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Abstract: The Mw 7.5 Palu earthquake that occurred on 28 September 2018 (UTC 10:02) on Sulawesi
Island, Indonesia, triggered approximately 15,600 landslides, causing about 4000 fatalities and
widespread destruction. The primary objective of this study is to perform landslide susceptibility
mapping (LSM) associated with this event and assess the performance of the most widely used
machine learning algorithms of logistic regression (LR) and random forest (RF). Eight controlling
factors were considered, including elevation, hillslope gradient, aspect, relief, distance to rivers, peak
ground velocity (PGV), peak ground acceleration (PGA), and lithology. To evaluate model uncertainty,
training samples were randomly selected and used to establish the models 20 times, resulting in
20 susceptibility maps for different models. The quality of the landslide susceptibility maps was
evaluated using several metrics, including the mean landslide susceptibility index (LSI), modelling
uncertainty, and predictive accuracy. The results demonstrate that both models effectively capture the
actual distribution of landslides, with areas exhibiting high LSI predominantly concentrated on both
sides of the seismogenic fault. The RF model exhibits less sensitivity to changes in training samples,
whereas the LR model displays significant variation in LSI with sample changes. Overall, both models
demonstrate satisfactory performance; however, the RF model exhibits superior predictive capability
compared to the LR model.

Keywords: 2018 Palu earthquake; coseismic landslides; susceptibility assessment; influencing factors;
logistic regression (LR) model; random forest (RF)

1. Introduction

Strong earthquakes frequently give rise to numerous seismic landslides in mountain-
ous areas, resulting in significant casualties and extensive property losses. Consequently,
these catastrophes further exacerbate the risk of earthquakes [1–3]. Over the past few
decades, earthquake-induced landslides have garnered considerable attention, with pri-
marily focus on the development of landslide databases [4,5], analysis of distribution
patterns [6–8], assessment of susceptibility and hazards [9–12], and exploration of land-
scape evolution [13–15]. Among them, LSM assumes paramount importance, as it plays a
pivotal role in emergency response, facilitating effective disaster recovery, and aiding in
reconstruction efforts [9,16–18].

Currently, the most commonly employed methods for assessing coseismic landslide
susceptibility include data-driven machine learning methods [5,16,19] and the Newmark
method based on mechanics mechanisms [20,21]. The physically-based Newmark method
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comprehensively considers the occurrence mechanism of earthquake-induced landslides
and utilizes slope instability outcomes and seismic displacement to quantitatively cate-
gorize the susceptibility level of coseismic landslides [22]. It has emerged as a widely
utilized approach for susceptibility assessment of seismic landslides worldwide [23,24].
This method has been successfully applied in coseismic landslides of different quake
events in various regions, such as the 1994 Mw 6.7 Northridge earthquake [25], 2008
Mw 7.9 Wenchuan earthquake [26], 2013 Mw 6.7 Lushan earthquake [27], 2014 Mw 6.1
Ludian earthquake [28], 2015 Mw 7.9 Nepal earthquake [29], 2017 Mw 7.0 Jiuzhaigou
earthquake [30], and 2017 Mw 6.9 Milin earthquake [31]. However, the Newmark model
for coseismic landslides requires multiple parameters, including terrain characteristics,
geotechnical mechanics, groundwater conditions, and seismic motion. Due to existing
limitations, obtaining accurate rock and soil parameters, as well as precise seismic motion
distribution across large areas, remains challenging [23,27]. Consequently, there exists a
discernible gap between the acquired parameters and the actual input data. As a result,
the current regional landslide evaluation outcomes using the Newmark model are not
optimal [32].

The landslide susceptibility assessment using data-driven models assumes that, within
a certain area, the influencing factors of past landslides will also lead to future land-
slides [19,33]. These algorithms construct assessment models by analyzing the correlation
between causative factors and the distribution of past landslide occurrences [34–36]. These
models primarily include statistical and machine learning algorithms, such as logistic re-
gression (LR) [16], artificial neural network (ANN) [37], support vector machine (SVM) [38],
decision tree (DT) [39], and others. Particularly, in recent years, with the advancements
in GIS and machine learning technology, these algorithms have gained widespread us-
age in LSM. Some studies have employed different algorithms for LSM and compared
the prediction ability and accuracy of these models. At present, LR is widely used for
nonlinear multivariate statistical modeling in landslide susceptibility assessment due to
its advantages of simple calculations and clear physical interpretation [17,35]. However,
LR is constrained by normalcy and linearity assumptions. As a linear model, it performs
poorly when dealing with non-linear issues or several affecting elements [40]. Recently,
more advanced machine learning techniques such as random forest (RF) [40], XGBoost [41],
and convolutional neural network (CNN) [42] have been employed for LSM. These models
exhibit superior performance in capturing non-linear relationships among influencing
factors when compared to the LR model. This enhanced capability leads to improved appli-
cations and increased predictive accuracy in regional landslide susceptibility evaluation.
Specifically, multiple studies have demonstrated that random forest (RF) outperforms other
models in susceptibility mapping [40,43].

On 28 September 2018, a large and shallow earthquake occurred in the Minahasa
Peninsula, Indonesia, with its epicenter located at 0.178◦S, 119.840◦E. This seismic event is
notable as the deadliest earthquake to strike Indonesia since the Yogyakarta earthquake in
2006. Furthermore, it was also the most fatal earthquake globally in 2018. The catastrophe
resulted in a tragic loss of life, with a reported death toll of at least 4340 people, while
over 10,000 individuals sustained injuries, with 4612 being severely injured. Furthermore,
the earthquake caused extensive damage to more than 70,000 houses, leaving tens of
thousands of people displaced and seeking shelter in temporary accommodations and
tents. However, to our knowledge, no relevant LSM of this event has been studied in
detail since the earthquake’s occurrence. Meanwhile, there is no general agreement on
the procedures or range for LSM, and the application of RF as the most popular machine
learning algorithm in earthquake-induced landslide susceptibility is limited. Thus, this
study aims at LSM associated with the 2018 Palu earthquake for estimating the quality of
the most popular machine learning algorithms of LR and RF models. We investigate LSM
for the Palu earthquake by applying and comparing these two methods. Eight causative
factors were considered using for modelling, and the landslide mappings were tested by
the Receiver Operating Characteristic (ROC) curve and statistical measures. Finally, we
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quantitatively evaluate the susceptibility maps of the two models based on their modeling
process and prediction accuracy. The main objective of this study is to precisely estimate
and map landslide susceptibility in the Palu region. This endeavor will serve as a crucial
foundation for land use planning, prioritizing evacuation strategies, and executing effective
mitigation measures within the area.

2. Geological Setting and Landslide Inventory of Palu Earthquake
2.1. Geological Setting

Central Sulawesi is situated at a geologically intricate intersection of the Philippine Sea,
Australian, Sunderland, and Pacifica plates [44–46]. Sulawesi is primarily influenced by the
Palu-Koro (PK) fault, which is an active left-lateral strike slip fault trending NNW–SSE [47].
The Mw 7.5 Palu earthquake occurred within the PK fault zone [48]. The epicenter of
the earthquake is situated approximately 80 km north of Palu city at coordinates 0.178◦S,
119.840◦E. According to USGS seismic data, around 50 aftershocks were recorded until
September 30 (Figure 1). The study area demonstrates significant topographic relief, with
elevations ranging from −6 m to 2800 m. On average, the elevation is approximately
1500 m (Figure 1). The lithology of the study area primarily consists of sedimentary rocks
spanning the Holocene to Upper Cretaceous periods, as well as Miocene volcanic rocks
such as granite and diorite, alongside Cretaceous–Palaeogene and Triassic metamorphic
rocks [49]. The study area is situated in close proximity to the equatorial zone, thereby
exhibiting a characteristic tropical rainforest climate, specifically identified as a humid
subtropical monsoon climate. It boasts an extensive expanse of tropical rainforests. The
area sustains consistently elevated temperatures and substantial precipitation throughout
the year, with an annual average rainfall exceeding 2500 mm.
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2.2. Landslide Inventory of the Palu Earthquake

According to earthquake reports, this devastating earthquake resulted in over 2000 fa-
talities, displacing 206,494 individuals. The estimated property losses amount to a stag-
gering USD 911 million, while the projected costs for rehabilitation and reconstruction are
estimated at a substantial USD 1.5 billion [50,51]. Based on post-quake images with pre-
quake images of the Google Earth (GE) platform, whose acquisition dates for images range
from two to three months before and after the earthquake, and using 3 m Planet images
to reinvestigate the cloud-coverage area, the seismic landslides were detected within the
quake-affected area by visual interpretation method [4]. The result shows that the 2018 Palu
earthquake triggered a total of approximately 15,700 coseismic landslides across a region
spanning 14,600 km2. The landslides observed in this study predominantly comprise shal-
low landslides, along with a smaller number of large-scale liquefaction-induced flowslides,
debris flows, and rockslides. The majority of these landslides are distributed within the
peak ground acceleration (PGA) range of 0.3 g (Figure 2). The total area affected by seismic
landslides was approximately 43.0 km2, with an average area of 2700 m2. Notably, the
Petobo landslide stood out as the largest, covering an extensive area of approximately
1.97 km2, while the smallest landslide measured as little as 45 m2 (Figure 2). The majority of
landslides fell within the range of 500–2500 m2, constituting around 60% of the total amount
(Figure 2). Moreover, 414 landslides encompassed an individual area exceeding 10,000 m2,
and a total of 1393 landslides are greater than 5000 m2 [4]. The results indicate that the
coseismic landslides are primarily influenced by the seismogenic fault. Furthermore, land-
slides exhibit a strong correlation with several factors, including elevation, slope angle,
aspect, rock type, and peak ground acceleration (PGA). Landslide occurrence increases
with greater slope angles, PGA, and topographic relief [4].
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3. Data and Methods
3.1. Data Sources

In statistical methodologies, independent variables encompass various factors that
exert control the landslide occurrences, primarily encompassing geological, topographical,
and seismic factors [34,52]. In this study, eight influencing factors were used for modelling
including elevation, hillslope gradient, aspect, topographic relief, distance to the rivers,
Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), and lithology. The elevation
data are derived from DEMNAS DEM data with 8 m resolution from the Indonesian
Geospatial Information Agency [53]. The information of hillslope gradient and aspect are
calculated by these elevation data. Meanwhile, we estimate the relief from the altitude
range within a 2.5 km radius [2]. For lithological data, we digitize the Sulawesi geological
map with 1:250,000 scale from Leeuwen and Muhardjo [54] and Watkinson [49] to obtain
the lithological information of the study area. The rivers are derived from the elevation
data, and the distances from the centroid of the cells to the nearest drainages are determined
using ArcGIS. Additionally, PGA and PGV information is collected from the United States
Geological Survey (USGS) [55]. Based on the PGA distribution provided by USGS, the
maximum PGA value is 0.9 g, while the minimum value within the study area is 0.2 g.
High PGA values are predominantly observed on both sides of the seismogenic fault.
Similarly, the distribution of PGV follows the pattern of PGA, with PGV decreasing rapidly
as the distance from the seismogenic fault increases. The maximum PGV value is 108 m/s,
while the minimum PGV value is 8 m/s. The lithological map reveals that the Permo-
Triassic metamorphic rocks (Pc) and Middle Miocene sedimentary rocks (Mm) cover the
largest proportions, constituting 23.5% and 18.6% of the total area, respectively. In contrast,
Miocene volcanic rocks (Mv) have the smallest coverage area, representing only 0.8% of
the total area. Finally, eight factors are considered for the modeling process. The maps
representing these eight influencing factors are transformed into a raster format using a
cell size of 8 m (Figure 3).

3.2. Method

The logistic regression (LR) model is a multivariate statistical method extensively
utilized in landslide susceptibility analyses [56]. At present, various statistical techniques,
including the LR model, weight of evidence, SVM, and CNN can be employed for as-
sessing landslide susceptibility. However, among these methods, the LR model is widely
recommended for conducting landslide susceptibility assessments [35,57]. Meanwhile, it
is also the preferred method for establishing the near-real-time model of coseismic land-
slides [52,58,59]. The LR model provides a relative estimation of earthquake-induced
landslide occurrence by incorporating various factors. It utilizes maximum likelihood
estimation and converts dependent variables into binary logical variables, where “1” repre-
sents the presence of landslides and “0” represents their absence [33,56]. This approach
effectively addresses the interdependence among factors and offers a comprehensive solu-
tion. The correlation between the probability of landslide occurrence and these factors can
be expressed as follows:

Z = β0 + β1χ1 + β2χ2 + β3χ3 . . .βiχi (1)

P = 1/
(
1 + e−z) (2)

where P is the predicted probability of the coseismic landslide; χ1,χ2 . . . χi are the influ-
encing factors; and β0,β1 . . .βi, are the regression coefficients determined in LR model.
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The random forest (RF) model is a powerful ensemble-learning algorithm which
was proposed by Breiman [60]. It is a non-parametric method and widely recognized
for its flexibility in assessing complex connections between variables for determining
landslide susceptibility [40]. This algorithm employs bootstrap sampling techniques on
the training samples, allowing it to select a subset of independent variables at each node.
Due to its versatility, RF has gained popularity across various fields and has consistently
demonstrated exceptional performance [61,62]. The RF model is built upon the concept
of bootstrap aggregation (bagging) and incorporates two random sampling techniques,
enhancing both the stability and the accuracy of the model. This approach also mitigates
sensitivity to outliers and noise while effectively addressing the issue of overfitting [63].
The RF model also offers a number of metrics of variable relevance, with the most accurate
one coming from evaluating the drop in classification accuracy when a variable’s values
are randomly permuted within a tree node. Unlike other models, RF’s assessment ensures
robust evaluation and reliable determination of variable importance. The output of RF is
determined by a voting process, shown in Equation (3).

H(x) = argmax
z ∑k

i=1 I(hi(x) = Z) (3)

H(x) denotes the RF model. hi is a single decision tree model, Z is the output variable,
and I(hi(x) = Z) is the indicative function.

The correlation coefficients of the influencing factors were estimated by the Pearson
method, which is commonly employed for assessing relationships between continuous
variables [52,64]. When examining the correlation matrix, a high correlation coefficient
(>0.7) between two variables indicates a strong pairwise collinearity [58,64]. In such cases,
it is necessary to discard one of the two factors to avoid redundancy. We assessed the
correlations among all the relevant factors, with the exception of lithology (Figure 4),
because the Pearson correlation coefficient requires both variables to be continuous. The
results show that PGA and PGV have the greatest association, reaching 0.9. Therefore, in
the modeling process, we only selected PGA for susceptibility assessment without PGV.
The hillslope gradient and relief come in second, with a correlation coefficient of 0.67, and
there is little relationship between the remaining factors.
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4. Results

In order to compare the impact of different training samples on the assessment model
and evaluate the uncertainty of the model, this study randomly selected landsliding and
non-landsliding samples to establish the assessment model 20 times. We randomly selected
15,600 points within the landslide area as landsliding samples. For the selection of non-
sliding samples, we randomly selected 15,600 non-sliding samples in non-landslide areas.
Finally, 20 sets of modeling samples were trained by the LR model to obtain 20 predicted
pictures of potential landsliding. Figure 5 shows the average and standard deviation
distribution of different susceptibility results obtained from 20 different LR models. The
results show that the susceptibility map obtained by the LR model can better reflect the
actual distribution of landslides, with areas with higher susceptibility index (LSI) mainly
concentrated along both sides of the seismogenic fault. The areas with high LSI mainly
include the southern part of the epicenter and the areas on both sides of the Palu basin,
which are also the landslide abundance areas. Figure 5b shows the standard deviation
(std) distribution of 20 prediction results for different training sample scenarios. From the
predicted results, we can observe that, for the LR model, the maximum std and minimum
std of the modelling results are 0.4 and 0, respectively. Based on the same sampling method,
we trained 20 sets of modeling samples using the RF model to obtain 20 LSI maps. Figure 6
shows the distribution of average value and std of different LSM obtained by different
20 RF models. The results show that the RF model can also predict the location of landslide
prone areas well. The landslide abundance area roughly matches the area of high LSI,
and most landslides are located in the blue area, that is, the area with high LSI. Figure 6b
shows the std distribution of 20 prediction results for different training sample scenarios.
Compared to the LR model, the std of the RF model is smaller, with a max std of 0.13.
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Figure 6. Map showing the mean landslide susceptibility index (LSI) and model uncertainty for
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deviation (std) for model uncertainty.

Figure 7 shows the scatter plots of the average LSI and std values under two different
models. The statistical results show that the average LSI and std of the two models show
the same trend. As the LSI increases, the std shows a trend of rising and then decreasing,
with the areas with larger std concentrated in the LSI values of 0.3–0.7. This indicates that
the predicted areas with an average LSI between 0.3 and 0.7 are greatly influenced by the
changes in training samples, and the std is roughly distributed between 0.04 and 0.1. In
contrast, the predicted areas with an average LSI of less 0.3 and larger 0.7 are less affected
by the training samples, and the overall std is less than 0.04. In addition, from the values
of the std for the two models, the std based on the RF model is lower than that of the LR
model, indicating that the evaluation results using the RF model are less affected by the
changes in training samples, while the predicted result of the LR model has a relatively
large variation in LSI with the changes in training samples.

Figure 8 illustrates the frequency density distribution of the LSI under the two sus-
ceptibility models. The results reveal a notable disparity in the frequency distribution of
LSI between the two models. For the LR model, the LSI is primarily distributed within the
range of 0.1 to 0.5, representing 52.9% of the total grid count. Interestingly, the number
of grids with LSI values below 0.1 and above 0.5 is roughly equal, accounting for 23.3%
and 23.8% of the total number, respectively. Conversely, the RF model exhibits a higher
proportion of grids with LSI values below 0.1, constituting nearly half of the total number.
Moreover, the number of grids falling within the LSI range of 0.1 to 0.5 predicted by the RF
model is smaller compared to the LR model, accounting for 35.6%. Similarly, the RF model
predicts fewer grids with LSI exceeding 0.5 in comparison to the LR model, amounting to
15.8% of the total grid count within this range.



Remote Sens. 2023, 15, 4733 10 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 7. Scatter plot showing the relationship between the average LSI and standard deviation (std) 
of the two different models. (a) LR model; (b) RF model. The circles represent the grid cells. 

Figure 8 illustrates the frequency density distribution of the LSI under the two sus-
ceptibility models. The results reveal a notable disparity in the frequency distribution of 
LSI between the two models. For the LR model, the LSI is primarily distributed within the 
range of 0.1 to 0.5, representing 52.9% of the total grid count. Interestingly, the number of 
grids with LSI values below 0.1 and above 0.5 is roughly equal, accounting for 23.3% and 
23.8% of the total number, respectively. Conversely, the RF model exhibits a higher pro-
portion of grids with LSI values below 0.1, constituting nearly half of the total number. 
Moreover, the number of grids falling within the LSI range of 0.1 to 0.5 predicted by the 
RF model is smaller compared to the LR model, accounting for 35.6%. Similarly, the RF 
model predicts fewer grids with LSI exceeding 0.5 in comparison to the LR model, 
amounting to 15.8% of the total grid count within this range. 

Figure 7. Scatter plot showing the relationship between the average LSI and standard deviation (std)
of the two different models. (a) LR model; (b) RF model. The circles represent the grid cells.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 8. Map showing the frequency density distribution of LSI for two different models; (a) LR 
model; (b) RF model. 

The landslide susceptibility map can be classified into very low susceptibility areas 
(<0.1), low susceptibility areas (0.1–0.3), medium susceptibility areas (0.3–0.5), high sus-
ceptibility areas (0.5–0.7), and extremely high susceptibility areas (0.75–1) based on the 
LSI values, and we can obtain the landslide susceptibility classification maps of two mod-
els (Figure 9). In order to compare the susceptibility results of different models, we calcu-
late on the landslide areal density (LAD) within different susceptibility zones. Figure 10 
illustrates the susceptibility classification results and landslide area density (LAD) pre-
dicted by the different models. The result shows that approximately 60% of the study area 
is classified as very low susceptibility or low susceptibility in both models. Specifically, 
the LR model predicts a very low susceptibility area accounting for 25% of the total area, 
while the RF model predicts a larger very low susceptibility area, covering 49% of the total 
area. For the extremely high susceptibility area, i.e., the red area, the predicted area by the 
LR model and the RF model accounts for 11% and 8% of the study area, respectively. 
Overall, the two models exhibit similar predictions for medium, high, and extremely high 
susceptibility areas. However, there are significant differences in the predicted areas for 
extremely low and low susceptibility. Furthermore, the LAD curves plotted for different 
intervals indicate a consistent increasing trend with the rise of the landslide susceptibility 
index (LSI). However, the trend is more pronounced in the RF model due to its higher 
prediction of landslides in the extremely high susceptibility area. In the extremely high-
susceptibility area, RF predicted over 76% of landslides in 8% of the study area, while LR 
predicted 57% of the total landslide area in 11% of area. 

Figure 8. Map showing the frequency density distribution of LSI for two different models; (a) LR
model; (b) RF model.



Remote Sens. 2023, 15, 4733 11 of 19

The landslide susceptibility map can be classified into very low susceptibility areas
(<0.1), low susceptibility areas (0.1–0.3), medium susceptibility areas (0.3–0.5), high sus-
ceptibility areas (0.5–0.7), and extremely high susceptibility areas (0.75–1) based on the LSI
values, and we can obtain the landslide susceptibility classification maps of two models
(Figure 9). In order to compare the susceptibility results of different models, we calculate on
the landslide areal density (LAD) within different susceptibility zones. Figure 10 illustrates
the susceptibility classification results and landslide area density (LAD) predicted by the
different models. The result shows that approximately 60% of the study area is classified
as very low susceptibility or low susceptibility in both models. Specifically, the LR model
predicts a very low susceptibility area accounting for 25% of the total area, while the RF
model predicts a larger very low susceptibility area, covering 49% of the total area. For the
extremely high susceptibility area, i.e., the red area, the predicted area by the LR model
and the RF model accounts for 11% and 8% of the study area, respectively. Overall, the
two models exhibit similar predictions for medium, high, and extremely high susceptibility
areas. However, there are significant differences in the predicted areas for extremely low
and low susceptibility. Furthermore, the LAD curves plotted for different intervals indi-
cate a consistent increasing trend with the rise of the landslide susceptibility index (LSI).
However, the trend is more pronounced in the RF model due to its higher prediction of
landslides in the extremely high susceptibility area. In the extremely high-susceptibility
area, RF predicted over 76% of landslides in 8% of the study area, while LR predicted 57%
of the total landslide area in 11% of area.
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Figure 10. The statistical results of the predicted area and the landslide number density (LND)
distribution under LSI class for two models.

The ROC curve is utilized to assess the accuracy of the modelling, as described by [65].
The AUC (Area Under the Curve) is a measure of the model’s predictive capability. An
AUC value of 0.5 indicates a stochastic model, while an AUC between 0.5 and 0.7 suggests
lower accuracy. On the other hand, an AUC between 0.7 and 0.9 indicates high accuracy,
as stated by [66]. By comparing the assessment results with the actual landslides, ROC
curves were generated (Figure 11). The results show that both models have high prediction
accuracy, reaching above 0.85. The LR model yields AUC values ranging from 0.85 to 0.86,
indicating moderate prediction ability. In contrast, the RF model demonstrates slightly
superior performance, with AUC values ranging between 0.92 and 0.94. Overall, these
results indicate that the RF model exhibits higher prediction accuracy compared to the
LR model.
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In order to quantitatively test the correlation between the average LSI of the two mod-
els, we randomly selected 15,600 sampling points within the study area to analyze the
correlation between the LSI values of the two models. Figure 12 shows the scatter plot of
the average LSI values under two different models. The result shows that the two models
show a linear relationship of LSIRF = 0.75 ∗ LSILR, where the LSIRF represents the LSI
predicted by the RF model and the LSILR represents the LSI predicted by the LR model.
But it should be noted that the slope of the function is 0.75; this is mainly because, within
the range where the LSI is less than 0.3, the LSI value obtained by the LR model is greater
than that by the RF model. In addition, we can observe that, for most grids, the predicted
LSI values of the two models are roughly similar; most grids are located near a line with a
slope of 1. But there is still a significant difference in the LSI values of some grids for the
two models, indicating that, in the local area, the LSI predicted by different assessment
models may be completely opposite.
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5. Discussion
5.1. Converting LSI to Landslide Percentage (Lp)

In current studies about data-driven models for landslide susceptibility assessment,
a common practice is to maintain a fixed ratio of landsliding samples to non-landsliding
samples during the modeling process. However, this sampling method artificially inflates
the proportion of landsliding samples within the study area. As a result, the assessment
outcomes only provide relative susceptibility levels, rather than accurately representing the
true occurrence probability of landslides [52,59]. Few studies have focused on the issue of
the proportion of landsliding samples to non-landsliding samples [59,67]. Shao et al. [59]
introduced a quantitative expression for determining the optimal number of non-landslides
in landslide susceptibility modeling (LSM). This expression reveals a dynamic relationship
between the optimal number of non-landslides and the ratio of the landslide area to the
non-landslide area within the study area. Hong et al. [67] explore the effects of the design
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and the quantity of absence data on the performance of LSM, and the result shows that the
sampling range and the size of the absence data demonstrate significant influences on the
accuracy of the LSM. These studies have shown that different proportions of landsliding
samples to non-landsliding samples have a significant effect on the predicted probability of
the landslide [9,59]. Therefore, some studies attempt to establish functional relationships
based on actual landslide data and susceptibility indices to predict the real probability of
landslides. Lee [68] established a failure probability curve by comparing the Chi-Chi-induced
landslides and the LSI calculated by the LR model. Similarly, Nowicki Jessee et al. [52]
established a fitting curve between LSI and absolute probability by comparing LSI with
real landslide data. As described previously, we employed a balanced sampling ratio of
1:1 between landslide occurrences and non-occurrences for LSM. The assessment results
effectively depict the relative susceptibility levels, and do not directly indicate the actual
probability of landslide occurrences.

Based on the above method, we calculate the occurrence probability of landslide and
average LSI for each interval using 0.05 width bins, and then fit the relationship between
LSI and landslide percentage (Lp). Figure 13 shows the percentage of landslide occurrences
(Lp) within 0.05 bins of the LSI for two models. The results indicate that there is a clear
exponential relationship between the LSI and the landslide percentage (Lp). When the LSI
is less than 0.6, the Lp slowly increases with the rise of the LSI, with a maximum Lp value
of only 1%. However, when the LSI is greater than 0.6, Lp increases rapidly. When the LSI
is 1, the maximum Lps of the two models are 4% and 8%, respectively. Meanwhile, we
can observe that, although the fitting functions obtained by both models are exponential,
there are still slight differences in the fitting coefficients. Otherwise, compared to previous
studies, the functional forms and fitting coefficients calculated by this study are different
from other studies [52,68]. Therefore, when the 1:1 ratio of landsliding/non-landsliding is
used to construct the landslide susceptibility assessment model, we need to fit the specific
function relationship of LSI and Lp for specific areas based on actual landslide data, rather
than simply applying other formulas. Hence, this curve is valuable for near-real-time
assessment of earthquake-induced landslides generated by RF- or LR-based models in
the Palu region. It enables the conversion of susceptibility results into practical landslide
prediction areas, facilitating more effective post-earthquake landslide risk assessments.
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5.2. Relative Importance of the Influencing Factors

The susceptibility to landslides is influenced by a multitude of conditioning factors,
which collectively contribute to its comprehensive effect [35,69]. Reichenbach et al. [35]
analyzed the relevant studies about the LSM from 1983 to 2016, and the result shows that
a total of 596 factors were examined in the susceptibility assessment, with an average of
9 influencing factors considered per model. Notably, the selection of these factors was
predominantly based on subjective criteria relying on the experience of experts. Shao
et al. [4] conducted a detailed analysis of the coseismic landslides of the Palu area, and the
results showed that the landslide was most significantly affected by the seismic factors.
Secondly, the landslide abundance index of this earthquake presents a clear correlation
between and hillslope gradient, relief, and distance to the rivers. Therefore, we conducted
a test to assess the relative importance of the seven continuous variables in the two models
(Figure 14). The results revealed that seismic motion had the highest relative importance
in both models, with a value of approximately 0.4. However, it should be noted that the
relative importance of hillslope gradient and relief is slightly higher than other variables,
while the RF model shows that, except for PGA, the relative importance of other influencing
factors are roughly same, indicating that the control effect of these factors on the occurrence
of landslides is essentially consistent. In general, our analyses indicate that the PGA
plays the most significant role in the occurrence of landslides, which is consistent with the
previous studies [4,51].
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5.3. Comparisons of the RF Model with LR Model

Currently, various quantitative algorithms are employed for seismic LSM. However,
each approach has its own set of advantages and limitations [34,35]. Therefore, we selected
the two most widely used data-driven models for LSM. The results demonstrate that
both models effectively predict the distribution of actual landslides. Furthermore, the
densely populated areas of landslides are predominantly located in regions characterized
by high LSI values. However, the AUC value of the RF model is slightly higher than that
of the LR model, showing that the prediction ability of the RF model is better than the LR
model [40,43]. This is mainly because the LR model encounters challenges related to quasi-
complete separation issues when dealing with some categorical variable classes converted
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into dummy explanatory variables. In contrast, the RF model has demonstrated exceptional
capability in effectively handling categorical predictors [34]. RF offers enhanced flexibility
in evaluating intricate interactions among influencing factors for landslide susceptibility
assessment. However, due to its linear features, LR is constrained by assumptions of
normality and linearity, leading to limitations in addressing multiple or complex non-linear
issues. As a result, LR tends to underperform in such scenarios. It should be noted that the
RF model demonstrates superior predictive capabilities and operates as a non-parametric
method. In contrast, the LR model offers the advantages of straightforward calculations
and clear regression coefficients. Consequently, the LR model remains the most commonly
employed model in LSM [34].

6. Conclusions

This paper aims at conducting the LSM associated with the 2018 Palu earthquake and
estimating the quality of the most popular machine learning algorithms, the LR and RF
models. The results were validated by the ROC curve and statistical measures. Based on
the above work, the following main conclusions can be drawn:

(1) Based on the LSM predicted by two models and actual landslides, the landslide
abundance area roughly matches the area of high LSI, with areas with LSI mainly
concentrated along both sides of the seismogenic fault. The areas with high LSI mainly
include the southern part of the epicenter and the areas on both sides of the Palu
basin, which are also the landslide abundance areas.

(2) Compared to the LR model, the std of the RF model is smaller, with a max std of 0.13.
The std based on the RF model is lower than that of the LR model, indicating that the
evaluation results based on the RF model are less affected by the changes in training
samples, while the predicted result of the LR model has a relatively large variation in
LSI with the changes in training samples.

(3) The assessment results based on the RF model are less affected by the changes in the
training samples, while the predicted result of the LR model has a relatively large
variation in LSI with the changes in the training samples. Both models demonstrate
satisfactory performance; the RF model exhibits higher predictive capability compared
to the LR model. The RF model, with a predicted rate of 0.94, is significantly higher
than the rate of 0.86 for the LR model. Overall, the LR and RF models are useful tools
for LSM of seismic events.

(4) We calculate the probability of landslide occurrence and average LSI for each interval
using 0.05 width bins, and then fit the relationship between LSI and landslide percent-
age (Lp). The results indicate that there is a clear exponential relationship between the
LSI and the landslide percentage (Lp) of Lp = 0.0134 ∗ exp(6.1048 ∗ LSI) for the LR
model and Lp = 0.0078 ∗ exp(7.0362 ∗ LSI) for the RF model. This equation can be
used to correct the LSI to represent the landslide percentage (Lp) when the 1:1 ratio of
landsliding/non-landsliding is used for modelling of the Palu area.
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