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Abstract: As a vital ecological barrier in China, Yellow River Basin (YRB) is strategically significant
for China’s national development and modernization. However, YRB has fragile ecosystems, and
is sensitive to climatic change. Extreme climate events (e.g., heavy precipitation, heatwaves, and
extreme hot and cold) occur frequently in this basin, but the implications (positive and negative
effects) of these events on vegetation dynamics remains insufficiently understood. Combing with net
primary productivity (NPP), the normalized difference vegetation index (NDVI) and extreme climate
indexes, we explored the spatio–temporal characteristics of plants’ growth and extreme climate,
together with the reaction of plants’ growth to extreme climate in the Yellow River Basin. This study
demonstrated that annual NPP and NDVI of cropland, forest, and grassland in the study region all
revealed a climbing tendency. The multi-year monthly averaged NPP and NDVI were characterized
by a typical unimodal distribution, with the maximum values of NPP (66.18 gC·m−2) and NDVI (0.54)
occurring in July and August, respectively. Spatially, multi–year averaged of vegetation indicators
decreased from southeast to northwest. During the study period, carbon flux (NPP) and vegetation
index (NDVI) both exhibited improvement in most of the YRB. The extreme precipitation indexes
and extreme high temperature indexes indicated an increasing tendency; however, the extreme low
temperature indexes reduced over time. NPP and NDVI were negatively associated with extreme
low temperature indexes and positively correlated with extreme high temperature indexes, and
extreme precipitation indicators other than consecutive dry days. Time lag cross–correlation analysis
displayed that the influences of extreme temperature indexes on vegetation indexes (NPP and NDVI)
were delayed by approximately six months, while the effects of extreme precipitation indexes were
immediate. The study outcomes contribute to our comprehension of plants’ growth, and also their
reaction to extreme climates, and offer essential support for evidence–based ecological management
practices in the Yellow River Basin.

Keywords: normalized difference vegetation index; net primary productivity; ecological environ-
ment; extreme climate; Yellow River Basin

1. Introduction

Vegetation, as many studies have shown, performs an essential role in the transaction
of materials and energy [1] between atmosphere and land [2], acting as a link between the
soil, water, and atmosphere [3,4]. By doing so, it is able to maintain the stability of the
terrestrial ecosystems. However, these ecosystems are undergoing significant changes due
to global climatic change, which can potentially intensify the frequency and geographic
scope of extreme events, making it a major concern for vegetation. As such, identifying
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trends in vegetation growth and evaluating the influence of extreme climate on ecosystem
are of great theoretical materiality in assessing the ecological environment.

The temperature of terrestrial surface increased by approximately 1.09 ◦C in the
period from 2011 to 2020 compared to the industrial revolution [5]. Under global warming,
extreme high temperature episodes have increased significantly in over 70% of the world,
whilst extreme low temperature episodes have reduced noticeably in the past 50 years [6].
Meanwhile, extreme precipitation displayed an increase, although which areas might be
affected was highly uncertain [7]. For instance, in Northwest China, the high temperature
days increased, but the low temperature days and diurnal temperature range diminished,
along with a decline in the extreme precipitation [8]. The extreme temperature indexes
and extreme cold indexes have diminished in the Yangtze River basin, while the warm
indexes have increased [9]; also the intenseness and frequency of extreme precipitation
have increased [10]. Compared to average climatic conditions, extreme climate events
are more destructive and catastrophic [11], and ecosystems are much more vulnerable to
extreme climate change [12,13]. Therefore, it is urgent to explore changes in vegetation
ecosystems due to extreme climates. Previous studies found that extreme climates can
affect food production [14] and plant communities [15]. Extreme precipitation may lead to
an increase in anaerobic respiration in plant roots, which is not conducive to vegetation
growth [16]. Additionally, extreme climate events can affect the growth period of vegetation.
For instance, a 1 ◦C increase in the highest temperature from 1982 to 2011 increased the
leaf spreading period in Europe by 4.7 days and in the United States by 4.3 days [17].
Therefore, investigating the connection between extreme climate episodes and vegetation
is pivotal for a better awareness and prediction of the influence of extreme climate episodes
on ecosystems.

Satellite remote sensing is perfectly adapted for vegetation dynamics [18], land surface
temperature monitoring [19], and modelling trends from earth observation data [20], and
it supplies multi–decadal observations in a range of spatio–temporal scales. Remote
sensing has the capacity to enhance knowledge and administration of earth’s environmental
variables. Many studies focused on the impacts of the extreme climate on terrestrial
ecosystems utilizing multi–source remote sensing data and diverse extreme climate indexes.
Studies on extreme climate events on vegetation growth in different regions are summarized
in Table 1. Similar studies were conducted in diverse regions based on various datasets
and methods, which displayed different founds. Normalized difference vegetation index
(NDVI) was broadly used on remote sensing dataset to describe plants’ growth. Net primary
production (NPP) depicts the amount of atmospheric C fixed by plants and accumulated
as biomass, thus mirroring the plant growth condition and ecosystem health. Therefore,
the ecological significance of the NPP and NDVI are distinct. We selected NPP and NDVI
as the two vegetation indicators in this manuscript. Correlation analysis was universally
utilized to discuss the relation between vegetation dynamics and extreme climate indexes.

Table 1. Summary of related studies about the extreme climate on vegetation growth.

Study Vegetation Data
Sources Extreme Climate Study Period Location Methods

Zhang et al. [21]

NDVI and
solar-induced
chlorophyll

fluorescence (SIF)

Drought, extreme wet,
extreme hot and cold 2001–2018 Tibetan Plateau

Event coincidence
analysis and

significant test

Mo et al. [22] NDVI
15 extreme temperature
indexes and 10 extreme

precipitation indexes
1982–2015 China Partial correlation

analysis
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Table 1. Cont.

Study Vegetation Data
Sources Extreme Climate Study Period Location Methods

He et al. [23] NDVI

Average precipitation,
temperature and

potential
evapotranspiration; five

extreme precipitation
and temperature change

1982–2015 Global drylands

Linear regression
method; partial

correlation
analysis; Pearson

correlation
analysis;

geographical
detector model

Wei et al. [24] Leaf area index (LAI)

extreme hot and wet;
extreme hot and dry;

extreme cold and wet;
extreme cold and

dry climates

1982–2016 Middle–to–high
latitudes in Asia

Standardized
anomalies

Yan et al. [25] NPP
11 extreme temperature
indexes and 4 extreme
precipitation indexes

1982–2019 Yunnan plateau Geographic
detector

Yellow River Basin, which plays a crucial part in China’s ecological security as an
important ecological barrier, is extremely susceptible to climate change and its ecological
environment is fragile. Numerous studies have showed that global changes have led to
a growth in temperature and strong spatial heterogeneity of precipitation in the Yellow
River Basin [26]. Vegetation in the Yellow River Basin is also highly susceptible to climate
change [27]. Previous studies have demonstrated an increase in extreme temperature
indexes [28] and vegetation coverage [29,30] in most parts of the Yellow River Basin over
the past few decades. The asymmetric warming in temperature during the day and night
in the Yellow River Basin has accelerated the growing season and delayed the ending
period [31]. Despite previous research on dynamics in vegetation coverage and climate
in the Yellow River Basin, the vegetation dynamics and extreme climate for a long time
series, as well as the influence assessments of climate extremes on terrestrial surface plants
remains poorly understood, especially in zones with strong anthropogenic activities and
climate variability.

In lieu of concentrating solely on either vegetation dynamics or climate change, this
study analyzed plants’ growth utilizing multi–type remote sensing indicators, investigated
the extreme climate trend based on multiple types of indicators, and explored the nexus
between climate extremes and plants’ growth. By integrating cross–sensor satellite observa-
tions of the normalized difference vegetation index (NDVI) and net primary production
(NPP) datasets, together with 27 extreme climate indexes, the overarching objectives of
this study were (1) to map spatio–temporal changes in vegetation dynamics utilizing
multi–type remote sensing data; (2) to assess the spatial and temporal changes in extreme
climate indexes; and (3) to explore the spatial heterogeneity of the correlation between
extreme climate and plant change. Our findings are remarkable for improving sustainable
development of the social economy and ecological environment in the Yellow River Basin.

2. Materials and Methods
2.1. Study Area

Yellow River Basin (hereinafter abbreviated as YRB) located in Central Northern
China, covers a significant geographical area spanning latitudinal range of 32–42◦N and
longitudinal range of 96–119◦E, at elevations between −13 and 6253 m (Figure 1). Yellow
River starts from the Bayankala Mountain foothills of Tibetan Plateau, and flows for
5464 km, before eventually discharging into the Bohai Sea, passing through nine provinces.
YRB experiences a continental climate with arid, semi-arid, and semi–humid climatic
changes. The temperature fluctuation throughout the year is significant, and the multi–year
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average precipitation stands at approximately 451.7 mm [32]. Grassland area covers the
largest portion of the YRB, mainly found in the north of the middle streams, and the upper
streams of the YRB. Forests and cultivated land are the second largest land cover classes,
primarily distributed in the southeast of the mid–streams and down–streams [33].
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Figure 1. Geographic location and DEM of the study region, and the distributions of meteorology
sites (the datum and the EPSG of the map–WGS_1984, EPSG:4326).

2.2. Materials
2.2.1. Carbon Flux Data

Net primary productivity (NPP), as a critical metric of ecosystem functioning, is central
to the storage and accumulation of carbon in ecosystems, as well as the yield of usable
products [34,35]. It is defined as the quantity of organic matter that greeneries accumulate
on Earth’s surface. The satellite remote sensing NPP data (1986–2018) utilized in this
study were obtained from an 8–day/0.05◦ raster dataset supplied by the National Earth
System Science Data Center (http://www.geodata.cn, accessed on 1 July 2022). The dataset
was estimated by utilizing the multisource dataset synergized quantitative-net primary
productivity improved vegetation productivity estimation model. The NPP products were
generated basing on fraction of photosynthetically active radiation (FPAR) products, global
land surface satellite (GLASS) leaf area index product, and ERA Interior meteorological
data, all of which have high quality [36–38]. Previous studies found this dataset is highly
applicable and reliable [37]. This dataset performed well when compared with FLUXNET
data (with R2 = 0.56 and RMSE = 2.78 gC/m2d) [38]. The monthly and annual NPP dataset
with 5 km spatial resolution were calculated from the 8-day dataset utilizing ArcMap and
python platform.

http://www.geodata.cn
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2.2.2. Vegetation Indicator Dataset

Normalized difference vegetation index (NDVI) represents vegetation coverage, and
can accurately mirror the distribution and changes in vegetation [3,39]. We utilized the
GIMMS–NDVI dataset (1986–2018) obtained from the National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/, accessed on 18 June 2022), and MODIS–NDVI (2001–2021) data
obtained from the MODIS vegetation index product of the Earth Information Center at
NASA Headquarters (https://earthdata.nasa.gov/, accessed on 10 August 2022). The
GIMMS–NDVI dataset has grids at a spatial resolution of 1/12◦ × 1/12◦ and a 8-day
timescale. The MODIS NDVI, with a spatial resolution of 0.05◦ and a temporal resolution of
16-day, was processed based on the quality assessment data, removing the values with low
pixel reliability. And gaps in the MODIS NDVI because of removal of values were filled
utilizing linear interpolation. To ensure consistency in the spatial resolution of the two
datasets, the nearest neighbor resampling approach was applied to resample the MODIS–
NDVI dataset to 1/12◦ spatial resolution. Then, a grid-level linear regression model was
established for the GIMMS–NDVI and MODIS–NDVI annual datasets during the same
time period (2001–2015). Finally, the MODIS–NDVI data and the linear regression model
were utilized to calculate the value of GIMMS–NDVI from 2016 to 2021 [40] based on
matlab codes. Furthermore, monthly and annual NDVI with 1/12◦ spatial resolution were
calculated based on ArcMap 10.2 and python 3.11.1 software.

2.2.3. Land Use and Land Cover (LULC) Data

LULC and its change influences the global energy balance and biogeochemical cy-
cle [41]. The LULC dataset for the years 1980, 1990, 1995, 2000, 2005, 2010, 2015, and
2020 was supplied by the Resource and Environment Science and Data Center (https:
//www.resdc.cn/, accessed on 1 May 2022). The LULC dataset comprises 1 km raster data
that mainly includes six first–level classifications, namely, grassland, forest, cropland, built–
up land, water, and bare land, and has 25 secondary classifications. To avoid interference
with the annual changes in land use, only areas with no change in vegetation types were
analyzed. Specifically, the analysis only focused on whether there were any changes in
land use at the pixel level for the eight images, and if there was a change, it did not include
the annual evolution of vegetation coverage for cropland, forest, and grassland. Among
these, cropland, forest, and grassland are the primary vegetation cover. Therefore, this
study mainly analyzed the changes in these three vegetation ecosystems.

2.2.4. Meteorological Observation Data

There are 83 meteorological observation sites in the YRB (as shown in Figure 1)
spanning from 1986 to 2020, which were supplied by the China Meteorological Data Service
Center, National Meteorological Information Center (http://data.cma.cn/, accessed on 10
July 2021). The daily precipitation and daily temperature (including of mean temperature,
minimum temperature, and maximum temperature) datasets were utilized in this paper to
calculate the climate extreme indexes. We selected 27 extreme climate indexes, consisting
11 extreme precipitation indexes and 16 extreme temperature indexes [42]. The specific
meaning of each extreme climate index can be found in Table 2.

Table 2. Descriptions of the utilized extreme climate indexes.

Index Descriptive Name Definition Units

Extreme
temperature

indexes

ID0 Icing days Annual count where daily maximum temperature < 0 ◦C days
FD0 Frost days Annual count where daily minimum temperature < 0 ◦C days

TX10p Cold days Percentage of days when daily maximum temperature
< 10th percentile days

TN10p Cold nights Percentage of days when daily minimum temperature
< 10th percentile days

https://data.tpdc.ac.cn/
https://earthdata.nasa.gov/
https://www.resdc.cn/
https://www.resdc.cn/
http://data.cma.cn/


Remote Sens. 2023, 15, 4683 6 of 21

Table 2. Cont.

Index Descriptive Name Definition Units

Extreme
temperature

indexes

CSDI Cold spell duration
index

Annual count of days with at least 6 consecutive days
when TN < 10th percentile days

SU25 Summer days Annual count where daily maximum temperature > 25 ◦C days
TR20 Tropical nights Annual count where daily minimum temperature > 20 ◦C days

TX90p Warm days Percentage of days when daily maximum temperature
> 90th percentile days

TN90p Warm nights Percentage of days when daily minimum temperature
> 90th percentile days

WSDI Warm spell duration
index

Annual count of days with at least 6 consecutive days
when daily maximum temperature > 90th percentile days

TNn Minimum TN Monthly minimum value of daily minimum temperature ◦C
TNx Maximum TN Monthly maximum value of daily minimum temperature ◦C
TXn Minimum TX Monthly minimum value of daily maximum temperature ◦C
TXx Maximum TX Monthly maximum value of daily maximum temperature ◦C

DTR Diurnal temperature
range

Annual mean difference between daily maximum
temperature and daily minimum temperature

◦C

GSL Growing season length
Annual count between first span of at least 6 days with

daily mean temperature >5 ◦C and first span after July 1 of
6 days with daily mean temperature <5 ◦C

days

Extreme
precipitation

indexes

R10mm Number of heavy
precipitation days Annual count of days when daily precipitation > 10 mm days

R20mm Number of heavy
precipitation days Annual count of days when daily precipitation > 20 mm days

R25mm Number of heavy
precipitation days Annual count of days when daily precipitation > 25 mm days

R95p Very wet days Number of days with daily precipitation > 95th percentile mm
R99p Extremely wet days Number of days with daily precipitation > 99th percentile mm

RX1day Max 1 day precipitation
amount Monthly maximum 1–day precipitation mm

RX5day Max 5 day precipitation
amount Monthly maximum consecutive 5–day precipitation mm

SDII Simple daily intensity
index

Annual total ≥ 1mm precipitation divided by the number
of wet days mm/d

PRCPTOT Annual total wet day
precipitation Annual total precipitation in wet days mm

CDD Consecutive dry days Maximum number of consecutive days with daily
precipitation < 1 mm days

CWD Consecutive wet days Maximum number of consecutive days with daily
precipitation ≥ 1 mm days

2.3. Methodology
2.3.1. Tendency Analysis

The combined application of Theil–Sen median slope (Sen’ slope) and Mann–Kendall
test (MK) methods were widely exploited to discuss the spatio–temporal change trend of
NPP or NDVI [40,43,44].

Sen’ slope is an approach for steady and nonparametric statistical trend computation.
This method can avoid the effect of outlier value or measurement errors, and is not easily
disturbed by outliers [45]. Nevertheless, we removed outliers before trend analysis and
interpolated gaps using linear regression. The equation for Sen’ slope is defined as follows:

β = Median
xj − xk

j− k
(k = 1, . . . , N; and 1 ≤ j < k ≤ n) (1)

where k, j represent the variable’s time; xk and xj are the analyzed variable value (NPP or
NDVI) at the time k and j, respectively. If β > 0, it denotes an ascending tendency in NPP
and NDVI; and if β < 0, it means a descending tendency.
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Mann–Kendall (MK) trend test is supplemented with Sen’ slope in this paper to assess
the significant change trends of a series of a variable. The MK trend test is extensively
utilized in hydro–meteorological studies [10]. The sample data of the MK test method
do not work well with unspecified distribution, and outliers can be eliminated [46]. The
calculation formula for MK is as follows:

S = ∑n−1
k=1 ∑n

j=k+1 sign
(

xj − xk
)

(2)

sign
(
xj − xk

)
=


1 (xj − xk > 0)
0
(
xj − xk = 0

)
−1 (xj − xk < 0)

(3)

Z =


S−1√
var(S)

(S > 0)

0 (S = 0)
S+1√
var(S)

(S < 0)
(4)

Z is the changing trend test statistics. xj and xk are the variables values of the time j
and k. When n > 8, S is approximately normal distributed. The mean and variance values
of S are defined as follows:

E(S) = 0 (5)

Var(S) =
n(n− 1)(2n− 5)

18
(6)

We used |Z| ≥ 1.96, which passes the 95% significance test.
Furthermore, the uncertainty in the Sen’ slope used to describe the NPP and NDVI

trends over the period of the dataset is calculated using bootstrap methods, which is an
empirical approach for estimating uncertainty, and the sampling process is simulated
many times. These uncertainties are designed to indicate the weight of observations in the
analysis convolved with the background error variance estimate.

The univariate linear regression approach was utilized herein to calculate the temporal
trends of meteorological variables. The linear regression method is a form of mathematical
regression analysis. The slope calculated from the univariate linear regression showed the
change rate of the extreme climate indexes. Slope > 0 depicted a lifting trend, and slope < 0
described a dropping trend.

2.3.2. Association Analysis Method

The association between vegetation indexes (NPP and NDVI) and the extreme climate
indexes were calculated using Spearman’s rank correlation coefficient method.

ρ =
∑m

k=1(xk − x)(yk − y)√
∑m

k=1(xk − x)2 ∑m
k=1(yk − y)2

(7)

where xk and yk depict the ranks of the positions occupied by the variable in their respec-
tive ordered samples. x and y describe the average value of the time series xk and yk,
respectively.

To further exploit the association between plants’ growth and climate extreme event, a
time–lag cross–correlation investigation approach was employed. Following the principle
of this method, the cross–correlation coefficient of extreme climate indexes and vegetation
index at each station under each time delay was calculated. Subsequently, the maximum
cross-correlation coefficient of extreme climate indexes and vegetation indexes at each
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station in the YRB and their corresponding lag time were obtained. The calculation formula
for this method is given below:

r =
∑n

k=1
(

M(k)−M
)(

N(k− L)− N
)√

∑n
k=1
(

M(k)−M
)2
√

∑n
k=1
(

N(k− L)− N
)2

(8)

where M(k) denotes the NPP and NDVI value of the k month. N(k–L) is the extreme climate
indexes value corresponding to k–L. k denotes the time. L represents the lag time. M and N
are the average values of corresponding indexes, respectively.

3. Results
3.1. Vegetation Growth Status
3.1.1. Land Use and Land Cover Change

The LULC map of 2020 (Figure 2a) revealed that grassland covered the most extensive
area, ensued by cropland and forest. The combined area of the these three vegetation cover
in 2020 was 38.53 × 104 km2, 20.58 × 104 km2, and 10.71 × 104 km2, respectively. Other
LULC, such as built–up land, bare land, and water, had smaller areas. By comparing the
LULC maps of 1985 and 2020, we identified the unchanged zones of cropland, forest, and
grassland in the YRB (Figure 2b), with an area of 4.51 × 104 km2, 6.96 × 104 km2, and
15.43 × 104 km2, respectively. Spatially, grassland was primarily distributed in the upper
streams of the YRB, whereas forest was concentrated in the midstream portion of the basin.
Cropland was primarily observed in the southeast of the midstream and in the downstream
zone of the YRB. It was worth noting that the grassland, forest, and cropland displayed in
Figure 2b were the specific zones analyzed in this study.
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EPSG:4326).

3.1.2. Spatio–Temporal Patterns of NPP and NDVI

The multi–year monthly averaged of NPP (1986–2018) and NDVI (1986–2021) across
the YRB exhibited a “single peak” pattern, as illustrated in Figure 3. Specifically, both
indexes increased from January, peaked around July and August, and then gradually
decreased. The highest values were 66.18 gC·m−2 and 0.54 for NPP and NDVI, respectively.
The changes in multi-year monthly averages of NPP and NDVI were largely similar,
reflecting the seasonal variations in vegetation growth across the YRB, characterized by
germination in spring, flourishing in summer, and defoliation in autumn. NPP had a high
and obvious connection with NDVI (R2 = 0.96, p < 0.001), which indicated two vegetation
indexes that can capture the seasonal variations of vegetation growth.
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For the YRB, NPP and NDVI values varied for forest, grassland, and cropland. Overall,
forest had the largest NPP and NDVI values, and grassland the smallest (Figure 4). During the
study period, cropland, forest, and grassland all showed increasing trends of vegetation cover
across the YRB, as depicted in Figure 4. The annual NPP and NDVI of these three vegetation
types displayed similar features and all exhibited significant upward trend. Moreover, the
annual NPP and NDVI values of forest, cropland, and grassland displayed a markedly gradient
distribution. Of note, the cropland demonstrated the fastest increase rate of NPP, with the value
of 4.13 gC/m2/a, while forest had the slowest rate at 3.09 gC/m2/a. It was different with the
forest exhibiting the fastest growth rate of NDVI at 0.0018/a, where the slowest growth rate
for grassland occurred at 0.0009/a. The comparative analysis found that different vegetation
types and vegetation indexes presented distinct change characteristics. Although the overall
distribution of NPP and NDVI was similar, the differences indicated that carbon flux data and
vegetation cover index for divergent vegetation type had different characteristics.

To further investigate the vegetation growth, we explore the spatial distribution of
carbon flux data and vegetation cover index in Yellow River Basin. The spatial pattern of
the multi–year averaged NPP value (1986–2018) in YRB ranged between 0 and 835 gC·m−2

(Figure 5a). Specifically, cropland, forest, and grassland exhibited NPP values ranging from
27 to 759 gC/m2, 41 to 829 gC/m2, and 9 to 813 gC/m2, respectively. Comparing with NPP,
we found the multi-year averaged NDVI values ranged from 0.06 to 0.69 (Figure 5b), with
cropland, forest, and grassland displaying respective NDVI values from 0.11 to 0.60, 0.09 to
0.68, and 0.06 to 0.66. The spatial allocation of both NPP and NDVI values decreased from
southeast to northwest and exhibited distinct differences between the north and south areas.
Notably, the low value regions of NPP and NDVI were mostly scattered in the western
and northern zones of YRB, while the high–value zones were predominantly assigned
across the eastern and southern zones. Furthermore, high–value NPP and NDVI largely
overlapped across different land types. For example, the high–value zone of cropland was
situated in the south of midstream and downstream areas of YRB, while the high–value
area of forest occurred in the eastern and central southern parts of midstream. Finally, the
high–value zone of grassland was discovered in the southeast of the upstream region.
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The annual change rate of NPP in YRB ranged from −13.20 to 14.60 gC·m−2·a−1

during the past thirty years (Figure 6a). Grids with an increasing trend accounted for
a vast majority of the total area, specifically 90.15%. Moreover, the significance of the
increasing zone was highest in the southeastern part of Qinghai, the southern part of
Ningxia and Gansu, and the northern part of Shaanxi, encompassing 74.90% of the total
area. Notably, the upward rate of NPP in some areas of Shaanxi–Gansu–Ningxia was the
biggest, surpassing 5 gC/m2/a. On the other hand, a decline trend was found in 7.54% of
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the whole study region, scattered primarily in the northern part of Inner Mongolia, Shanxi,
and Henan. Specifically, NPP of cropland in some parts of Henan declined, while NPP
upward trends in the Southern Shaanxi region were significantly higher than 5 gC/m2/a.
Furthermore, forest NPP was observed to be declining in certain areas of Shanxi and Henan,
while forest NPP of the south of Ningxia and Gansu, as well as the northern part of Shaanxi,
exhibited an increase that exceeded 5 gC/m2/a. In terms of grassland NPP, a decline was
documented in the Northern Inner Mongolia region, while a noticeable rise was observed
in the southeast of Qinghai.
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Figure 6. Annual change trend of NPP (a) and NDVI (b) in YRB during the study period, and the
uncertainty in the Theil–Sen slope fit of the NPP (c) and NDVI (d) trends (significant change in pixels
at the 95% level were hinted by grids, the datum, and the EPSG of the map–WGS_1984, EPSG:4326).

The annual change rate of NDVI in YRB during the study period ranged between
−0.37% and 0.65% (Figure 6b). Approximately 89.74% of the area exhibited an upward
trend, mostly distributed in provinces other than Qinghai. Significantly changing areas
accounted for 77.77% of the YRB, wherein the northern zone of Shaanxi and Shanxi and the
southern zone of Gansu displayed the highest rise trend (>0.002). In contrast, approximately
10.26% of the region showed a decline, mostly distributed in Qinghai and the southern
zone of Shaanxi. Specifically, NDVI of cropland in the eastern part of Henan was rapidly
increasing (>0.002), whereas the rise in forest NDVI in the northern part of Shanxi and
Shaanxi exceeded 0.002. With regard to grassland NDVI, most regions in Qinghai displayed
a declining trend. However, the grassland NDVI in Inner Mongolia and the central part of
Gansu displayed a slightly increasing trend (<0.002).

Figure 6c,d showed the uncertainty in the fitting of the annual NPP and NDVI change
trend. The whole area average uncertainty in the change trend fitting of NPP and NDVI
were 0.41 gC/m2/a and 0.0001, respectively. The largest fitting uncertainties occurred
across the NPP in the southern and eastern part of YRB. Here, we observed the fitting
uncertainties of NDVI were similarly distributed to those of the NPP fitting, and both had
the smallest uncertainties in the northern part of YRB.

3.2. Spatio–Temporal Patterns of Climate Extremes Indexes

As depicted in Table 3, extreme high temperature indexes, including GSL, TN90P,
TX90P, SU25, and TR20, all exhibited a significant ascending trend in the YRB. Conversely,
extreme low temperature indexes, e.g., FD0, TN10P, and TX10P, all displayed a significant
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decline trend. Moreover, the increase rate of extreme high temperature indexes was higher
than that of decrease in extreme low temperature indexes. Numerous extreme precipitation
indexes in the Yellow River Basin also revealed a significant rising trend. Specifically,
PRCPTOT and R95p increased remarkably with slope value of 2.63 and 1.33, respectively.

As depicted in Figure 7, over 75% of the extreme low temperature indexes, including
ID0, FD0, TN10P, TX10P, and CSDI, demonstrated a declining trend across the meteo-
rological sites. Conversely, most of the extreme high temperature indexes, e.g., SU25,
TR20, TN90P, TX90P, and WSDI, exhibited an upward trend, with TN90P rising as much
as 99%. Additionally, 98% of the meteorological sites showed an increase in TNx values.
Furthermore, the GSL value demonstrated a rising trend across all the meteorological sites.
With respect to extreme precipitation indexes, more than 69% of the meteorological sites
indicated an upward trend, except for CDD.
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Table 3. Inter–annual trends of extreme climate episodes in the YRB between 1986 and 2020.

Extreme Climate Indexes Index Change Slope Index Change Slope

Extreme temperature indexes

ID0 −0.12 SU25 0.32 *
FD0 −0.59 * TR20 0.25 *

TX10p −0.25 * TX90p 0.38 *
TN10p −0.35* TN90p 0.63 *
CSDI −0.06 WSDI 0.10
TNn 0.03 TNx 0.05 *
TXn −0.01 TXx 0.04 *
DTR −0.01 GSL 0.67 *

Extreme precipitation indexes

R10mm 0.09 * RX1day 0.16 *
R20mm 0.05 * RX5day 0.45 *
R25mm 0.04 * SDII 0.03 *

R95p 1.33 * PRCPTOT 2.63 *
R99p 0.60 * CDD −0.20

CWD 0.02
Note: * represents passing the significance test of 0.05.

3.3. Relationship between NPP, NDVI, and Climate Extreme Indexes
3.3.1. Relationship between NPP, NDVI, and Climate Extreme Indexes in the Yellow
River Basin

Generally, the results denoted a negative relationship between carbon flux (NPP) and
several extreme climate indexes, including ID0, FD0, TX10p, TN10p, TNn, TXn, DTR, CSDI,
and CDD of the YRB (as highlighted in Table 4). Specifically, the correlation between NPP and
FD0 was the largest, reaching−0.74. On the other hand, other extreme climate indexes showed
positive correlations with NPP, with TN90p and GSL having the highest correlation coefficients
of over 0.75. Overall, the nexus between NDVI and climate extreme indexes in YRB seemed
to be similar to the association observed between NPP and climate extreme indexes, but the
overall strength of the correlation was weaker for NPP, with correlation coefficients such as
FD0 (−0.64), TN90p (0.65), and GSL (0.63) being less pronounced than those observed for NPP.

Table 4. Correlation coefficient between NPP, NDVI, and extreme climate indexes in the YRB.

NPP NDVI NPP NDVI

Extreme temperature indexes

ID0 −0.11 −0.17 TNn −0.06 0.05
FD0 −0.74 ** −0.64 ** TNx 0.52 ** 0.41 *
SU25 0.46 ** 0.43 * TXn −0.20 −0.10
TR20 0.58 ** 0.55 ** TXx 0.22 0.19

TX10p −0.38 * −0.45 ** DTR −0.27 −0.13
TN10p −0.61 ** −0.50 ** CSDI −0.18 −0.20
TX90p 0.48 ** 0.45 ** GSL 0.75 ** 0.63 **
TN90p 0.76 ** 0.65 ** WSDI 0.18 0.25

Extreme precipitation indexes

R10mm 0.58 ** 0.48 ** RX1day 0.36 * 0.34
R20mm 0.61 ** 0.53 ** RX5day 0.49 ** 0.42 *
R25mm 0.57 ** 0.49 ** SDII 0.45 ** 0.46 **

R95p 0.58 ** 0.50 ** PRCPTOT 0.59 ** 0.48 **
R99p 0.46 ** 0.36 * CDD −0.12 −0.18

CWD 0.29 0.22

Note: * represents passing the significance test of 0.05; ** represents passing the significance test of 0.01.

On the whole, extreme temperature indexes at approximately 53.46% of meteorological
sites were positively correlated with their corresponding NPP. Conversely, FD0, TX10p,
TN10p, TNn, TXn, DTR, and CSDI exhibited a negative correlation with NPP in more
than 55% of the stations, while SU25, TR20, TX90p, TN90p, TNx, TXx, GSL, and WSDI
were positively correlated with NPP at more than 55% of stations. In Figure 8, the stations
were arranged along the ordinate from north to south and west to east, according to their
geographic location within the YRB. NPP and extreme temperature indexes demonstrated
a more positive correlation in the western region, whereas the eastern region showed
a more negative correlation. Except for CDD, all other extreme precipitation indexes
exhibited a favorable correlation with NPP, with R10mm, R20mm, R25mm, R95p, and
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PRCPTOT showing a correlation above 0.5. Roughly 78.53% of the stations exhibited a
positive relationship between carbon flux (NPP) and extreme precipitation indexes, while
21.47% showed a negative correlation. NPP was positively correlated with R10mm, R20mm,
R25mm, R95p, SDII, PRCPTOT, and CWD at more than 80% of stations. However, the
correlation in the east was weaker compared to that in the west. Most of the stations with
an absolute correlation value greater than 0.4 passed the 95% significance test.
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NDVI of each station within the YRB displayed a positive correlation with extreme
temperature indexes at around 50.38% of the stations, while 48.49% showed a negative
correlation. Regarding extreme precipitation indexes, NDVI exhibited a positive correlation
at approximately 72.18% of the stations, and a negative correlation at 27.82% of the stations.
It is worth noting that most of the stations with absolute correlation values higher than 0.4
were obvious at the 95% level, showcasing the robustness of these correlations.

The maximum cross–correlation between NPP and extreme climate indexes within
the YRB was highly consistent with the relationship between NDVI and climate extreme
indexes (Figure 9). Weak negative correlations were observed between NPP and NDVI
and TX10p and TN10p in more than 65% of stations, while weak positive correlations were
detected with TX90p and TN90p in over 63% of stations. NDVI was negatively correlated
with TNx. Around 70% of meteorological stations exhibited a positive relationship between
NPP and NDVI and TNn, TXn, DTR, RX1day, and RX5day. Figure 9b,d displayed that NPP
and NDVI within the YRB mainly coincided with the extreme climate indexes or lagged
behind them by 6 to 7 months. About 26% of meteorological stations revealed NPP or
NDVI within the same period as extreme temperature indexes, mostly displaying a positive
correlation. Approximately 14% of sites showed an NPP or NDVI lag of 6 to 7 months
compared to extreme temperature indexes, with most revealing a negative correlation.
Extreme precipitation indexes, NPP, and NDVI within the YRB shared a similar period
with around 66% of stations.
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3.3.2. Relationship between NPP, NDVI, and Climate Extreme Indexes in Vegetation Ecosystem

There are mainly three vegetation types (cropland, forest, and grassland) in the whole
YRB. We further investigated the nexus between extreme climate indexes and vegetation
indicators (NPP and NDVI) for diverse vegetation ecosystem (cropland, forest, and grass-
land) utilizing Spearman correlation coefficients, and the results are displayed in Figure 10.
The extreme precipitation indexes generally displayed positive relationship with NPP
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and NDVI, having proven influence on plants’ growth in cropland, forest, and grassland
ecosystems. NPP and NDVI in the grassland were generally negatively correlated with
FD0, TX10P, TX10P, CSDI, and DTR, indicating these indexes disturb vegetation growth.
Others extreme temperature indexes, e.g., TR20, TX90p, TX90p, WSDI, and TNx, displayed
a positive association with NPP and NDVI in the grassland ecosystem, indicating these
indexes favor grass growth. For the cropland and forest ecosystems, the relationship
between NPP/NDVI of different meteorological sites and their 16 extreme temperature
indexes varied among meteorological sites. There were positive and negative relationships
between NPP/NDVI of forest and cropland with the 16 extreme temperature indexes. The
results suggested that nexus between the vegetation growth and extreme temperature in
the cropland and forest was complex.
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4. Discussion
4.1. Vegetation Growth

Anthropogenic activities, for example, afforestation, grain–for–green project, and
implementation of watershed ecology and environmental protection policies, can contribute
to the restoration of vegetation cover [47]. Conversely, overgrazing, deforestation, cropland
loss, and urban expansion could lead to the destruction of vegetation [48]. In this study,
we focused on zones within the YRB that had not undergone changes in vegetation cover
types in past years in order to explore the vegetation growth. The predominant goal of
this operation was to exclude the influence of land use changes and human activities on
vegetation growth, and only consider the impact of climatic change on plants’ growth.
Carbon flux data (NPP) can assess plants’ biomass, and NDVI mirrors greenness change in
vegetation canopy. NPP and NDVI, as the proxies of plant vegetation herein, can describe
the plants’ growth through diverse biomes. Our analysis revealed that remote sensing
indexes (NPP and NDVI) of cropland, forest, and grassland were increasing, coherent
with previous findings [49]. Vegetation greening indicated that climate change in the YRB
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were favorable for plants’ growth (Figure 4). Furthermore, YRB has the largest grassland
area, and the cropland is second to grassland. However, remote sensing indexes (NPP and
NDVI) of cropland were larger than grassland, which was due to the arid and semi-arid
climate in the Yellow River Basin. Grassland areas are mostly rain-fed. Agricultural areas
(wheat, maize, etc.) are affected by human activities, such as irrigation, in addition to
precipitation. Spatially, the NPP and NDVI in the YRB tended to increase from northwest
to southeast (Figure 5) due to the relatively low vegetation indexes in mountainous and
desert areas in the northwest (mainly grassland), while better water and heat conditions in
the southeast (primarily forest and cropland) led to a relatively high vegetation index [50].
Carbon flux (NPP) and vegetation index (NDVI) of the YRB and its divergent vegetation
types (crop, forest, and grass) had shown a raised trend over the past decades due to
climate change. Previous research had also indicated that the primary driving factor behind
vegetation change in the YRB was climatic factors [51]. Precipitation contributes less (<26%)
to NDVI in drylands globally [52], and average temperature also dominated part of the
NDVI change [23]. From a regional perspective, the Shaanxi–Gansu–Ningxia region of the
YRB displayed a clear upward trend in carbon flux (NPP) and vegetation index (NDVI)
(Figure 6), indicating improvement in the ecological environment. However, NPP and
NDVI in the upper and downstream regions of the YRB underwent remarkable declines
because of climate change, pointing to ecological environment degradation in those regions.
The decreasing trend of NDVI in this work was in agreement with previous studies [49].
Our findings revealed that most part of crop, forest, and grass in the Yellow River Basin
displayed an increasing tendency, and parts of grids demonstrated a downward trend in
the context of climate change.

4.2. Extreme Temperature and Precipitation

Numerous studies have revealed that extreme climate displayed diverse change
characteristics that varied based on various regions [28,53]. In Southwest China, extreme
warm indexes were significantly increased, and extreme cold indexes were obviously
reduced, while extreme precipitation indexes were markedly raised [54]. Significant gain
in extreme rainfall was found in Sarawak tropical peatland, and change in minimum
temperature was higher than that of maximum temperature [55]. We found extreme
high temperature indexes in the YRB displayed an increase trend, while extreme low
temperature indexes exhibited a corresponding decrease trend (as shown in Table 3).
Previous findings had indicated that both night and day temperatures had increased due to
global warming [31]. Our analysis revealed that the decline rate of extreme low temperature
indexes was larger than the extreme high temperature indexes’ rise rate, suggesting that
night warming was significantly higher than day temperature. Additionally, we observed
a decreasing diurnal temperature range, indicating that the daily difference between high
and low temperatures became smaller. The observed increase in growing season length
indicated that global warming extended the time period suitable for vegetation growth.
While extreme precipitation indexes showed an overall increase, and the trend of change
was not significant. Extreme climate events changes were attributed to both anthropogenic
forcing and natural climate change, affecting their frequency, intensity, and duration [56–58].
Overall, our results displayed that the extreme climate change in the historical period of
the YRB was large and obvious, and the change pattern of climate extreme would be a
potential threat to its plants’ growth.

4.3. Vegetation Growth Responses to Extreme Climate

We depicted the sensitiveness of vegetation dynamics to extreme climate through
correlations between vegetation indexes (NPP and NDVI) and extreme climate indexes in
this paper. It is essential to estimate the sensitiveness of vegetation dynamics to extreme
climate as soon as possible and to decipher their nexus.

As a typical arid and semi-arid zone, Yellow River Basin’s vegetation status is deeply
affected by climate and environmental changes. Sufficient heat and moisture facilitates
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the growth of vegetation, while temperature and precipitation can directly impact the
water balance of soil, thereby affecting plants’ growth [59]. Negative correlations between
vegetation indexes (NPP and NDVI) and extreme low temperature indexes in the YRB
revealed that such weather conditions can impede the growth of vegetation. This could be
owing to the insufficient accumulation of temperature required for plants’ growth, which
can limit plant development [60] and in severe cases cause a range of low temperature
disasters. Conversely, positive correlations were observed between NPP and NDVI with
extreme high temperature indexes, which can encourage the growth of vegetation up
to a certain level. High temperatures can increase evaporation, leading to accelerated
plants’ growth and improved water use efficiency, ultimately promoting photosynthesis.
However, beyond a certain threshold, extreme high temperatures can be detrimental
to vegetation [13]. Our analysis also revealed negative correlation between NPP and
DNVI with the diurnal temperature range and positive correlations with growing season
length, indicating that the latter had a positive influence on vegetation growth, while the
former restricted it. NPP and NDVI were found to be positively correlated with extreme
precipitation, which stimulated vegetation growth by increasing soil moisture in the arid
zones, thereby improving carbonic accumulation and ecosystem productiveness. We also
found the extreme precipitation indexes exhibited positive correlation with NPP and NDVI
for cropland, forest, and grassland ecosystem (Figure 10), having favorable impact on
vegetation (grass, crop, and forest) growth. Numerous studies also demonstrated that
climate change’s apparent fingerprint on the earth’s ecosystems activities [61,62]. Extreme
temperature showed marked influences on the grassland NDVI changes than extreme
precipitation. Comparatively, shrubland NDVI changes were mainly governed by extreme
precipitation [23].

4.4. Limitations and Prospects

We probed the spatial and temporal features of vegetation indexes (NPP and NDVI)
and extreme climate, and delved deeper into their nexus. Although critical results have been
obtained, this study had a few limitations. Firstly, the nexus between vegetation indexes
and extreme climate was discussed by with the Spearman’s rank correlation analysis
and cross-correlation analysis method. The nonlinear relationship between them was not
considered. Then, we only analyzed the nexus of plants’ growth and extreme climate at
the point scale, and did not quantitatively discuss the reaction of grid-scale vegetation
to climate extreme. Thus, further research is required for the quantifiable estimation of
extreme climate effects on vegetation growth at the regional scale using multi-source
regional scale datasets.

5. Conclusions

The study intends to evaluate the spatio–temporal patterns of vegetation indicators
and climate extreme indexes in the Yellow River Basin (YRB), and enhance our comprehen-
sion of the correlation between terrestrial ecosystems and climate extremes in the arid and
semiarid regions. Our important conclusions are as follows.

NPP and NDVI exhibited an upward trend for cropland, forest, and grassland in the
YRB. The fastest increasing trend of NPP for cropland was 4.13 gC/m2/a, and the largest
rising tendency of NDVI for forest was 0.0018. Spatially, the multi-year average of NPP and
NDVI both increased from northwest to southeast, with over 89% of YRB experiencing an
increase in NPP and NDVI. Notably, significant increases in NPP and NDVI were mainly
evident in Qinghai and Shaanxi.

Extreme low temperature indexes exhibited a downward tendency, while extreme
high temperature and precipitation indexes displayed an upward trend. Over 75% of the
extreme low temperature indexes at each station displayed a declining tendency, whilst
over 79% of extreme high temperature indexes exhibited an ascending trend. Apart from
the cooling degree days, more than 69% of extreme precipitation indexes demonstrated an
upward trend.
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We found a negative relationship between NPP, NDVI, and extreme low temperature
indexes, and a positive nexus with extreme high temperature and precipitation indicators
(excluding CDD). Moreover, NPP and NDVI in the YRB showed a prompt response to
the beneficial impact of extreme temperature, while the negative impact was evident
after around six months. Finally, NPP and NDVI were mostly concurrent with extreme
precipitation indexes.

In summary, our study provides extensive insights into the spatial and temporal
distribution patterns, and the nexus between climate extremes change and vegetation
indicators in the YRB, which could benefit related ecological research in the region.
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