely unexplored.

This passage aims to explore the contribution of different texture features to lithological
classification by comparing their effects. By utilizing various combinations of texture
features and evaluating their impact on lithological classification, this study may provide
methods and criteria for feature selection and combination in future research. The GF-2 data
were processed using principal component analysis (PCA) and independent component
analysis (ICA) techniques, in conjunction with texture features, to explore the potential
value of these method combinations in lithological classification. This will assist in guiding
the selection of data processing techniques in similar future studies and provide additional
options for lithological classification.

This study uses GF-2 satellite data to conduct lithological classification research in Jixi
City, Heilongjiang Province, China. The objectives of this study are: (1) to compare the
classification accuracy of four methods, including minimum distance classification, maxi-
mum likelihood classification, neural network classification, and support vector machine
classification, and select the method with the highest accuracy for lithological classification
using GF-2 data; (2) to use GF-2 data combined with different texture features for litho-
logical classification and compare the effects of different texture features on lithological
classification; (3) to use multiple-texture features for different combinations and evaluate
the effects of different combination methods on lithological classification; (4) to process
GF-2 data using PCA and ICA methods and combine them with texture features for litho-
logical classification. The effectiveness of PCA and ICA in lithological classification and the
impact of different data combinations on lithological classification will be evaluated.

2. Materials and Methods
2.1. Description of Study Area

The study area was located in Jixi City, southeastern Heilongjiang Province, China,
as shown in Figure 1. Jixi City is connected to Shuangyashan City and Qitaihe City in
the north, Russia in the east and south, and Mudanjiang City in the southwest. The
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geomorphology of Jixi City primarily consists of the Songnen Plain, hills, low mountains,
and some mountainous areas. The Songnen Plain is the dominant landform in the region,
with relatively flat terrain. The area belongs to the temperate zone, with a monsoon climate
characterized by short and warm summers and long and cold winters. Precipitation is
concentrated in the summer, and the average annual rainfall is abundant. The vegetation
types in the area mainly include coniferous forests, broad-leaved forests, grasslands, and
wetlands [30]. The northwestern, northern, and northeastern regions of the study area
are primarily characterized by sediments, including gravel, sand, silt, and clay. In the
remaining areas, igneous rocks, such as Syenogranite and Granodiorite, predominate.
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Figure 1. Location map. The study area is located in Jixi City, Heilongjiang Province, China.

The geological map shown in Figure 2 was generated through multiple steps. Firstly,
field investigations were conducted in the study area to collect preliminary geological
information. Secondly, the obtained field data were integrated and supplemented with
existing geological maps and remote sensing data. Lastly, the integrated data were digitized
and processed using a geographic information system (GIS) to generate the geological map
with a scale of 1:250,000. The samples used in this study were derived from the results of
the field investigations.

2.2. Data and Data Preprocessing

GF-2 image data consist of one panchromatic band and four multispectral bands [31],
with spectral characteristics shown in Table 1. The GF-2 image data used in this study were
acquired on 25 October 2020 and projected using the Universal Transverse Mercator (WGS
1984 datum, Zone 52N). The multispectral images were radiometrically calibrated, fol-
lowed by atmospheric correction and orthorectification. The panchromatic image was also
radiometrically calibrated and orthorectified. The nearest neighbor diffusion (NNDiffuse)
pan sharpening algorithm was used to fuse the calibrated multispectral images with the
panchromatic image, which was recently proposed by the Rochester Institute of Technology
(RIT) with a suitable image fusion effect [29]. The fused images were then resampled to a
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15 m resolution and cropped to obtain a study area of 1000 rows and 1200 columns. All
these preprocessing steps were performed in ENVI 5.3 software. Figure 3 shows the flow
chart of the lithological classification process.
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Table 1. Spectral characteristics of GaoFen-2 (GF-2) data.

Bands Spectral Range (nm) Spatial Resolution (m)

Pan 450–900 0.8
Blue 450–520

3.2
Green 520–590
Red 630–690
NIR 770–890
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2.3. Training and Testing Samples

The careful selection of training and testing samples was conducted utilizing the
geological map shown in Figure 2 and field survey samples, in combination with visual
interpretation. A total of 10 classes were chosen, as presented in Table 2. To minimize the
possibility of overfitting, the training samples for each class were ensured to be at least
several times the number of data layers to be used for classification.

Table 2. The training and testing samples.

Class Name Training Sample (Pixels) Testing Sample (Pixels)

Vegetation 325 344
Water body 1888 1185
Buildings 1269 1583

Gravelly clay 1710 1460
Flood plain 3310 3066

Syenogranite 552 506
Granodiorite 4827 4520

Monzonitic granite 579 507
Alkali granite 1200 869
Quartz diorite 896 649

2.4. Lithological Classification Methods

Four methods were used for lithological classification in this study, including mini-
mum distance classification, maximum likelihood classification, neural network classifica-
tion, and support vector machine classification. All these four methods were implemented
in ENVI 5.3 software, and a brief introduction to these four algorithms is provided below.

2.4.1. Minimum Distance Classification

Minimum distance classification is the most basic classification method and assigns an
unknown pixel to the class with the smallest Euclidean distance to it [6,32].

2.4.2. Maximum Likelihood Classification

Maximum likelihood classification is one of the most commonly used supervised classifi-
cation methods in remote sensing. It uses statistical analysis to calculate probability density
functions and assigns an unknown pixel to the class with the highest probability [33,34].

2.4.3. Neural Network Classification

Neural network classification is one of the mainstream machine learning methods
and establishes a model by simulating the way the human neural system recognizes and
learns [35]. This neural network model consists of many nodes, which are connected by
weighted connections and adjust the weights continuously during the training process
until the best output is obtained.

2.4.4. Support Vector Machine Classification

Support vector machine classification is one of the most widely used machine learning
methods. It maximizes the margin between classes by seeking an optimal separating
hyperplane [36,37]. Soft margin techniques and penalty parameters are introduced to
improve the generalization ability when the data contain outliers and classes are not
linearly separable [22].

2.5. Texture Analysis Methods

Texture is an important feature for identifying image classes [38,39], and there are
many methods for defining texture. Among them, the gray-level co-occurrence matrix
(GLCM) has been proven to be effective in rock texture analysis [40]. The principle of
GLCM is to quantize the gray levels of the original grayscale matrix, establish a GLCM
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based on the frequency of specific pixel pairs, and calculate different indicators based on the
GLCM [41–43]. This paper uses 8 different GLCM indicators, which are briefly introduced
below (where g (i,j) is the normalized value of the frequency of pixel pair (i,j) and µ and σ2

are the mean and variance of the GLCM, respectively).

2.5.1. Contrast

The Contrast index is used to measure the drastic changes in image grayscale. The
clearer and finer the texture of an image, the higher the Contrast value.

The Contrast index provides information about the brightness contrast in rock tex-
tures. The Contrast index is of significant importance in describing the details, edges, and
variability of rock textures.

The Contrast index measures the degree of difference between adjacent gray-level
pixels in rock textures. It helps us understand the contrast and texture variation between
gray-level pixels in rock textures. A higher Contrast value indicates a greater difference
between adjacent gray-level pixels and a more noticeable texture variation in the rock
texture. Conversely, a lower Contrast value indicates relatively similar adjacent gray-level
pixels and a smaller texture variation in the rock texture.

In rock texture analysis, the Contrast index can be used to assess the texture variation
and edge features of rock textures. Different types of rocks or textures often exhibit different
texture features, which are reflected in different Contrast values in terms of the contrast and
texture variation between gray-level pixels. Rock textures with complex texture variations
and rich edges tend to have higher Contrast values, while relatively uniform and smooth
rock textures exhibit lower Contrast values.

The corresponding Contrast data are obtained through calculations using GF-2 data.
In subsequent research, the Contrast data will be combined with other data to explore the
contribution of this texture index to lithological classification.

Contrast = ∑
i

∑
j
(i− j)2 · g(i, j) (1)

2.5.2. Correlation

The Correlation index is used to measure the linear correlation of image grayscale.
The higher the linear correlation between the grayscale levels of adjacent pixels in an image,
the larger the Correlation value.

The Correlation index provides information about the correlation of grayscale values
between pixels in rock textures. The Correlation index is highly useful for describing the
linearity, directionality, and regularity of rock textures.

The Correlation index measures the linear correlation of pixel values in rock textures.
It helps us understand the linear relationship between different grayscale-level pixels in
rock textures. A Correlation value closer to 1 indicates a strong linear correlation between
pixel values in the rock texture, suggesting a tendency toward a regular and orderly texture.
Conversely, a Correlation value closer to 0 indicates less correlation between pixel values
in the rock texture, suggesting a tendency toward randomness and disorder in the texture.

In rock texture analysis, the Correlation index can be used to assess the directionality
of rock textures. Different types of rocks often exhibit different degrees of linearity and
regularity, which are reflected in different correlation characteristics of their texture features.
A higher Correlation value implies the presence of significant directional features in the rock
texture, while a lower Correlation value indicates a weaker directionality. Directionality is
an important distinguishing factor for certain types of rocks.

The corresponding Correlation data are obtained through calculations using GF-2 data.
In subsequent research, the Correlation data will be combined with other data to explore
the contribution of this texture index to lithological classification.

Correlation = ∑
i

∑
j

(i− µ) · (j− µ) · g(i, j)
σ2 (2)
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2.5.3. Dissimilarity

The Dissimilarity index is used to measure the changes in image grayscale, similar to
Contrast, but with a difference in that exponential weighting is used in Contrast, whereas
linear weighting is used in Dissimilarity.

The Dissimilarity index provides information about the degree of difference between
pixels of different grayscale levels in rock textures. The Dissimilarity index is highly useful
for describing the level of variation, roughness, and granularity of rock textures.

The Dissimilarity index measures the degree of difference between pixels of different
grayscale levels in rock textures. It helps us understand the level of variation between
pixels of different grayscale levels in rock textures, i.e., the differences in pixel values. A
higher Dissimilarity value indicates a greater difference between different regions in the
rock texture, suggesting a tendency toward roughness and granularity. Conversely, a lower
Dissimilarity value indicates less difference between different regions in the rock texture,
suggesting a tendency toward uniformity and smoothness.

In rock texture analysis, the Dissimilarity index can be used to identify different
types of rock textures. Different rock types often exhibit different levels of variation and
granularity, which are reflected in different characteristics of their texture features. Rough
rock textures tend to have higher Dissimilarity values, indicating larger differences in
pixel values within the texture. On the other hand, smooth rock textures exhibit lower
Dissimilarity values, indicating relatively smaller differences in pixel values within the
texture.

The corresponding Dissimilarity data are obtained through calculations using GF-2
data. In subsequent research, the Dissimilarity data will be combined with other data to
explore the contribution of this texture index to lithological classification.

Dissimilarity = ∑
i

∑
j
|i− j| · g(i, j) (3)

2.5.4. Entropy

The Entropy index is used to measure the disorderliness of image grayscale. The more
disorderly and complex the grayscale distribution of an image, the higher the Entropy
value. When the values in the GLCM are uniformly distributed, the Entropy value is higher.

The Entropy index provides information about the complexity, uncertainty, and in-
formation content in rock textures. The Entropy index is highly useful for describing the
texture richness, variation, and level of detail in rock textures.

The Entropy index measures the degree of chaos in the distribution of grayscale levels
in rock textures. It helps us understand the uncertainty and complexity of the texture in
rock textures. A higher Entropy value indicates a more uniform and complex distribution of
grayscale levels in the rock texture, suggesting a tendency toward richness and variation in
the texture. Conversely, a lower Entropy value indicates a more concentrated distribution of
grayscale levels in the rock texture, suggesting a tendency toward simplicity and uniformity.

In rock texture analysis, the Entropy index can be used to evaluate the level of detail
in rock textures. Different rock types often exhibit different levels of complexity and
texture richness, which are reflected in different degrees of uncertainty in the distribution
of grayscale levels. Rock textures with abundant details tend to have higher Entropy
values, indicating a more complex distribution of grayscale levels. On the other hand, rocks
with simpler textures exhibit lower Entropy values, indicating a relatively concentrated
distribution of grayscale levels.

The corresponding Entropy data are obtained through calculations using GF-2 data.
In subsequent research, the Entropy data will be combined with other data to explore the
contribution of this texture index to lithological classification.

Entropy = −∑
i

∑
j
log(g(i, j)) · g(i, j) (4)
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2.5.5. Homogeneity

The Homogeneity index, also known as the inverse difference moment, is used to
measure the homogeneity of an image. When the grayscale of an image is uniform, Homo-
geneity value is at its maximum.

The Homogeneity index provides information about the similarity and consistency
between pixels of different grayscale levels in rock textures. The Homogeneity index is
highly useful for describing the uniformity, smoothness, and proximity between pixels in
rock textures.

The Homogeneity index measures the degree of proximity between pixels of different
grayscale levels in rock textures. It helps us understand the similarity and consistency
between adjacent grayscale-level pixels in rock textures. A higher Homogeneity value
indicates smaller differences in grayscale between adjacent pixels in the rock texture,
suggesting a tendency toward uniformity and smoothness in the texture. Conversely,
a lower Homogeneity value indicates larger differences in grayscale between adjacent
pixels in the rock texture, suggesting a tendency toward non-uniformity and roughness in
the texture.

In rock texture analysis, the Homogeneity index can be used to evaluate the roughness
and granularity of rock textures. Different rock types often exhibit different levels of
uniformity and smoothness, which are reflected in different characteristics of grayscale
differences between adjacent pixels. Rough rock textures tend to have lower Homogeneity
values, indicating larger differences in grayscale between adjacent pixels. On the other
hand, smooth rock textures exhibit higher Homogeneity values, indicating relatively smaller
differences in grayscale between adjacent pixels.

The corresponding Homogeneity data are obtained through calculations using GF-2
data. In subsequent research, the Homogeneity data will be combined with other data to
explore the contribution of this texture index to lithological classification.

Homogeneity = ∑
i

∑
j

g(i, j)
1 + (i− j)2 (5)

2.5.6. Mean

The Mean index is used to measure the average grayscale of an image.
The Mean index provides information about the average grayscale value in rock

textures. The Mean index is highly useful for describing the brightness and grayscale
distribution in rock textures.

The Mean index measures the average value of grayscale levels in rock textures. It
helps us understand the overall brightness of grayscale levels in rock textures. The Mean
value reflects the central position of the pixel grayscale distribution in the rock texture.
A higher Mean value indicates a higher overall brightness, while a lower Mean value
indicates a lower overall brightness.

In rock texture analysis, the Mean index can be used to evaluate the brightness level
of rock textures. Different rock types often exhibit different brightness and grayscale
distribution characteristics. Rock textures with higher brightness tend to have higher Mean
values, while rock textures with lower brightness exhibit lower Mean values.

Furthermore, it is important to note that the Mean index can only provide overall
brightness information about grayscale levels in rock textures and cannot provide detailed
information about the distribution range or shape of grayscale levels. Therefore, in rock
texture analysis, it is common to combine other GLCM indices or image processing methods
for comprehensive analysis.

The corresponding Mean data are obtained through calculations using GF-2 data.
In subsequent research, the Mean data will be combined with other data to explore the
contribution of this texture index to lithological classification.

Mean = ∑
i

∑
j
i · g(i, j) (6)
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2.5.7. Second Moment

The Second Moment index is used to measure the regularity of grayscale distribution
in an image. Second Moment is negatively correlated with Entropy, and the more uniform
and regular the texture of an image, the higher the value of Second Moment. When the
values of GLCM are uniformly distributed, the Second Moment value is lower.

The Second Moment index provides information about the uniformity of grayscale-
level pixel distribution and texture details in rock textures. The Second Moment index is
highly useful for describing the uniformity, level of detail, and smoothness of rock textures.

The Second Moment index measures the uniformity of grayscale-level pixel distri-
bution or the smoothness of texture in rock textures. It helps us understand the overall
distribution characteristics of grayscale-level pixels in rock textures. A higher Second
Moment value indicates a more uniform distribution of grayscale-level pixels in the rock
texture, indicating a tendency toward smoothness in the texture. Conversely, a lower
Second Moment value suggests an uneven distribution of grayscale-level pixels in the
rock texture, indicating a tendency toward roughness and potentially more texture details
and variations.

In rock texture analysis, the Second Moment index can be used to evaluate the level of
detail and variability in rock textures. Different rock types or texture types often exhibit
different texture characteristics, which are reflected in the energy or Second Moment values
of grayscale-level distributions and texture details. Rock textures with rich details and high
variability tend to have lower Second Moment values, while relatively uniform and smooth
rock textures exhibit higher Second Moment values.

The corresponding Second Moment data are obtained through calculations using GF-2
data. In subsequent research, the Second Moment data will be combined with other data to
explore the contribution of this texture index to lithological classification.

Second Moment = ∑
i

∑
j

g2(i, j) (7)

2.5.8. Variance

The Variance index is used to measure the variance of image grayscale. The higher the
discreteness of grayscale distribution, the larger the Variance value.

The Variance index provides information about the variability and texture roughness
of grayscale-level pixels in rock textures. The Variance index is highly useful for describing
the differences, roughness, and dispersion of grayscale-level pixels in rock textures.

The Variance index measures the differences and dispersion of grayscale-level pixels in
rock textures. It helps us understand the variability of grayscale-level pixels and the rough-
ness of the texture in rock textures. A higher Variance value indicates greater differences
and dispersion of grayscale-level pixels in the rock texture, indicating a rougher texture.
Conversely, a lower Variance value suggests a relatively uniform and dense distribution of
grayscale-level pixels in the rock texture, indicating smoother texture.

In rock texture analysis, the Variance index can be used to evaluate the roughness
and variability of rock textures. Different rock types or texture types often exhibit different
detail characteristics, which are reflected in the differences and dispersion of grayscale-level
pixels and the resulting Variance values. Rock textures with rougher surfaces and higher
variability tend to have higher Variance values, while relatively smooth and consistent rock
textures exhibit lower Variance values.

Furthermore, it is important to note that the Variance index can only provide infor-
mation about the dispersion of grayscale-level pixels in rock textures and cannot provide
specific details about grayscale-level distributions and texture morphology. Therefore, in
rock texture analysis, it is common to combine other GLCM indices or image processing
methods for comprehensive analysis.
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The corresponding Variance data are obtained through calculations using GF-2 data.
In subsequent research, the Variance data will be combined with other data to explore the
contribution of this texture index to lithological classification.

Variance = ∑
i

∑
j
(i− µ)2 · g(i, j) (8)

2.6. Image Processing Methods

This paper employs two image enhancement processing algorithms, namely principal
component analysis (PCA) and independent component analysis (ICA). The following
provides a brief introduction to these two methods.

2.6.1. Principal Component Analysis

The core idea of PCA is to reduce the complexity of high-dimensional data while
preserving the original trends and patterns as much as possible [44,45]. PCA projects the
data onto a new principal component space by a linear transformation. From a geometric
point of view, the coordinate system of the transformed principal component space rotates
at an angle compared to the original coordinate system. The direction of the new axes
points toward the direction with large amounts of data information. These axis directions
are the principal component directions, which are mutually independent and maintain the
same sum of variances before and after transformation. Research shows that PCA has great
potential in identifying lithology in multispectral remote sensing images [4,46–48].

2.6.2. Independent Component Analysis

Similar to PCA, ICA projects the data onto a new space. However, ICA is based on the
non-Gaussian assumption of independent sources. The projected axes are directed toward
independent directions, and these independent components provide an approximate esti-
mation of source signals [49]. Statistically speaking, the concept of statistical independence
adopted by ICA is stronger than that of uncorrelatedness. Essentially, if two variables
are independent, then any value of one variable cannot provide any information about
the value of the other variable. If two variables are uncorrelated, however, the value of
one variable can provide information about the value of the other variable [50]. Evidence
suggests that ICA performs well in feature extraction of remote sensing data [51–54].

2.7. Data Combination

Eight different texture indices were employed for lithological classification, and differ-
ent combinations of data were evaluated, as shown in Table 3. Firstly, the GF-2 data were
combined with each of the eight different texture indices separately to classify lithology
and evaluate the role of different texture indices in lithological classification. Secondly, the
eight different texture indices were combined in pairs to obtain 28 different combinations
of data. The GF-2 data were combined with these 28 different datasets respectively to
classify lithology, and the effects of different combinations were evaluated to identify the
better-performing texture indices. Thirdly, various further combinations of data were
evaluated based on the results of the first two experiments to assess the effect of different
combination methods on lithological classification.

Table 3. Datasets for lithological classification.

Dataset Abbreviation Number of Data Layers

GF-2 + Contrast GF2_Con 8
GF-2 + Correlation GF2_Corr 8

GF-2 + Dissimilarity GF2_D 8
GF-2 + Entropy GF2_E 8

GF-2 + Homogeneity GF2_H 8
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Table 3. Cont.

Dataset Abbreviation Number of Data Layers

GF-2 + Mean GF2_M 8
GF-2 + Second Moment GF2_S 8

GF-2 + Variance GF2_V 8
GF-2 + Contrast + Correlation GF2_Con_Corr 12

GF-2 + Contrast + Dissimilarity GF2_Con_D 12
GF-2 + Contrast + Entropy GF2_Con_E 12

GF-2 + Contrast + Homogeneity GF2_Con_H 12
GF-2 + Contrast + Mean GF2_Con_M 12

GF-2 + Contrast + Second Moment GF2_Con_S 12
GF-2 + Contrast + Variance GF2_Con_V 12

GF-2 + Correlation + Dissimilarity GF2_Corr_D 12
GF-2 + Correlation + Entropy GF2_Corr_E 12

GF-2 + Correlation + Homogeneity GF2_Corr_H 12
GF-2 + Correlation + Mean GF2_Corr_M 12

GF-2 + Correlation + Second Moment GF2_Corr_S 12
GF-2 + Correlation + Variance GF2_Corr_V 12
GF-2 + Dissimilarity + Entropy GF2_D_E 12

GF-2 + Dissimilarity + Homogeneity GF2_D_H 12
GF-2 + Dissimilarity + Mean GF2_D_M 12

GF-2 + Dissimilarity + Second Moment GF2_D_S 12
GF-2 + Dissimilarity + Variance GF2_D_V 12
GF-2 + Entropy + Homogeneity GF2_E_H 12

GF-2 + Entropy + Mean GF2_E_M 12
GF-2 + Entropy + Second Moment GF2_E_S 12

GF-2 + Entropy + Variance GF2_E_V 12
GF-2 + Homogeneity + Mean GF2_H_M 12

GF-2 + Homogeneity + Second Moment GF2_H_S 12
GF-2 + Homogeneity + Variance GF2_H_V 12
GF-2 + Mean + Second Moment GF2_M_S 12

GF-2 + Mean + Variance GF2_M_V 12
GF-2 + Second Moment + Variance GF2_S_V 12

GF-2 + Correlation + Dissimilarity + Entropy GF2_Corr_D_E 16
GF-2 + Correlation + Dissimilarity + Mean GF2_Corr_D_M 16

GF-2 + Correlation + Dissimilarity + Second Moment GF2_Corr_D_S 16
GF-2 + Correlation + Entropy + Mean GF2_Corr_E_M 16

GF-2 + Correlation + Entropy + Second Moment GF2_Corr_E_S 16
GF-2 + Correlation + Mean + Second Moment GF2_Corr_M_S 16

GF-2 + Dissimilarity + Entropy + Mean GF2_D_E_M 16
GF-2 + Dissimilarity + Entropy + Second Moment GF2_D_E_S 16

GF-2 + Dissimilarity + Mean + Second Moment GF2_D_M_S 16
GF-2 + Entropy + Mean + Second Moment GF2_E_M_S 16

GF-2 + Correlation + Dissimilarity + Entropy + Mean GF2_Corr_D_E_M 20
GF-2 + Correlation + Dissimilarity + Entropy +

Second Moment GF2_Corr_D_E_S 20

GF-2 + Correlation + Dissimilarity + Mean + Second
Moment GF2_Corr_D_M_S 20

GF-2 + Correlation + Entropy + Mean + Second
Moment GF2_Corr_E_M_S 20

GF-2 + Dissimilarity + Entropy + Mean + Second
Moment GF2_D_E_M_S 20

GF-2 + Correlation + Dissimilarity + Entropy +
Mean + Second Moment GF2_Corr_D_E_M_S 24
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Table 3. Cont.

Dataset Abbreviation Number of Data Layers

GF-2 + Contrast + Correlation + Dissimilarity +
Entropy + Mean + Second Moment GF2_Con_Corr_D_E_M_S 28

GF-2 + Correlation + Dissimilarity + Entropy +
Homogeneity + Mean + Second Moment GF2_Corr_D_E_H_M_S 28

GF-2 + Correlation + Dissimilarity + Entropy +
Mean + Second Moment + Variance GF2_Corr_D_E_M_S_V 28

GF-2 + Contrast + Correlation + Dissimilarity +
Entropy + Homogeneity + Mean + Second Moment GF2_Con_Corr_D_E_H_M_S 32

GF-2 + Contrast + Correlation + Dissimilarity +
Entropy + Mean + Second Moment + Variance GF2_Con_Corr_D_E_M_S_V 32

GF-2 + Correlation + Dissimilarity + Entropy +
Homogeneity + Mean + Second Moment + Variance GF2_Corr_D_E_H_M_S_V 32

GF-2 + Contrast + Correlation + Dissimilarity +
Entropy + Homogeneity + Mean + Second Moment +

Variance
GF2_Con_Corr_D_E_H_M_S_V 36

3. Results

This section evaluated the performance of lithological classification using a confusion
matrix, with measures such as overall accuracy, Kappa coefficient, producer’s accuracy, and
user’s accuracy. Overall accuracy is obtained by dividing the number of correctly classified
pixels by the total number of pixels. The Kappa coefficient is a measure of consistency that
accounts well for small samples. The producer’s accuracy is the probability of correctly
classifying pixels with the true class X, while the user’s accuracy is the probability of pixels
classified as X being truly of class X.

3.1. Lithological Classification Based on Different Methods

Figure 4 shows the results of lithological classification on GF-2 data using four differ-
ent methods: minimum distance classification, maximum likelihood classification, neural
network classification, and classification. Table 4 presents the overall accuracy and Kappa
coefficient obtained using these methods. Results show that the overall accuracy and Kappa
coefficient obtained using the minimum distance classification method are the lowest. From
the comparison of the four figures, it can be observed that this method poorly separates
Buildings, and there are many misclassifications for Gravelly clay and Flood plain, resulting
in significant noise. The overall accuracy and Kappa coefficient obtained using the maxi-
mum likelihood classification method are better than those obtained using the minimum
distance classification. Compared to the minimum distance classification, the maximum
likelihood classification significantly improves the classification of Buildings, with many
misclassifications corrected and some noise eliminated. However, the maximum likelihood
classification method still exhibits noticeable problems of misclassification with Granodior-
ite and over-classification with Alkali granite. The overall accuracy and Kappa coefficient
of neural network classification and support vector machine classification methods are
similar and higher than those of the maximum likelihood classification method, indicating
their superior classification performance. Due to its slightly higher overall accuracy, we
adopted the support vector machine classification method for subsequent studies.
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Figure 4. The lithological classification of the GF-2 dataset using different methods. (a) Mini-
mum distance classification; (b) maximum likelihood classification; (c) neural network classification;
(d) support vector machine classification.

Table 4. The lithological classification accuracies of the GF-2 dataset using different methods.

Classification Method Overall Accuracy (%) Kappa Coefficient

Minimum distance classification 57.3218 0.5075
Maximum likelihood classification 68.8066 0.6418

Neural network classification 73.2317 0.6750
Support vector machine classification 74.6681 0.6869

3.2. Lithological Classification Based on Different Texture Features

Figure 5 shows the results of lithological classification using the support vector ma-
chine classification method on nine different datasets. Table 5 presents the overall accuracy
and Kappa coefficient obtained from these nine datasets for comparison. The results indi-
cate that the incorporation of texture features generally improves the classification accuracy
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compared to using the GF-2 data alone, suggesting the effectiveness of texture features in
lithological classification. Among the nine datasets, GF2_D has the highest overall accuracy
at 82.5311%, followed by GF2_E (81.5712%), GF2_S (81.3125%), and GF2_M (81.1151%),
which all exhibit significant improvements in classification accuracy. GF2_Corr has the
lowest overall accuracy of 77.1257% among the eight datasets, including texture features.
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Table 5. The lithological classification accuracies of nine different datasets.

Ranking Dataset Overall Accuracy (%) Kappa Coefficient

1 GF2_D 82.5311 0.7861
2 GF2_E 81.5712 0.7740
3 GF2_S 81.3125 0.7711
4 GF2_M 81.1151 0.7689
5 GF2_H 80.6045 0.7618
6 GF2_Con 79.8080 0.7521
7 GF2_V 79.3791 0.7471
8 GF2_Corr 77.1257 0.7175
9 GF2 74.6681 0.6869

Table 6 presents the producer accuracy and user accuracy for each class in the litho-
logical classification of nine datasets. The results indicate that combining the GF2 dataset
with texture can improve classification accuracy in most classes, although not all classes
show improvements. For instance, in the Granodiorite class, the producer accuracy slightly
decreases regardless of the texture combination, suggesting the misclassification of some
Granodiorite pixels into other classes. Among these datasets, GF2_D demonstrates higher
accuracy in the Buildings, Flood plain, and Syenogranite classes. On the other hand, GF2_M
exhibits the most stable performance, with improved accuracy in all classes except for a
slight decrease in producer accuracy in the Granodiorite class compared to GF2. GF2_E
and GF2_S yield similar results in overall accuracy, Kappa coefficient, and accuracy of indi-
vidual classes. Although GF2_Corr shows improved accuracy in certain classes compared
to GF2, it has the highest number of classes with decreased accuracy compared to other
texture-combined datasets.

Table 6. The lithological classification accuracies of nine different datasets for different classes.

Class Name Accuracy (%) GF2_D GF2_E GF2_S GF2_M GF2_H GF2_Con GF2_V GF2_Corr GF2

Vegetation Producer accuracy 94.77 92.15 93.60 95.06 92.15 93.02 93.02 91.28 93.02
User accuracy 99.69 100.00 100.00 100.00 100.00 100.00 100.00 99.68 99.69

Water body Producer accuracy 100.00 99.07 98.99 100.00 99.24 100.00 100.00 100.00 100.00
User accuracy 100.00 100.00 99.91 99.16 100.00 99.16 98.91 100.00 94.20

Buildings Producer accuracy 81.30 76.82 75.68 57.61 74.23 76.94 71.95 48.64 37.84
User accuracy 91.08 88.76 85.45 86.94 87.17 92.41 89.61 76.39 80.29

Gravelly clay Producer accuracy 90.00 93.15 93.08 87.26 92.40 80.96 81.44 94.32 78.49
User accuracy 87.83 83.23 83.53 84.93 83.17 80.74 81.83 76.04 74.13

Flood plain Producer accuracy 88.39 87.83 86.89 87.44 86.53 80.59 80.53 85.45 81.05
User accuracy 82.32 82.28 81.12 85.00 81.03 85.44 85.26 76.36 77.85

Syenogranite Producer accuracy 68.77 53.16 53.95 76.09 51.98 79.25 81.03 27.87 63.83
User accuracy 95.34 87.06 86.94 61.40 87.96 70.23 68.22 81.03 60.15

Granodiorite
Producer accuracy 85.40 85.86 85.15 87.94 85.75 88.12 87.65 87.35 88.54

User accuracy 78.86 78.26 78.82 78.46 77.32 74.95 74.95 75.76 72.23
Monzonitic

granite
Producer accuracy 46.55 41.22 42.41 73.77 41.42 62.13 61.93 44.58 54.64

User accuracy 73.75 75.72 78.75 73.48 76.92 58.55 58.47 84.96 60.75

Alkali granite Producer accuracy 53.28 51.44 55.47 39.13 50.86 35.33 36.82 41.89 34.41
User accuracy 56.81 60.08 61.17 52.88 56.74 54.72 55.56 51.85 49.92

Quartz diorite Producer accuracy 60.71 64.10 63.02 71.19 58.40 52.54 54.24 59.17 51.16
User accuracy 67.81 65.72 65.76 74.64 64.46 66.09 63.88 65.53 67.34

For the Buildings, Gravelly clay, Flood plain, and Alkali granite classes, combining
the GF2 dataset with different textures generally leads to noticeable improvements in both
producer and user accuracy. For the Syenogranite, Granodiorite, and Monzonitic granite
classes, user accuracy generally improves in different texture-combined datasets, while
producer accuracy tends to decrease in most cases. Additionally, except for a slight decrease
in user accuracy for the Quartz diorite class in most texture-combined datasets, the user
accuracy improves generally for other classes after combining textures.
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3.3. Lithological Classification Based on Different Texture Combinations

Table 7 shows the overall accuracy and Kappa coefficient of rock classification based
on 28 dual-texture combination datasets. The results indicate that dual-texture overlay gen-
erally achieves better classification accuracy than single texture. It is observed that datasets
with Mean texture have the highest accuracy ranking, indicating that Mean texture has an
advantage in multi-texture overlay. Entropy and Second Moment generally perform well
in multiple-texture overlays, consistent with their performance in single-texture analysis.
However, the combination of Entropy and Second Moment results in poor performance for
the GF2_E_S (81.4555%) dataset, even lower than the GF2_E (81.5712%), indicating that the
combination of these two textures does not work well. The combination including Dissimi-
larity, except with Mean, reduces the accuracy compared to using a single Dissimilarity
texture, indicating the poor performance of Dissimilarity in texture combinations. Despite
the poor performance of Dissimilarity in texture combinations, its high accuracy in single
texture makes the ranking of multi-texture combinations not low.

Table 7. The lithological classification accuracies of 28 different datasets.

Ranking Dataset Overall Accuracy (%) Kappa Coefficient

1 GF2_E_M 87.1741 0.8441
2 GF2_M_S 86.9766 0.8418
3 GF2_D_M 86.5069 0.8357
4 GF2_H_M 86.3435 0.8338
5 GF2_Corr_M 84.3488 0.8089
6 GF2_Con_M 83.6000 0.7995
7 GF2_M_V 83.0758 0.7930
8 GF2_D_V 82.2724 0.7828
9 GF2_Con_D 82.1431 0.7812
10 GF2_Corr_D 82.0546 0.7801
11 GF2_Corr_E 81.9865 0.7791
12 GF2_D_S 81.9184 0.7784
13 GF2_D_E 81.8844 0.7779
14 GF2_Corr_H 81.8776 0.7772
15 GF2_E_H 81.6938 0.7756
16 GF2_Corr_S 81.6325 0.7748
17 GF2_E_S 81.4555 0.7725
18 GF2_Con_E 81.3602 0.7713
19 GF2_D_H 81.3262 0.7708
20 GF2_Con_S 81.2717 0.7704
21 GF2_H_S 81.2649 0.7701
22 GF2_E_V 81.0675 0.7676
23 GF2_S_V 80.8224 0.7649
24 GF2_Con_H 80.5909 0.7616
25 GF2_H_V 80.4684 0.7602
26 GF2_Con_Corr 80.2641 0.7569
27 GF2_Con_V 79.9033 0.7536
28 GF2_Corr_V 79.6378 0.7491

Contrast, Homogeneity, and Variance textures show poor performance in dual-texture
overlays, generally ranking lower, and often even lower than individual texture datasets,
such as GF2_H_V, GF2_Con_H, and GF2_S_V. Correlation, although having the worst
performance in the single-texture dataset, surprisingly performs well in the dual-texture
overlay dataset. Except for the GF2_Corr_D dataset, classification accuracy improves
compared to a single texture. Next, we will try to combine more textures and select
five textures: Correlation, Dissimilarity, Entropy, Second Moment, and Mean for further
research of triple, quadruple, and quintuple texture combinations.

The lithology was classified based on the datasets with triple, quadruple, and quin-
tuple textures obtained from combinations of Correlation, Dissimilarity, Entropy, Sec-
ond Moment, and Mean using the SVM classification method. Among these datasets,
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GF2_Corr_E_M, GF2_Corr_D_E_M, and GF2_Corr_D_E_M_S showed the highest accu-
racy for the triple, quadruple, and quintuple texture datasets, respectively, with their
classification results shown in Figure 6. It was observed that the classification results
of the three datasets were very similar. Table 8 compares the overall accuracy and
Kappa coefficient of the 16 different multiple-texture combination datasets for litholog-
ical classification. The results indicated that there was little difference in the accuracy
of the datasets with the best performance among the triple, quadruple, and quintu-
ple texture datasets, namely GF2_Corr_E_M (87.8889%), GF2_Corr_D_E_M (88.5220%),
and GF2_Corr_D_E_M_S (88.6037%). The dataset with the highest overall accuracy was
GF2_Corr_D_E_M_S (88.6037%), which combined all five textures. In addition, the accuracy
of the datasets with four textures, such as GF2_Corr_D_M_S (88.4403%), GF2_Corr_E_M_S
(88.2157%), and GF2_D_E_M_S (88.0795%), were not significantly different from that of
GF2_Corr_D_E_M_S (88.6037%). However, the overall accuracy of the dataset without
incorporating the Mean texture, GF2_Corr_D_E_S (82.3678%), was relatively low, indicating
that Mean plays a critical role in improving classification accuracy.
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Table 8. The lithological classification accuracies of 16 different datasets.

Ranking Dataset Overall Accuracy (%) Kappa Coefficient

1 GF2_Corr_D_E_M_S 88.6037 0.8615
2 GF2_Corr_D_E_M 88.5220 0.8605
3 GF2_Corr_D_M_S 88.4403 0.8596
4 GF2_Corr_E_M_S 88.2157 0.8568
5 GF2_D_E_M_S 88.0795 0.8552
6 GF2_Corr_E_M 87.8889 0.8529
7 GF2_Corr_M_S 87.8685 0.8527
8 GF2_D_E_M 87.8685 0.8526
9 GF2_D_M_S 87.7323 0.8510
10 GF2_E_M_S 87.6438 0.8499
11 GF2_Corr_D_M 87.0175 0.8419
12 GF2_Corr_D_S 82.4631 0.7850
13 GF2_Corr_D_E_S 82.3678 0.7839
14 GF2_Corr_D_E 82.2793 0.7827
15 GF2_D_E_S 82.0069 0.7792
16 GF2_Corr_E_S 81.9525 0.7787

Although with an increasing number of layers, the improvement in the highest ac-
curacy gradually becomes weaker, the number of texture overlays seems to be positively
correlated with classification accuracy. To verify whether this relationship still exists when
more layers are added, we will try to add more layers.

Table 9 compares the overall accuracy and Kappa coefficient of seven different multiple-
texture combination datasets for lithological classification. The results indicate that adding
more textures does not always lead to better accuracy. Except for the GF2_Corr_D_E_H_M_S
(88.6922%) dataset, which had slightly higher accuracy than GF2_Corr_D_E_M_S (88.6037%),
the accuracy of the other datasets decreased as more textures were added and was lower
than GF2_Corr_D_E_M_S. However, the poor performance of the texture combinations of
Contrast, Homogeneity, and Variance themselves may be one of the reasons for the decrease
in overall accuracy. Examples of GF2_Con (79.8080%), GF2_V (79.3791%), and GF2_Con_V
(79.9033%) show that using the combination of Contrast + Variance produces higher accuracy
than using either individually. However, the results of GF2_Con_Corr_D_E_M_S (88.4335%),
GF2_Corr_D_E_M_S_V (88.4267%), and GF2_Con_Corr_D_E_M_S_V (88.1544%) indicate that
the accuracy after combining Contrast + Variance was lower than using either individually,
suggesting that the main reason for the decrease in accuracy was due to stacking too many
layers of data. In summary, the number of layers of stacked textures needs to be controlled
within a reasonable range, as exceeding this range can result in a decline in performance.

Table 9. The lithological classification accuracies of seven different datasets.

Ranking Dataset Overall Accuracy (%) Kappa Coefficient

1 GF2_Corr_D_E_H_M_S 88.6922 0.8626
2 GF2_Corr_D_E_H_M_S_V 88.4403 0.8595
3 GF2_Con_Corr_D_E_M_S 88.4335 0.8594
4 GF2_Corr_D_E_M_S_V 88.4267 0.8593
5 GF2_Con_Corr_D_E_H_M_S 88.4131 0.8592
6 GF2_Con_Corr_D_E_H_M_S_V 88.1612 0.8561
7 GF2_Con_Corr_D_E_M_S_V 88.1544 0.8560

3.4. Lithological Classification Based on PCA and ICA Datasets

PCA and ICA were used to process GF-2 data, resulting in PCA and ICA datasets.
The texture combination experiment was conducted using the PCA and ICA datasets
as replacements for the original GF-2 data, evaluating the effects of PCA and ICA on
lithological classification and the performance of different combination methods.
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Figure 7 shows the results of lithological classification using the support vector ma-
chine classification method for PCA, ICA, and GF2. Table 10 compares the overall accuracy
and Kappa coefficients of lithological classification for the three datasets. The results
indicate that, compared to GF2 (74.6681%), both PCA (75.6553%) and ICA (74.7634%) in-
creased the classification accuracy. This suggests that PCA and ICA processing indeed aid
lithological classification.
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Table 10. The lithological classification accuracies of different datasets.

Processing Method Overall Accuracy (%) Kappa Coefficient

PCA 75.6553 0.7015
ICA 74.7634 0.6891
GF2 74.6681 0.6869

Figure 8 shows the results of lithological classification using the support vector ma-
chine classification method for different texture datasets processed by PCA. Figure 9 shows
the corresponding results for ICA. Table 11 compares the overall accuracy of lithological
classification for different datasets of GF2, PCA, and ICA. The results indicate that when
combining textures, the dataset accuracy of both PCA and ICA is higher than that of GF2
with the corresponding textures. Although PCA alone has a higher accuracy (75.6553%)
than ICA (74.7634%), when textures are combined, PCA and ICA have their respective
strengths. For example, ICA_M (85.0228%) has a higher accuracy than PCA_M (83.0281%).
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Additionally, unlike GF2_D, which had the highest accuracy among GF2’s texture combina-
tions, PCA_E and ICA_E had the highest accuracies in their respective texture combinations.
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Table 12 compares the overall accuracy of lithological classification for different dual-
texture datasets of GF2, PCA, and ICA. Due to the poor performance of Contrast and
Variance texture combinations, they were not included in this experiment. The results show
that the datasets of both PCA and ICA perform better than that of GF2, with PCA_E_M
(90.6120%) having the highest accuracy among all 45 datasets. Generally, dataset perfor-
mance was slightly better for PCA than ICA, particularly for high-accuracy combinations
such as PCA_E_M (90.6120%). In contrast, the feature of ICA datasets lies in their con-
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sistency, as there is not much variation between the performance of different texture
combinations.

Table 11. The comparison of lithological classification accuracies of different datasets.

Dataset Overall
Accuracy (%) Dataset Overall

Accuracy (%) Dataset Overall
Accuracy (%)

GF2_Con 79.8080 PCA_Con 79.9850 ICA_Con 79.8693
GF2_Corr 77.1257 PCA_Corr 80.8632 ICA_Corr 81.0130

GF2_D 82.5311 PCA_D 84.9888 ICA_D 85.1113
GF2_E 81.5712 PCA_E 86.5546 ICA_E 85.9419
GF2_H 80.6045 PCA_H 85.5810 ICA_H 84.7369
GF2_M 81.1151 PCA_M 83.0281 ICA_M 85.0228
GF2_S 81.3125 PCA_S 86.0099 ICA_S 85.7649
GF2_V 79.3791 PCA_V 79.6923 ICA_V 80.1620

Table 12. The comparison of lithological classification accuracies of 45 different datasets.

Dataset Overall
Accuracy (%) Dataset Overall

Accuracy (%) Dataset Overall
Accuracy (%)

GF2_Corr_D 82.0546 PCA_Corr_D 85.7308 ICA_Corr_D 86.0372
GF2_Corr_E 81.9865 PCA_Corr_E 86.8950 ICA_Corr_E 86.3912
GF2_Corr_H 81.8776 PCA_Corr_H 86.6431 ICA_Corr_H 85.9078
GF2_Corr_M 84.3488 PCA_Corr_M 86.7248 ICA_Corr_M 85.9010
GF2_Corr_S 81.6325 PCA_Corr_S 86.7792 ICA_Corr_S 86.3095

GF2_D_E 81.8844 PCA_D_E 86.1801 ICA_D_E 86.0916
GF2_D_H 81.3262 PCA_D_H 85.2747 ICA_D_H 84.8322
GF2_D_M 86.5069 PCA_D_M 88.7943 ICA_D_M 88.2157
GF2_D_S 81.9184 PCA_D_S 85.8057 ICA_D_S 86.3163
GF2_E_H 81.6938 PCA_E_H 86.1938 ICA_E_H 86.0440
GF2_E_M 87.1741 PCA_E_M 90.6120 ICA_E_M 88.8216
GF2_E_S 81.4555 PCA_E_S 86.1189 ICA_E_S 85.6015

GF2_H_M 86.3435 PCA_H_M 89.4887 ICA_H_M 88.2225
GF2_H_S 81.2649 PCA_H_S 85.9078 ICA_H_S 86.1189
GF2_M_S 86.9766 PCA_M_S 90.4691 ICA_M_S 88.6786

Figure 10 and Table 13 present a comparison of the overall accuracies for lithologi-
cal classification using different multiple-texture datasets, including GF2, PCA, and ICA.
Undoubtedly, both the PCA and ICA datasets still outperform the GF2 dataset, with the
PCA dataset consistently achieving higher overall accuracy compared to the ICA dataset.
PCA_Corr_E_M (91.2860%) performs the best among all triple-texture combination datasets,
while PCA_Corr_E_M_S (91.4562%) achieves the best performance among all quadruple-
texture combination datasets. The slight difference between them indicates that the effect
of texture combination on classification accuracy is small after triple combination. How-
ever, the accuracy of the quintuple texture combination PCA_Corr_D_E_M_S (91.3813%)
decreases instead of increasing compared to PCA_Corr_E_M_S (91.4562%), which suggests
that excessive texture combination not only increases computational complexity but also
leads to reduced accuracy. Furthermore, the poor performance of Dissimilarity texture in
the PCA dataset and the negative impact caused by its combination with other textures are
observed. Continuing to combine textures on the basis of the quintuple texture combination
will further demonstrate the drawbacks of excessive texture combination.
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Table 13. The comparison of lithological classification accuracies of 48 different datasets.

Dataset Overall Accuracy
(%) Dataset Overall Accuracy

(%) Dataset Overall Accuracy
(%)

GF2_Corr_D_E 82.2793 PCA_Corr_D_E 86.6431 ICA_Corr_D_E 87.0515
GF2_Corr_D_M 87.0175 PCA_Corr_D_M 89.5568 ICA_Corr_D_M 88.9577
GF2_Corr_D_S 82.4631 PCA_Corr_D_S 86.5818 ICA_Corr_D_S 87.1060
GF2_Corr_E_M 87.8889 PCA_Corr_E_M 91.2860 ICA_Corr_E_M 89.0394
GF2_Corr_E_S 81.9525 PCA_Corr_E_S 86.7248 ICA_Corr_E_S 87.1060
GF2_Corr_M_S 87.8685 PCA_Corr_M_S 91.1771 ICA_Corr_M_S 89.0666

GF2_D_E_M 87.8685 PCA_D_E_M 90.5031 ICA_D_E_M 89.0666
GF2_D_E_S 82.0069 PCA_D_E_S 85.6219 ICA_D_E_S 86.1052
GF2_D_M_S 87.7323 PCA_D_M_S 90.4759 ICA_D_M_S 89.1279
GF2_E_M_S 87.6438 PCA_E_M_S 90.9865 ICA_E_M_S 88.7603

GF2_Corr_D_E_M 88.5220 PCA_Corr_D_E_M 91.2043 ICA_Corr_D_E_M 89.4683
GF2_Corr_D_E_S 82.3678 PCA_Corr_D_E_S 86.4184 ICA_Corr_D_E_S 87.0583
GF2_Corr_D_M_S 88.4403 PCA_Corr_D_M_S 91.3473 ICA_Corr_D_M_S 89.5977
GF2_Corr_E_M_S 88.2157 PCA_Corr_E_M_S 91.4562 ICA_Corr_E_M_S 89.1347

GF2_D_E_M_S 88.0795 PCA_D_E_M_S 90.7209 ICA_D_E_M_S 88.8692
GF2_Corr_D_E_M_S 88.6037 PCA_Corr_D_E_M_S 91.3813 ICA_Corr_D_E_M_S 89.5432

Figure 11 and Table 14 present a comparison of the overall accuracies for lithologi-
cal classification using different multiple-texture datasets, including GF2, PCA, and ICA.
The results demonstrate that the accuracy of various datasets has stabilized after com-
bining multiple textures. All PCA datasets in the table have lower accuracy than the
quintuple texture combination PCA_Corr_D_E_M_S (91.3813%) mentioned in previous
paragraphs, while the GF2 and ICA datasets, except for GF2_Corr_D_E_H_M_S (88.6922%)
and ICA_Corr_D_E_H_M_S (89.6385%), have lower accuracy compared to their corre-
sponding GF2_Corr_D_E_M_S (88.6037%) and ICA_Corr_D_E_M_S (89.5432%). Gen-
erally speaking, the number of texture combinations needs to be controlled within a
reasonable range.
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Table 14. The comparison of lithological classification accuracies of 21 different datasets.

Dataset Overall
Accuracy (%) Dataset Overall

Accuracy (%) Dataset Overall
Accuracy (%)

GF2_Con_Corr_D_E_M_S 88.4335 PCA_Con_Corr_D_E_M_S 91.0613 ICA_Con_Corr_D_E_M_S 89.2845
GF2_Corr_D_E_H_M_S 88.6922 PCA_Corr_D_E_H_M_S 91.2860 ICA_Corr_D_E_H_M_S 89.6385
GF2_Corr_D_E_M_S_V 88.4267 PCA_Corr_D_E_M_S_V 91.0545 ICA_Corr_D_E_M_S_V 89.2777

GF2_Con_Corr_D_E_H_M_S 88.4131 PCA_Con_Corr_D_E_H_M_S 91.0613 ICA_Con_Corr_D_E_H_M_S 89.3390
GF2_Con_Corr_D_E_M_S_V 88.1544 PCA_Con_Corr_D_E_M_S_V 90.7414 ICA_Con_Corr_D_E_M_S_V 89.1211

GF2_Corr_D_E_H_M_S_V 88.4403 PCA_Corr_D_E_H_M_S_V 91.0613 ICA_Corr_D_E_H_M_S_V 89.3458
GF2_Con_Corr_D_E_H_M_S_V 88.1612 PCA_Con_Corr_D_E_H_M_S_V 90.8094 ICA_Con_Corr_D_E_H_M_S_V 89.1824

Table 15 presents the relevant results of the accuracy assessment for the PCA_Corr_E_M
dataset mentioned earlier using geological maps. However, the classification accuracy
using geological maps is lower compared to using testing samples. This could be attributed
to the various limitations associated with digitized geological maps, leading to some uncer-
tainty in the information. In contrast, testing samples provide more accurate information.
Furthermore, considering the remote sensing limitations discussed earlier, this level of
accuracy is reasonable.

Table 15. The classification accuracies of PCA_Corr_E_M dataset using geological map.

Overall Accuracy (%) 56.8237

Kappa coefficient 0.4146
Class name Producer accuracy (%) User accuracy (%)
Water body 89.97 98.37

Gravelly clay 44.76 62.91
Flood plain 70.04 44.90

Syenogranite 28.82 45.64
Granodiorite 60.84 75.60

Monzonitic granite 45.36 14.39
Alkali granite 50.08 35.05
Quartz diorite 45.53 20.99

4. Discussion

In this study, different methods were used to classify lithology with GF-2 data, and the
results showed that the support vector machine had the highest overall accuracy. Therefore,
support vector machine was used for further research.
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This study investigates the impact of eight GLCM-defined texture indices on litho-
logical classification. The experimental findings demonstrate the superiority of datasets
incorporating arbitrary texture overlays on GF-2 data over those using GF-2 data alone.
This suggests a positive influence of all eight texture indices on lithological classification.
Notably, the GF2_D dataset exhibited the highest accuracy (82.5311%) due to its sensitiv-
ity to grayscale changes. For instance, the Dissimilarity index effectively identifies the
Buildings class by leveraging the distinctive grayscale variations associated with artificial
structures. Compared to other datasets, GF2_D displayed higher producer and user ac-
curacy for the Buildings class, except for the user accuracy of the GF2_Con dataset. This
discrepancy arises from the exponential weighting employed by the Contrast index, making
it more responsive to grayscale changes and thereby increasing user accuracy. Nevertheless,
excessive sensitivity to grayscale variations can result in subpar classification performance
for most classes, thus explaining the relatively low overall accuracy of the GF2_Con dataset.

The Entropy and Second Moment indices serve as complementary measures to assess
the regularity of grayscale distribution, albeit from contrasting perspectives. Consequently,
GF2_E and GF2_S exhibit consistent overall and individual class accuracy. Among them,
GF2_M demonstrates the most stable performance, displaying a stable improvement in
classification accuracy across various classes. This stability can be attributed to the smooth-
ing filtering effect of the Mean index, which effectively eliminates noise and yields stable
classification enhancement. On the other hand, the Homogeneity and Variance indices
reflect grayscale homogeneity and dispersion, respectively. Unlike Entropy, they are not
sensitive to grayscale distribution, resulting in the possibility of an image with a high
Variance value having a regular grayscale distribution. Experimental results validate the
superior classification performance of GF2_E compared to GF2_H and GF2_V. The Correla-
tion index evaluates the linear correlation of grayscale in images, but its direct impact on
classification appears to be insignificant, resulting in the poorest performance observed
for GF2_Corr.

Considering the distinctive characteristics of each texture index, their combination is
expected to enhance classification performance. The research findings demonstrate that
dual-texture combinations generally outperform single textures in terms of classification
accuracy. Combining the Mean index, which effectively eliminates noise, with other texture
indices resulted in higher accuracy datasets. Both the Entropy and Second Moment indices
exhibited strong performance in texture combinations, except for the GF2_E_S combination,
which suffered from mutual interference stemming from their contrasting perspectives on
grayscale distribution.

On the other hand, while the Correlation index did not demonstrate satisfactory
performance when used alone, it exhibited suitable results in dual-texture combinations.
In contrast, the Dissimilarity index showed excellent performance when used alone, but
its effectiveness in dual-texture combinations varied depending on the case. As for the
Homogeneity, Variance, and Contrast indices, neither their individual performance nor
their performance in combination met the desired standards. Therefore, these three indices
were not included in further texture combinations.

Based on the experimental results, incorporating the Mean metric proves essential
to enhance classification accuracy. The accuracy of the triple-texture dataset containing
Mean exhibits minimal variation, while the accuracy of the quadruple-texture dataset,
also including Mean, demonstrates stable performance. When the number of texture
combinations is limited to five, there seems to be a positive correlation between the number
of combinations and accuracy. However, beyond five combinations, as the number of
textures increases, the accuracy of the dataset shows a downward trend. This decline is
known as the “curse of dimensionality”, where classification performance initially improves
with increasing dimensionality but eventually deteriorates due to overfitting caused by
excessive dimensions [55,56]. To mitigate overfitting, increasing the number of training
datasets is effective. However, as the dimensionality increases, the required number of
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training datasets also increases rapidly while the amount of data is limited. Consequently,
selecting an appropriate number of layers is crucial in practical classification scenarios.

The paper also explores the impact of PCA and ICA on lithological classification,
evaluating their effectiveness in combination with different textures. Experimental findings
reveal that datasets combining PCA or ICA with textures achieve higher classification
accuracy compared to those combining GF2 with corresponding textures. Among these
approaches, PCA displays superior performance in high-accuracy texture combination
datasets compared to ICA. ICA has the characteristic that accuracy changes little between
various combinations.

Multispectral data are typically collected to acquire spectral information in specific
wavelength bands, which reflect the fundamental spectral characteristics of objects on
the Earth’s surface. Through the analysis and pattern recognition of spectral information,
it is possible to classify and identify different types of rocks. Multispectral sensors are
cost-effective and have higher spatial resolution, making data acquisition and processing
relatively straightforward. As a result, multispectral data finds wide applications in remote
sensing-based lithological classification and has reached a relatively mature stage of de-
velopment [57–66]. However, there is still untapped potential for further advancements in
the use of multispectral data in lithological classification. With continuous improvements
in remote sensing technology and image processing algorithms, the application of multi-
spectral data is becoming more accurate and reliable. For instance, the application of more
suitable machine learning methods can enhance the accuracy of lithological classification
results. Additionally, combining multispectral data with data processed through different
algorithms can further increase the value of multispectral data in lithological classification.

The integration of multispectral data with texture data, PCA data, and ICA data for
lithological classification is rare in previous studies. In this research, the combination of
multispectral data, texture data, PCA data, and ICA data is explored, and the application
value of their integration in lithological classification is investigated. The comprehensive
utilization of multiple data sources contributes to improved accuracy and reliability in
lithological classification, providing more reliable information support for geological re-
search and resource development. Due to experimental conditions and time limitations,
only one study area was selected, and only a subset of texture defined by GLCM was used,
which limits the scope of our study.

Despite being in a relatively mature stage of development, there are still new trends
emerging in the remote sensing lithological classification of multispectral data. For instance,
in the future, we can further integrate data from other sensors, such as radar, to extract
additional feature information and enhance the discriminative ability of multispectral
data in lithological classification. Additionally, the adoption of high-resolution image
decomposition techniques can be employed to decompose and reconstruct multispectral
data, aiming to achieve results and accuracy closer to that of hyperspectral data.

5. Conclusions

This study applies a support vector machine to classify lithology in the research area of
Jixi City, Heilongjiang Province, China, using GF-2 data. The research aims to evaluate the
impact of different texture indices and combinations on lithological classification. Addition-
ally, the effects of combining PCA and ICA with textures on lithological classification were
investigated. Based on the experimental results, the following conclusions were drawn:

(1) In this study, the support vector machine was most suitable for classifying GF-2 data
for lithological classification. In addition to this, neural network classification was
superior to minimum distance classification and maximum likelihood classification.

(2) When GF-2 data were combined with single-texture data, the accuracy of datasets
combining GF-2 data with any texture generally surpassed that of using GF-2 data
alone. Notably, the GF2_D(82.5311%) dataset incorporating the Dissimilarity index
achieved the highest overall accuracy, while the GF2_M(81.1151%) dataset employing
the Mean index demonstrated stable accuracy improvement for each class.
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(3) The combination of GF-2 data with multiple textures generally resulted in higher
classification accuracy compared to using a single texture. The Mean index played a
pivotal role in enhancing dataset accuracy. However, excessive texture overlap led
to reduced classification accuracy. Considering the performance and limitations of
training datasets, utilizing a triple-texture dataset is a reasonable option. In the triple-
texture dataset, the GF2_Corr_E_M dataset had the highest accuracy of 87.8889%.

(4) Both PCA and ICA had a positive effect on the accuracy of lithological classifica-
tion, with PCA performing better than ICA in high-accuracy texture combination
datasets. The accuracy of PCA_Corr_E_M (91.2860%) improved by 3.3971% relative
to GF2_Corr_E_M (87.8889%).

Through the integration of multiple data sources, this study holds the potential to
enhance the accuracy of lithological classification. Texture data can provide information
about the morphological characteristics of rock surfaces, while PCA and ICA can extract
the principal and independent components from the original data, further enhancing the
feasibility and effectiveness of classification. Lithological classification plays a vital role in
geological investigations and resource exploration. By comprehensively utilizing diverse
data sources for lithological classification, it can provide more accurate and comprehensive
geological information for geological investigations and resource exploration, offering a
scientific basis for related decisions.

This article only studied the effects of textures defined by GLCM on lithological
classification. In future research, it will be possible to compare the effects of different
definitions of texture on lithological classification. Moreover, GF-2 data can be combined
with DEM data, gravity-magnetic data, and other multispectral data for further study on
the impact of different combinations on lithological classification.
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