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Abstract: Leaf area index (LAI) is a key indicator of vegetation structure and function, and its
products have a wide range of applications in vegetation condition assessment and usually act
as important input parameters for ecosystem modeling. Grassland plays an important role in
regional climate change and the global carbon cycle and numerous studies have focused on the
product-based analysis of grassland vegetation changes. However, the performance of various
LAI products and their discrepancies across different grassland types in drylands remain unclear.
Therefore, it is critical to assess these products prior to application. We evaluated the accuracy of
four commonly used LAI products (GEOV2, GLASS, GLOBMAP, and MODIS) using LAI reference
maps based on both bridging and cross-validation approaches. Under different grassland types,
the GLASS LAI performed better in meadow steppe (R2 = 0.26, RMSE = 0.41 m2/m2) and typical
steppe (R2 = 0.32, RMSE = 0.38 m2/m2); the GEOV2 LAI performed better in desert steppe (R2 = 0.39,
RMSE = 0.30 m2/m2). When we assessed their spatial and temporal discrepancies during the period
from 2010 to 2019, the four LAI products overall showed a high spatial and temporal consistency
across the region. Compared with GLASS LAI, the most consistent to least consistent correlations
can be ordered by GEOV2 LAI (R2 = 0.94), MODIS LAI (R2 = 0.92), and GLOBMAP LAI (R2 = 0.87).
The largest differences in LAI throughout the year occurred in July for all grassland types. Limited
by the location and number of sample plots, we mainly focused on spatial and temporal variations.
The spatial heterogeneity of land surface is pervasive, especially in vast grassland areas with rich
grassland types, and the results of this study can provide a basis for the application of the product
in different grassland types. Furthermore, it is essential to develop highly accurate and reliable
satellite-based LAI products focused on grassland from the regional to the global scale according to
these popular approaches, which is the next step in our work plan.
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1. Introduction

Leaf area index (LAI, defined as one-half of the total green leaf area per unit of ground
surface area) is an important vegetation biophysical parameter, used to monitor growth
status and to characterize the structure and the function of vegetation [1,2]. It plays an im-
portant role in modeling earth-system processes, including the exchanges of energy, water,
and carbon between continents and the atmosphere [3,4]. With the advent of satellite data
and to meet the needs of many applications, several sets of satellite-derived LAI products
have been generated for regional and global scales [5,6]. Various widely used global LAI
products, including moderate-resolution imaging spectroradiometer (MODIS), CYCLOPES,
global land surface satellite (GLASS), Copernicus VEGETATION (GEOV2), multi-angle
imaging spectroradiometer (MISR), and GLOBMAP, are generated from data acquired by
advanced very high-resolution radiometer (AVHRR), MODIS, VEGETATION, medium-
resolution imaging spectrometer instrument (MERIS) and other sensors through different
algorithms [7–10]. Long-timeseries satellite-derived products are useful for monitoring the
condition of vegetation and reflecting dynamic trends and pattern trends in vegetation.
A number of studies have focused on exploring the status and changes of vegetation in
a region based on LAI products. Jiapaer et al. [11] analyzed the vegetation dynamics in
Xinjiang from 1982 to 2012 based on the GLASS LAI dataset. Piao et al. [12] used three
different satellite-derived LAI datasets (GIMMS, GLOBMAP, and GLASS) to detect and
attribute vegetation greening trends in China over the last three decades. Li et al. [13]
applied explainable machine learning to assess global vegetation sensitivity to soil moisture
based five satellite-derived LAI datasets (GIMMS3g V1, LTDR V5, GLASS V40, GLOBMAP
V3 and GEOV2-AVHRR) over the period 1982–2017. Fang et al. [14] used MODIS LAI and
GPP deficits, the differences between actual and historical-maximum values, to describe
vegetation and land-cover shifts in response to changing climate conditions in the period
2001–2019 in the Mediterranean region. However, due to the differences in data acquisition,
processing, and spatial and temporal resolution of many LAI remote sensing products,
there is a great deal of uncertainty in the direct application of these products to analyze
grassland vegetation conditions. Therefore, the accuracy and applicability of the products
must be evaluated when applying them to analyze the grassland vegetation conditions.
In addition, there is an increasing demand for research using LAI as an indicator, such as
exploring grassland degradation and vegetation change [15,16].

The authenticity check of satellite-based LAI products is an indispensable part of LAI
inversion research and practical application, which is a necessary step to understand the
accuracy and applicability of satellite-based LAI products and to improve the accuracy of
LAI inversion algorithms. It is essential to evaluate the capability of multiple LAI products
to apply them effectively. Evaluation results can help users select base data for a study and
help producers further improve the quality of their products. The primary approaches for
this are direct validation, indirect validation (also referred to as the bridging method), and
cross-validation [9,10,17,18], each of which has advantages and limitations. The acquisition
of the “true value” of the image element is the key point and difficulty of the authenticity
test of satellite-based LAI products. Direct validation is generally used when vegetation is
spatially explicit and relatively homogeneous in type. Data measured directly in the field is
used for validation comparisons among LAI products (i.e., point-to-element comparisons),
and the results are used to assess the quality of different products quantitatively [19].
Although it is more accurate to utilize the actual data obtained from ground measurements
for direct validation, direct validation requires high spatial distribution and quantity of
ground sampling data, and the lack of ground data often leads to large errors in the
validation results. Meanwhile, due to the limitation of time and resources, the existing
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validation data cannot represent the spatial and seasonal changes of the vegetation cover
very well. For the bridging method, high-resolution imagery from resources such as Landsat
or Sentinel are used as a bridge to convert in situ LAI into reference maps, and then satellite-
derived products are compared with the reference data [20]. Therefore, when quantifying
the accuracy and reliability of different LAI satellite-based products, the “bridge-building
method” is often used, i.e., using high-resolution data as an intermediate bridge to scale up
the ground-based observations to regional results, and the “bridge-building method” is
often used to compare the spatial and temporal differences of long timeseries of different
LAI remote sensing products. Cross-validation is usually used when comparing the spatial
and temporal differences of different LAI remote sensing products over long timeseries.
The limitations of sampling time and the quantity of the validation dataset can make it
difficult to assess satellite-derived products in terms of spatial and longtime variations.
The cross-validation method assesses the accuracy of the product to be examined relative
to the reference product by referencing a satellite-derived product of known accuracy,
which shows discrepancies among the products [21]. Because cross-validation can only
determine the relative performance of each product and cannot quantify the accuracy of
satellite-derived products [9], these validation approaches are often combined with each
other for LAI product evaluation. According to the actual situation, appropriate validation
methods can be selected to increase the credibility of the validation results. At present, there
is no systematic analysis of the performance of satellite-based LAI products on different
grassland types in Inner Mongolia grassland, so this chapter uses the “bridge method” and
cross-validation to validate them.

In recent years, scholars have conducted numerous product comparisons and evalua-
tions to better characterize the conformance of current LAI products and their respective
uncertainties, but they are focused on a single vegetation type; validation in different grass-
land types is needed. Xiao et al. [5] compared four long timeseries global LAI products
to evaluate their spatial and temporal discrepancies, and demonstrated that the GLASS
AVHRR LAI values perform better than NCEI AVHRR, GIMMS3g, and GLOBMAP. To
assess the continuity, consistency, and accuracy of the GEOV1 product and its performance
compared to other existing global products, Fang et al. [6,22] completed a series of metric
and qualitative checks. Their results showed that several LAI products are strongly spatially
correlated, with the largest areas of uncertainty typically occurring in the ecological zones
of an ecosystem. Li et al. [23] assessed the MODIS LAI product using ground measurement
data and HJ-1A/1B imagery in meadow steppes. Most such validation activities are either
direct validation on a typical network of validation sites or product intercomparison on a re-
gional or global scale. Few have compared and analyzed global LAI products for long-term
performance, and none have focused on different grassland types in Inner Mongolia.

In response to the lack of clarity in the performance of satellite-based LAI products in
different grassland types and the lack of basis in selecting products for analysis, this paper
evaluates the accuracy and uncertainty of current mainstream LAI products in different
grassland types in Inner Mongolian grassland based on the actual LAI measurement data
collected from field surveys, and gives corresponding recommendations for their use. Based
on ground-truth data collected through field experiments and high-resolution imagery
data, we used both bridging and cross-validation approaches to assess the accuracy and
discrepancies of four commonly used LAI products for the grassland of Inner Mongolia:
GEOV2, GLASS, GLOBMAP, and MODIS. Our specific study objectives were to: (1) validate
the four LAI products by comparing ground-based LAI measurements using vegetation
index–Landsat as the bridge for different grassland types, (2) compare the temporal changes
in the period 2010–2019 of the four LAI products, and (3) assess the spatial distributions
among the four products. The spatial variability of different grassland types in Inner
Mongolia is substantial, and many studies have chosen LAI products to analyze vegetation
status, usually without distinguishing between grassland types. There is no basis for
choosing among the many products, so the results of the unified validation can provide
a reference for this purpose. Meanwhile, the results can provide a basis for developing
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highly accurate and reliable satellite-based LAI products suitable for different grassland
types.

2. Materials and Methods
2.1. Study Area

Inner Mongolia (97◦12′~126◦04′E, 37◦34′~53◦23′N) in north-central China has a dis-
tinct temperate continental climate, decreasing precipitation, and increasing temperature
from northeast to southwest, as well as clear lateral zonality. The main natural types
in the study area include meadow, meadow steppe, typical steppe, and desert steppe
(Figure 1). The meadow steppe is found in the low mountain hills on the east and west of
the Daxinganling Mountains, the typical steppe is the dominant natural grassland, and the
desert steppe is found in northwestern Xilinguole Plateau, northern Ulanqab and Bayannur
plateaus, and central and western regions of the Ordo Plateau. The meadow is scattered
patches within the forests or in the riparian areas (rivers and lakes).

Figure 1. Location of the study area and the regions A~D, which represent the 5 km × 5 km areas
used to analyze the timeseries profiles of leaf area index (LAI) (see Section 3.2). The background map
shows the grassland types at 1:1,000,000 scale, including meadow, meadow steppe, typical steppe,
and desert steppe.

2.2. In Situ Leaf Area Index Measurement

For the sample plots used for product validation, experiments were designed following
the Test Criteria for Authenticity of Leaf Area Index Remote Sensing Products, comparing
the consistency of accuracy and spatial and temporal changes between products. Within a
certain range around the ground validation field (station), we chose a flat terrain area to set
up different fixed sample plots. Considering the pixel size, pixel offset, and geometric error
of the satellite data and parameter products, the size of the sample plots were set to at least
2 km × 2 km. Similarly, 30 m × 30 m large sample squares were set up in the sample plots,
and five 1 m × 1 m small-sample vegetation-survey squares were evenly distributed along
two diagonal lines in each 30 m× 30 m. According to the spatial distribution characteristics
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of different grassland types, a 3 km × 3 km experimental sample area was selected at
each of the three field stations, namely, (1) Hulunber Meadow Steppe Station, (2) Xilinhot
Typical Steppe Station, and (3) Siziwangqi Desert Steppe Station, to obtain the LAI in the
peak period of the growing season using the field ground observation method. In situ LAI
sample plots were measured using LAI-2200C plant canopy analyzer (Li-Cor, Lincoln, NE,
USA) before 10 a.m. or after 4 p.m., or on cloudy days, when the sky condition was suitable
for LAI measurement, were used to generate the LAI reference maps based on establishing
their relationship with vegetation indices. Each plot was measured six times at a 270◦ view
cap, and the average was used as the sample plot LAI (Figure 2).

Figure 2. Distribution of sampling plots by grassland types: (a): site locations; field sampling sites
(b): meadow steppe, (c): typical steppe, (d): desert steppe. The background map shows the Landsat-8
operational land imager (OLI) false-color composite image.

2.3. Leaf Area Index Products

We selected four LAI products for validation: GEOV2, GLASS, GLOBMAP, and
MODIS. Their main characteristics are outlined in Table 1. These LAI products have been
used in several global vegetation change and carbon and water cycling studies [24–26].

The GEOV2 LAI product was available in the Plate Carrée projection at a 10 d temporal
resolution and a 300 m or 1 km spatial resolution. It was derived from SPOT/VEGETATION
sensor data based on a neural network [7]. First, a training dataset was obtained through a
fusion of CYCLOPES and MODIS LAI products, and then the calibrated neural network
was used to generate the GEOV2 LAI product. The dataset ranges from 1999 to the present
(http://land.copernicus.eu/global/, accessed on 12 October 2020).

http://land.copernicus.eu/global/
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Table 1. The leaf area index products selected to evaluate performance in different grassland types
and to compare with one another.

Product Sensor Spatial
Resolution

Temporal
Resolution Algorithms Reference

GEOV2 MODIS 300 m 10 d NN (red, NIR, SWIR, SZA) [7]
GLASS SPOT/VEGETATION 500 m 8 d NN (red, NIR) [9]

GLOBMAP MODIS 500 m 8 d VI-LAI relationship [8]
MODIS (MOD15A2H) MODIS 500 m 8 d LUT (red, NIR) [10]

The GLASS LAI product was generated and released by the Center for Global Change
Data Processing and Analysis of Beijing Normal University, including GLASS MODIS and
GLASS AVHRR LAI products [5]. The product fused the CYCLOPES LAI dataset and
the MODIS LAI dataset [9]. First, the valid LAI values of the CYCLOPES product were
converted to true LAI values using the vegetation aggregation coefficient product, then the
respective uncertainties of the two products by vegetation type were determined separately
using the BELMANIP global real sites to generate the fused LAI dataset of both, and then
the MODIS reflectance of BELMANIP sites and the LAI based on the fusion of CYCLOPES
and MODIS re used as the input and output of the training dataset, respectively, to train
the generalized regression neural networks (GRNNs) model. Finally, the MODIS/AVHRR
reflectance product was put into the neural network to obtain the GLASS LAI product
(http://glass-product.bnu.edu.cn/ or http://glcf.umd.edu/, accessed on 26 April 2022).

The GLOBMAP LAI products with long timeseries form different sensor inversions
by establishing the relationship between LAI and vegetation indices. First, a MODIS LAI
series was generated from MODIS land surface reflectance data (MOD09A1) based on the
GLOBCARBON LAI algorithm [27]. Then, the relationships between AVHRR observations
and MODIS LAI were established pixel by pixel using two data series during the overlapped
period 2000–2006. Finally, the AVHRR LAI back to 1981 was estimated from historical
AVHRR observations based on these pixel-level relationships [28]. The dataset ranges from
1999 to 2019 and features different resolutions. We used Version 3, with a spatial resolution
of 500 m, in this study (http://land.copernicus.eu/global/, accessed on 26 April 2022).

The MODIS LAI product (MOD15A2H) was provided by the National Aeronautics
and Space Administration (NASA). MODIS sensors on the Terra and Aqua satellites can
collect information on global land surface LAI changes over long periods of time. The
retrieval algorithm consists of a primary algorithm and an alternate algorithm. The primary
algorithm was based on a three-dimensional (3D) radiative transfer model and an alternate
algorithm for regression relations. The alternate algorithm used an empirical model based
on the regression relationship between the normalized difference vegetation index, and
LAI. The algorithm chooses the “best” pixel available from all the acquisitions of the Terra
sensor from within an 8-day time step. The dataset ranges from 2000 to the present and is
provided in the sinusoidal projection at an 8-day temporal resolution and a 500 m spatial
resolution (https://ladsweb.nascom.nasa.gov/, accessed on 12 October 2020).

2.4. Methodology
2.4.1. Data Processing

The GLASS, GLOBMAP, and MODIS LAI products were saved in HDF format, and
they were reprojected and resampled using the data reprojection tool MRT (MODIS Re-
projection Tool). GEOV2 LAI products used batch processing in Arcgis10.2. All the LAI
products were reprojected to Albers Conical Equal Area, and the GEOV2 LAI was upscaled
to 500 m resolution. In the LAI product processing, the conversion factors varied, with
GEOV2 LAI, GLASS LAI, GLOBMAP LAI, and MODIS LAI being 1/30, 1/10, 1/100, and
1/10, respectively. Finally, all LAI products were aggregated separately to a monthly time
step by calculating the monthly average of the LAI values for each month.

http://glass-product.bnu.edu.cn/
http://land.copernicus.eu/global/
https://ladsweb.nascom.nasa.gov/
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2.4.2. Leaf Area Index Reference Maps

The products were validated with the help of ground-truth data obtained in 2014,
2015 and 2019 across meadow steppe, typical steppe, and desert steppe regions. Yang [29]
confirmed that there is no large gap between empirical statistics and radiative transfer
model simulations in a small area. Because of the good correlation between vegetation
indices and LAI, classical LAI remote sensing inversion methods usually use vegetation
indices as the independent variables of statistical models, which were chosen for this
study. We selected Landsat8 operational land imager (OLI) images, a widely used and
recognized image data source with good quality, to generate the reference maps for different
grassland types based on empirical relationships (Table 2). The normalized difference
phenology index (NDPI) was chosen to establish the relationship between LAI among
different grassland types; we generated LAI reference maps in Google Earth Engine with a
spatial resolution of 30 m, which we then upscaled to a spatial resolution of 500 m. The
NDPI design differs from the NDVI in that it incorporates the shortwave-infrared (SWIR)
band [30]. Our other study also found that NDPI contributed the most to LAI estimation
among multiple factors, including vegetation indices, climate factors, soil factors, and
topography factors [31]. For each grassland type, 75% of the sampling points were taken
for modeling and 25% for validation, respectively, to determine the inversion model to
generate LAI reference maps. The NDPI is expressed as follows:

NDPI =
ρnir − (0.74× ρred + 0.26ρswir)

ρnir + (0.74× ρred + 0.26ρswir)

where ρred, ρnir, ρswir refer to the reflectance in the red, near-infrared, and shortwave infrared
bands (corresponding Landsat8 OLI band 4, 5 and 6), respectively.

Table 2. Collection of Landsat8 OLI remote sensing images based on ground sampling time and
which used to generate LAI reference maps.

Grassland Types Row/Column Satellite Transit Date
(Year-Month-Day)

Experiment Date
(Year-Month-Day)

Meadow steppe 123/26 2014-07-18 2014-07-18
123/26 2019-08-01 2019-08-06

Typical steppe
123/30 2019-08-01 2019-08-01
123/30 2015-07-28 2015-07-23
123/30 2015-07-26 2015-07-25

Desert steppe
126/31 2019-08-06 2019-08-06
126/31 2019-08-22 2019-08-20
126/31 2015-07-26 2015-07-25

2.4.3. Validation of Leaf Area Index Products

We used both bridging and cross-validation approaches to assess the four LAI products
(Figure 3), The LAI products were each aggregated into a monthly time step by computing
the average from the LAI values for each month from 2010 to 2019.

We used the coefficient of determination (R2) and root mean square error (RMSE) to
evaluate the performance of these satellite-derived products. For cross-validation among
the LAI products, we chose the average LAI values for July to compare and analyze the
four products. We calculated the correlation and the comparison of the distribution of the
difference between each pair of LAI products to assess the spatial and temporal profiles of
the four LAI products.

R2 = 1−
∑n

i=1

(
yi −

_
y i

)2

∑n
i=1(yi − yi)

2
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RMSE =

√
1
n∑n

i=1

(
yi −

_
y i

)2

where ŷi is the LAI values of multiple satellite-based products, yi is the LAI values of
reference maps, yi is the mean values of LAI reference maps, and n is the number of LAI in
the validation dataset.

Figure 3. Flowchart of leaf area index products (GEOV2, GLASS, GLOBMAP, and MODIS) validated
in different grassland types using bridging and cross-validation methods.

3. Results
3.1. Indirect Validation Based on Leaf Area Index Reference Maps

A total of 129 in situ LAI sample plots were used to indirect validation, 52 in meadow
steppe, 44 in typical steppe, and 33 in desert steppe (Table 3). First, the NDPI of the study
area were calculated using remote sensing images, and the statistical model was established
by randomly selecting 75% of the ground-measured LAI values and the corresponding
point vegetation index values, then the LAI values were obtained by vegetation index
inversion according to the statistical relationship, and the remaining 25% of the ground-
measured LAI was used for comparison with the Landsat8 OLI-based inversion LAI values.
The comparison results are shown in Figure 4, where RMSE = 0.40 for meadow steppe,
RMSE = 0.21 for typical steppe, and RMSE = 0.18 for desert steppe, indicating that the
models for the three grassland types can estimate the true values better. We used medium
to generate LAI reference maps with a spatial resolution of 30 m, and then resampled the
30 m resolution LAI to 500 m spatial resolution. A comparison was made between the
scale-transformed ground data and the product LAI values to check the difference between
the product and the ground-truth data, giving the basis for selecting the LAI product to
analyze the vegetation change.

Table 3. The mean and standard deviation (SD) of in situ leaf area index of different grassland types
sampled during July and August in 2014, 2015, and 2019.

Indicators Meadow Steppe Typical Steppe Desert Steppe Inner Mongolia

n 52 44 33 129
Mean (m2/m2) 1.84 1.16 0.73 1.17

SD (m2/m2) 0.57 0.47 0.42 0.63
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Figure 4. Modeling and validation of statistical models based on vegetation indices: meadow steppe
(left), typical steppe (middle), desert steppe (right).

Results comparing these LAI products with all upscaled LAI values in Inner Mongolia
grassland showed that the GLASS LAI performed better in meadow steppe (R2 = 0.26,
RMSE = 0.41) and typical steppe (R2 = 0.32, RMSE = 0.38). By contrast, the GEOV2 LAI
performed better in desert steppe (R2 = 0.39, RMSE = 0.30) (Table 4). Different products
behave differently in different grassland types.

Table 4. Simple linear regression model of normalized difference phenology index–leaf area index.

Grassland Types Model R2 F-Statistic Sig. F

Meadow steppe y = 7.87x + 0.24 0.54 41.44 0.000
Typical steppe y = 7.89x + 0.27 0.56 53.33 0.000
Desert steppe y = 3.78x + 0.09 0.63 70.49 0.000

3.2. Temporal Changes of Leaf Area Index by Grassland Types

All four LAI products showed similar temporal trajectories across grassland types, and
the seasonal characteristics of the timeseries curves of the four regions A~D were obvious
and consistent with the phenological characteristics in Inner Mongolia (Figure 5). In the
meadow type, we did not generate LAI reference maps to compare with the LAI products.
In terms of timeseries, GLOBMAP is the highest, followed by GEOV2 and GLASS; MODIS
is the lowest generally, and GLOBMAP is significantly overestimated in 2011 and 2012,
while the other years are more similar (Figure 5a). In meadow steppe, the LAI values of
GLASS performed better, and the four LAI products showed a continuous and smooth LAI
distribution at the beginning and end of the growing season, except in 2014 (Figure 5b). In
typical steppe, the LAI values of GLASS performed better, with GLOBMAP significantly
underestimated compared to this product, and MODIS overestimated in most of the years
(Figure 5c). In desert steppe, the LAI values of GEOV2 performed better. The GLOBMAP



Remote Sens. 2023, 15, 4736 10 of 17

LAI values were consistently the smallest of the four products in the past decade; this
confirms higher temporal instability compared to the other products (Figure 5d). For all
grassland types, the largest LAI differences appeared in July. The trends of GEOV2 and
GLASS were most similar, and their LAI values were closer throughout the study period.

Figure 5. Temporal changes of the leaf area index (LAI) products from 2010 to 2019. A large sample
plot of 5 × 5 km was selected to represent the LAI value of a period after taking the mean value for
each of the four grassland types. These include meadow (50.79◦N, 122.17◦E) and meadow steppe
(49.36◦N, 120.11◦E) at Hulunber, typical steppe (43.54◦N, 116.65◦E) at Xilinhot, and desert steppe
(41.77◦N, 111.87◦E) at Erlianhot, which can be found in Figure 1.

3.3. Spatial Distribution of Leaf Area Index by Grassland Types

Spatial distributions of annual mean LAI among the four LAI products in Inner
Mongolia over the period from 2010 to 2019 showed strong consistency, with significantly
higher LAI values in the east and lower values in the west (Figure 6). Specifically, the
average LAI of Inner Mongolia grassland using GLASS had the highest LAI values (1.08),
followed by GEOV2 LAI (1.03), MODIS LAI (0.94), and GLOBMAP LAI (0.84). The LAI
at pixel level by grassland type showed within-type variation, including outliers. LAI
of GLOBMAP had outliers in all grassland types. Among all grassland types in Inner
Mongolia, the LAI of meadow steppe was the highest, with mean LAI values fluctuating
between 0.64 and 4.39, followed by meadow steppe, with a relatively large fluctuation range
between 0.94 and 2.37, typical steppe between 0.30 and 1.01, and desert steppe between 0.01
and 0.20. LAI from GLASS and MODIS exhibited slightly higher values (0.16, 0.16) than
from GEOV2 (0.15) and GLOBMAP (0.14) in desert steppe, while LAI from GLOBMAP
exhibited a much higher value (2.38) than the other three products for meadow. The LAI
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from GLASS (1.85, 0.75) was higher than those from MODIS (1.76, 0.72), GEOV2 (1.67, 0.65),
and GLOBMAP (1.78, 0.67) in meadow steppe and typical steppe, respectively.

Figure 6. Spatial distribution and boxplots of annual mean leaf area index (LAI) from four LAI
products in July of 2010–2019: (a) GEOV2; (b) GLASS; (c) GLOBMAP and (d) MODIS. The red points
in boxplots represent the outliers.

3.4. Comparison among Four Leaf Area Index Products

In the spatial difference between pairs of LAI products, LAI values were more disparate
in the northeast, corresponding to meadow, which had the widest range of values and
the greatest uncertainty, and GEOV2 LAI generally had the highest LAI. GLASS LAI and
GEOV2 LAI had the most similar spatial distribution characteristics (Figure 7). Among
the six pairs of LAI products, two pairs have high correlation with R2 > 0.90: GEOV2 LAI
vs GLASS LAI (R2 = 0.94) and GLASS LAI vs MODIS LAI (R2 = 0.92). MODIS LAI and
GLOBMAP LAI had the lowest correlation values (R2 = 0.82), and the remaining three
pairs had moderate correlation values. Compared with GLASS LAI, the correlation can be
ordered by GEOV2 LAI (R2 = 0.94), MODIS LAI (R2 = 0.92), and GLOBMAP LAI (R2 = 0.87).
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Figure 7. Spatial difference and density scatter plots between each pair of leaf area index (LAI)
products in July: (a) the difference between MODIS and GLOBMAP; (b) the difference between
MODIS and GLASS; (c) the difference between MODIS and GEOV2; (d) the difference between
GLASS and GLOBMAP; (e) the difference between GLASS and GEOV2; (f) the difference between
GEOV2 and GLOBMAP. The density scatter plots show the spatial correlations among each pair
of LAI products at the pixel scale, and the different colors of the statistical distribution represent
different levels of the number of image elements in each classification. A color shift towards yellow
indicates higher density, with the densest values in all LAI products occurring mainly on regions
with smaller LAI values.

4. Discussion
4.1. Validations in Grassland

Grassland plays an important role in regional climate change and global carbon cycle,
and LAI in complex and diverse grassland ecosystems shows large spatial and temporal
variability [32]. In situ LAI measurements are time-consuming, complex, and usually only
obtain data at small scales [33,34]. By contrast, remotely sensed data has become an effective
way to produce large-scale LAI products [8]. Inner Mongolia grassland is a sensitive area
for global climate change; it is in the drylands, with rich vegetation types but fragile ecology.
Currently, some researchers are focusing on the study of gross primary productivity (GPP),
net primary productivity (NPP), and carbon and water simulations [24,35,36]. Satellite-
derived LAI products provide data sources and are key inputs for these multiple land-
surface models and ecological models, facilitating their effective use. Compared to crop
and forest vegetation, grassland has low cover and complex canopy structure, so the
distribution of LAI values can be very different, with crop generally ranging from 1 to
7 [37] and forest ranging from 3 to 7. Especially because desert steppe has a very narrow
range, from 0 to 0.5, product validation is a very critical aspect for different grassland types.
Spatial heterogeneity of land surface is pervasive, especially in vast grassland areas with
rich grassland types. The LAI of different grassland types varies greatly, which was again
reflected in the magnitude of the GLASS LAI product, which was 2.25 for meadow, 1.85
for meadow steppe, 0.75 for typical steppe, and 0.16 for desert steppe (Figure 6b). For this
reason, it is also important to differentiate grassland types to consider vegetation changes.
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Due to the limitation of the number of validation sites, it is difficult for us to fully assess the
performance of LAI products. Evaluation of the performance of LAI products for different
grassland types in Inner Mongolia is still lacking, while the evaluation results are necessary
for LAI product-application analysis. There are large-scale field studies [6,10,38] based on
ground-truth data and intercomparison among the widely used LAI products, but there is
less validation in small areas. It is also important to clarify the performance of LAI products
in the dryland Inner Mongolia grassland, where LAI range values vary greatly among
different grassland types, and it is necessary to develop inversion models applicable to
different vegetation types in grassland, which our study has done. The results can give
suggestions on multiple LAI products chosen in different grassland types.

4.2. Comparison with Other Similar Studies

We assessed the accuracy of four commonly used satellite-based LAI products (GEOV2,
GLASS, GLOBMAP, and MODIS), and analyzed their spatial and temporal consistency
and differences during the period from 2010 to 2019 for different grassland types in Inner
Mongolia (Table 5, Figures 5–7). Several previous studies also compared multiple LAI
products. Xiao et al. [5] and Li et al. [17] conducted comparisons of LAI products and found
that GLASS LAI showed the best performance. Our results coincide with this conclusion in
Inner Mongolia grassland, but they are slightly different for different grassland types. Other
studies also showed that the performance of LAI products is different when different study
areas are selected [9,39]. Yin et al. [40] evaluated and compared the temporal performance
of four LAI products (MOD15A2, MOD15A2H, GEOV1, and GLASS) in grassland on the
northeastern Tibetan Plateau. Our study on the timeseries variation is consistent with the
results of numerous researchers and is closely related to the vegetation growth curve. In
recent years, many new LAI products have been produced. Zhu et al. [38] validated the
MERSI GLOBCARBON LAI and MODIS GLOBCARBON LAI for grassland in China and
demonstrated that FY-3A/MERSI data for global LAI retrieval shows great potential. Liu
et al. [41] generated long-timeseries and high-consistency LAI products by quantitatively
fusing AVHRR and MODIS data to solve the inconsistency problem of different sensors.
These results provide references for the estimation of LAI. Our results show that GLASS LAI
and GEOV2 LAI have good advantages in the analysis of vegetation-status characteristics
for application in grassland. In analyzing the status and changes of grassland vegetation
in Inner Mongolia, we suggest that these two products can be chosen as the base data.
The development of reliable satellite-derived LAI products at regional to global scales
is fundamental for accurate estimation of carbon and water fluxes and for discovering
climate change over broad scales [24,25,42]. Meanwhile, we need accurate models that can
measure grassland vegetation so we can assess socio-economic policy impacts on grassland
management more precisely.

Table 5. The validation of the GEOV2, GLASS, GLOBMAP, and MODIS LAI products in the different
grassland types, including R2 and RMSE (m2/m2).

Indicators
Meadow Steppe Typical Steppe Desert Steppe

a 1 b 2 c 3 d 4 a b c d a b c d

R2 0.18 0.26 0.35 0.05 0.21 0.32 0.16 0.31 0.39 0.36 0.02 0.12
RMSE 0.42 0.41 0.45 1.01 0.40 0.38 0.72 0.49 0.30 0.34 0.51 0.38

1 a represents the GEOV2 LAI, 2 b represents the GLASS LAI, 3 c represents the GLOBMAP LAI, 4 d represents
the MODIS LAI.

4.3. Uncertainties in the Validation

In indirect validation, the first consideration is the uncertainties in the generation of the
LAI reference maps. There is a scale mismatch between ground-truth data and moderate
resolution pixels. In our study, the resolution of LAI products is 300 m or 500 m, while
the resolution of survey sample plots is 30 m. Even when all the sample plots are typical,
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representative, and homogeneous, the effect of scale effect cannot be eliminated, which also
can be found in Ding et al. [43]. The temporal resolution of LAI products is 8 d or 10 d, but
the ground sampling time is a particular day, which also adds uncertainty to the generation
of reference maps to further de-validate the LAI products. Meanwhile, ground-truth LAI
values are generally used to generate high-resolution LAI reference maps by establishing a
relationship between in situ LAI values and high-resolution reflectance, such as Landsat8
OLI and Sentinel, and there is also a time difference between sampling time and image
time. Even when LAI product values are selected to approximate the ground sampling
time, there will be time differences. The uncertainties of the land cover also should be
considered. For the period 2010–2019, the same set of grassland-type distribution maps was
used, and changes in grassland type and land-use type during the study period were not
considered; future studies should explicitly consider these changes. Limited by the location
and number of sample plots, we mainly focused on spatial and temporal variations. More
importantly, because the LAI values of the ground truth sampling points were below 2.5,
the results of the validation indicated a slight underestimation (Figure 4), which will affect
the validation results of the four LAI products. In addition, LAI data should be collected
for a long period of time across the regions representing the terrestrial surface, which will
help ecosystem models be applied on a large scale [8]. At the same time, attention should
be paid to the standardized collection of data to ensure that they can be used jointly, to
enable data sharing, and to enrich the datasets used for product validation. This study
only verifies the representativeness of the products on different grass-type spaces, and
more timeseries data will be obtained for the current authenticity test field distribution for
product validation. More data are needed for timeseries validation, and we will take more
sample points.

5. Conclusions

LAI products are widely used for vegetation condition assessment and model input
parameters, but the performance of these products remains unclear. We used both bridging
and cross-validation approaches to assess four mainstream LAI products (GEOV2, GLASS,
GLOBMAP, and MODIS) for different grassland types in Inner Mongolia. In contrast to
previous large-scale product validation, this study focused on the comparative analysis
of the performance of four LAI products in different grassland types. The GLASS LAI
provided better performance than the GEOV2 LAI, the MODIS LAI, and the GLOBMAP
LAI. However, there can be large differences in the performance of these LAI products
across grassland types. Among them, we suggest using GEOV2 LAI for desert steppe in
Inner Mongolia, and GLASS LAI for meadow steppe and typical steppe. In addition, these
four LAI products have spatial and temporal consistency across the region. Compared
with GLASS LAI, the correlation can be ordered thus: GEOV2 LAI (R2 = 0.94), MODIS
LAI (R2 = 0.92), and GLOBMAP LAI (R2 = 0.87). The results of this study can provide
guidance for the selection of LAI products for different grassland types in Inner Mongolia,
but the selection of LAI products in other regions needs to be further validated using in situ
LAI from those regions. Furthermore, a more refined ground sampling strategy should be
designed to obtain more accurate true values and the accuracy of the extant LAI products
can be more effectively assessed using direct validation rather than bridging validation
methods.
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Abbreviations

Abbreviation of Symbol Description LAI Products
AVHRR Advanced very high-resolution radiometer AVHRR
GLASS Global land surface satellite GLASS LAI
MODIS Moderate-resolution imaging spectroradiometer MODIS LAI
GLOBMAP Global LAI map of Chinese Academy of Sciences GLOBMAP LAI
GEOV2 Geoland2 version 2 GEOV2 LAI
MERIS Medium-resolution imaging spectrometer instrument MERIS
MISR Multi-angle imaging spectroradiometer MISR LAI
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