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Abstract: Arbitrarily oriented object detection is one of the most-popular research fields in remote
sensing image processing. In this paper, we propose an approach to predict object angles indirectly,
thereby avoiding issues related to angular periodicity and boundary discontinuity. Our method
involves representing the long edge and angle of an object as a vector, which we then decompose into
horizontal and vertical components. By predicting the two components of the vector, we can obtain
the angle information of the object indirectly. To facilitate the transformation between angle-based
representation and the proposed vector-decomposition-based representation, we introduced two
novel techniques: angle-to-vector encode (ATVEncode) and vector-to-angle decode (VTADecode).
These techniques not only improve the efficiency of data processing, but also accelerate the training
process. Furthermore, we propose an adaptive coarse-to-fine positive–negative-sample-selection
(AdaCFPS) method based on the vector-decomposition-based representation of the object. This
method utilizes the Kullback–Leibler divergence loss as a matching degree to dynamically select
the most-suitable positive samples. Finally, we modified the YOLOX model to transform it into
an arbitrarily oriented object detector that aligns with our proposed vector-decomposition-based
representation and positive–negative-sample-selection method. We refer to this redesigned model
as the vector-decomposition-based object detector (VODet). In our experiments on the HRSC2016,
DIOR-R, and DOTA datasets, VODet demonstrated notable advantages, including fewer parameters,
faster processing speed, and higher precision. These results highlighted the significant potential of
VODet in the context of arbitrarily oriented object detection.

Keywords: vector decomposition; arbitrarily oriented object detection; remote sensing; adaptive
sample matching; YOLOX

1. Introduction

In the field of remote sensing image object detection, there exists an alternative method
for object detection, which involves predicting bounding boxes with angles to detect arbi-
trarily oriented objects. With the rapid advancements in deep learning, significant progress
has been made in the field of arbitrarily oriented object detection in recent years [1–4].
However, direct angle prediction presents challenges related to boundary discontinuity
and angular periodicity [1,5–7]. To address these issues, some researchers have explored
turning the angle prediction into a vector prediction, which has been shown to be feasible
and effective. Nevertheless, there is still room for the improvement of such methods.

In the vector-decomposition-based methods, BBAVectors [8] was the first work to
propose the idea of using vector decomposition for arbitrarily oriented object detection.
It represents the oriented bounding box by adopting four boundary vectors (t, r, b, l) origi-
nating from the center of the oriented bounding box to its four sides. However, in addition
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to predicting the four boundary vectors (t, r, b, l), the method also needs to predict the
external width (we) and height (he) of the oriented bounding box. This requirement results
in predicting a total of ten bounding box parameters (t, r, b, l, we, he). In practical scenarios,
when an object’s bounding box is close to a horizontal orientation, the BBAVectors detector
struggles to differentiate between the four boundary vectors, leading to corner cases and
problematic results. To address this issue, the bounding boxes of objects are grouped
into two categories: horizontal bounding boxes and rotated bounding boxes, which are
processed separately. Consequently, BBAVectors needs to predict the types of bounding
boxes. This approach introduces complexity and increases the number of bounding box pa-
rameters that need to be predicted. Considering the implementation process of BBAVectors,
the model becomes complicated due to the excessive number of bounding box parameters,
leaving ample room for improvement. ProjBB [9] is an arbitrarily oriented object detector
based on vector decomposition, which uses a simplified approach with only six parameters
to describe the oriented bounding box. This is in contrast to BBAVectors [8], which employs
a more-complex representation with ten bounding box parameters. Specifically, ProjBB
uses the following six parameters (x, y, |u|, |v|, ρ, α) to represent an oriented bounding box,
where (x, y) are the coordinates of the center point, (|u|, |v|) are the two components of
the selected vertex projected onto the diagonal of the oriented bounding box, ρ: is the
projection ratio, and α is the quadrant label. However, a challenge arises when dealing with
square bounding boxes, as there can be multiple representations: either (x, y, |u|, 0, 0, α) or
(x, y, 0, |v|, 0, α). This can lead to uncertainty in square bounding box regression. To address
this issue, ProjBB imposes additional constraints. Firstly, the chosen vertex is constrained
not to appear on the Y-axis. Secondly, the value of ρ is restricted to the range [0, 1). In an
effort to improve detection performance, ProjBB also adopts the strategy of label smoothing.
However, there is still considerable room for further improvement based on the detection
results. RIE [10] is another arbitrarily oriented object detector that also uses vector de-
composition. It employs six parameters (x, y, δx, δy, b, ψ) to describe the oriented bounding
box, where (x, y) are the coordinates of the center point of the oriented bounding box,
(δx, δy) are the two components of the long half-axis of the oriented bounding box, b is the
short half-axis of the oriented bounding box, and ψ is the orientation label. The method
for determining the long half-axis is reported to be too complicated, and the constraints
applied to the parameters appear to be incomplete. For a detailed understanding of the
constraints, further information is available in the paper [11]. Additionally, RIE introduces
the concept of eccentricitywise orientation loss to achieve more-accurate orientation esti-
mation. This loss function likely contributes to enhancing the model’s performance when
dealing with arbitrarily oriented objects. In [12], Jiang et al. proposed a different approach
for representing oriented bounding boxes called long edge decomposition. They utilized
ten parameters (x, y, l, s, w, h, vx, vy, o, d) to describe the oriented bounding box, where (x, y)
are the coordinates of the center point of the oriented bounding box, (l) and (s) are the long
edge and short edge of the oriented bounding box, respectively, w and h are the width and
height of the circumscribed rectangle of the oriented bounding box, (vx, vy) are the two com-
ponents of the long edge decomposition, o is the bounding box type selection field, and d is
the orientation label. Compared to ProjBB and RIE, Jiang et al.’s method employs a larger
number of parameters to describe the oriented bounding box. In the context of synthetic
aperture radar (SAR) ship detection, Zhou et al. proposed a new vector-decomposition-
based arbitrarily oriented object-detection method called AEDet [11]. AEDet employs six
parameters (x, y, |u|, |v|, m, α) to describe the oriented bounding box. (x, y) are coordinates
of the center point of the oriented bounding box; (|u|, |v|) are the horizontal component
and vertical component of the focal vector in the inscribed ellipse of the oriented bounding
box; (m) is the difference between the long edge and the focal length; (α) is the orientation
label. Compared to other vector-decomposition-based arbitrarily oriented object-detection
methods described previously, AEDet stands out for its simplicity in representing oriented
bounding boxes and the overall design of the object-detection network. Despite its sim-
plicity, AEDet has demonstrated excellent detection performance. However, AEDet faces a
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challenge when dealing with square bounding boxes. The problem of focus disappearing
can occur, leading to an object having multiple predicted oriented bounding boxes during
the training phase. This issue may limit the performance improvement of AEDet and
requires further attention and improvement.

Both from the perspective of vector-decomposition-based arbitrarily oriented object-
detection network design and the detection results, there is still room for the improvement
of the aforementioned algorithms. After conducting a thorough analysis of these algorithms,
we propose a simpler and more-efficient vector-decomposition-based arbitrarily oriented
object detector called VODet. To address the focal disappearing problem caused by using
square bounding boxes in AEDet [11], we adopted the long edge decomposition approach to
describe the oriented bounding boxes. This method retains the angle information, avoiding
the issues present in square bounding boxes. Unlike BBAVectors [8], our VODet does not
suffer from corner case problems. This is because the representation of oriented bounding
boxes in VODet can accurately describe both horizontal and rotated bounding boxes,
eliminating the need to group them separately. We maintained the use of the orientation
label to determine the orientation of the oriented bounding box, similar to the approaches
used in ProjBB [9] and RIE [10]. The specific representation of the oriented bounding box
in our method is denoted as (x, y, lx, ly, s, α), where (x, y) represents the center point, (lx, ly)
are the two components of the oriented bounding box’s long edge decomposition, s is the
short edge of the oriented bounding box, and α is the orientation label. The orientation
label α determines whether the oriented bounding box falls in the first-third quadrant
or the second-fourth quadrant. Specifically, α = 0 indicates that the oriented bounding
box is in the second-fourth quadrant, while α = 1 indicates that it is in the first-third
quadrant. We found that, for simplicity, setting α = 1 also signifies that the orientation of
the oriented bounding box coincides with the coordinate axis. Our experiments showed
that this simplification is effective and does not compromise accuracy. This representation
(x, y, lx, ly, s, α) is concise and requires fewer parameters compared to BBAVectors [8] and the
methods proposed by Jiang et al. [12]. The key contributions of our work are summarized
as follows:

1. We propose a novel vector-decomposition-based representation for an oriented bound-
ing box, which requires fewer parameters (x, y, lx, ly, s, α). Compared to similar algo-
rithms, the proposed representation method is significantly simpler, making it easier
to implement and understand. Moreover, it addresses the issues of corner cases in
BBAVectors and the problem of focal disappearing in AEDet, which are common in
other existing methods.

2. We propose the angle-to-vector encode (ATVEncode) and vector-to-angle decode
(VTADecode) modules to improve the implementation of converting between angle-
based representation and the proposed representation. The conversion process of
the ATVEncode and VTADecode modules converts all oriented bounding boxes of
a batch of images simultaneously into the form of a matrix, eliminating the need
for one-by-one processing. This significantly shortens the data-processing time and
accelerates the training of the object-detection network

3. We propose an AdaCFPS module to dynamically select the most-suitable positive
samples. The AdaCFPS module initially identifies coarse positive samples based
on the ground-truth-oriented bounding box. Subsequently, the Kullback–Leibler
divergence loss [13] is utilized to assess the matching degree between the ground-
truth-oriented bounding box and the coarse-positive-oriented bounding box. Finally,
the positive samples that exhibit the highest matching degree are dynamically selected.

4. We developed the anchor-free vector-object-detection (VODet) model based on the
proposed representation method and modules. VODet’s outstanding performance
in object detection was demonstrated through experiments on the HRSC2016 [14],
DIOR-R [15], and DOTA [16] datasets, showcasing its effectiveness. Additionally,
the experimental results revealed that VODet boasts several advantages, including
a fast processing speed, fewer parameters, and high precision. When compared to
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similar algorithms, VODet achieved the best results, highlighting the superiority of
our vector-decomposition-based arbitrarily oriented object-detection method.

2. Related Work

There are many types of remote-sensing-image-processing tasks, such as change
detection [17–19], object detection [20–22], anomaly detection [23–25], etc. The object-
detection methods can be divided into bounding-box-based arbitrarily oriented object
detection and horizontal-bounding-box-based general object detection. Before the release
of the DOTA dataset in 2018 [16], remote sensing object detection using rotating bounding
boxes had already been applied in various subdivisions such as vehicle detection [26] and
ship detection [14,27]. There are several approaches based on different object-regression
techniques in remote-sensing-object-detection methods that employ rotating bounding
boxes, which can be categorized as methods based on angle regression, methods utilizing
keypoint regression, and other related techniques.

2.1. Angle-Based Methods

Ding et al. [28] proposed the RoI Transformer to address the issue of inconsistency
between regional features and objects caused by the use of horizontal candidate frames in
the two-stage arbitrarily oriented object-detection-method, which performs spatial trans-
formations on the region of interest (RoI) while being supervised by the labeled rotation
bounding box information. This rotation RoI, along with the feature map, is used for
geometrically robust feature extraction and ultimately employed for the classification and
regression of the rotated RoI. Han et al. [29] proposed a single-stage aligned arbitrarily
oriented object-detection network comprising a feature alignment module (FAM) and
an oriented detection module (ODM), which can address the significant misalignment
issue between anchor boxes and axis-aligned convolutional features, leading to improved
performance in arbitrarily oriented object detection tasks. Yang et al. [30] introduced a
feature-refined module (FRM) to tackle the challenge of feature misalignment in a single-
stage object detector. This module leverages a regression and classification sub-network to
generate finely tuned bounding boxes. Additionally, the authors proposed an approximate
SkewIoU loss to address the issue of SkewIoU non-guidance. This loss function is designed
to enhance object-location-estimation accuracy, thereby contributing to the overall perfor-
mance improvement of the single-stage object detector. In the work of Yang et al. [5,13],
the Gaussian-Wasserstein-distance-based and Kullback–Leibler divergence-based joint
unified loss were proposed to address the issue of decoupled regression loss for object
angle and size; by leveraging this joint unified loss, the accuracy of arbitrarily oriented
object detection can be improved without significant changes to the overall design of the
algorithm. Chen et al. [31] introduced a pixel-level IoU metric, called pixel-IoU (PIoU),
which can leverage both angle and IoU information to achieve precise regression in arbi-
trarily oriented object detection. By employing the PIoU loss, the performance of object
detection is enhanced, especially in scenarios with high aspect ratios and complex back-
grounds. The conventional arbitrarily oriented object-detection methods based on five
parameters and eight parameters suffer from issues such as boundary discontinuity and
angle periodicity; in order to address these issues, Yang et al. [1,7,32] cleverly transformed
angle regression prediction into angle classification, which can effectively address the
issues of boundary discontinuity and angle periodicity, leading to significant improve-
ments in the detection accuracy of arbitrarily oriented object detection. Ming et al. [2]
made an observation that the positive anchor boxes selected in some arbitrarily oriented
object-detection methods may not always maintain accurate detection after regression,
while certain negative anchor boxes can achieve precise positioning. To address this is-
sue, they proposed the dynamic-anchor-learning (DAL) method by introducing a novel
matching degree that comprehensively evaluates the localization potential of anchor boxes,
enabling a more-efficient label-assignment process. Indeed, in the field of remote sensing,
several other methods based on angle regression have been extensively researched. The
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studies conducted by [15,33–35] explored diverse aspects, including feature extraction,
rotation-invariant features, anchor box setting, and more. The efforts from these studies
have enhanced the accuracy, efficiency, and overall performance of object detection in
remote sensing imagery, making it a thriving area of research with promising prospects for
further improvements.

2.2. Keypoint-Based Methods

The angle-regression-based methods might suffer from a lack of spatial information
in object prediction, which can limit the performance of object positioning. To address
this issue, Fu et al. [3] proposed a keypoint-based arbitrarily oriented object-detection
algorithm instead of directly predicting angles, which can generate a rotating bounding
box by predicting keypoints that are uniformly distributed in the object area. Sampling
keypoints in the object area helps avoid problems associated with direct angle prediction
and effectively utilizes the spatial information of the object. Lu et al. [36] also employed
uniform keypoints to represent arbitrarily oriented objects and proposed an oriented
sensitive keypoint-based rotated detector (OSKDet). In contrast to Fu et al. [3], Lu et al.
introduced an oriented sensitive heatmap (OSH) to enhance OSKDet’s ability to model
arbitrarily oriented objects and implicitly learn their shapes and orientations. The object
keypoint representation designed by Fu et al. [3] and Lu et al. [36] requires keypoints to be
evenly distributed within the object area. While this method effectively represents regularly
shaped objects, it may not be suitable for irregularly shaped objects. Therefore Li et al. [37]
presented an effective adaptive keypoint learning method called Oriented RepPoints, which
can utilize adaptive keypoint representation for arbitrarily oriented objects, whether they
are regular or irregular in shape, and effectively captures the geometric information of
these objects. To obtain the orientation bounding box, three orientation transformation
functions were proposed based on the arrangement of the adaptive learning keypoints.
In order to address the issue of spatial feature aliasing in object-detection methods that rely
on horizontal bounding boxes, caused by variations in the object orientation and dense
distribution in remote sensing images, Guo et al. [38] proposed a convex-hull feature-
adaptation (CFA) method, which aims to achieve optimal feature allocation by constructing
a convex hull set and dynamically splitting positive or negative convex hulls. Dai et al. [39]
introduced a novel method for arbitrarily oriented object detection based on keypoint
detection, called anchor-free corner evolution (ACE), which predicts the offset of each
keypoint relative to the four vertices; by minimizing the offset values of the keypoints to
the four vertices, the horizontal bounding box gradually evolves into a rotated bounding
box. The imaging mechanism of synthetic aperture radar (SAR) images often results in
strong scattering of ships, making them distinguishable in SAR images. To address this
phenomenon, Sun et al. [40] and Fu et al. [41] devised a strong scattering point detection
network for arbitrarily oriented ship object detection in SAR images. The approach involved
first detecting the strong scattering points of ships in SAR images and, then, gathering
the positions of these scattering points to obtain an arbitrarily oriented bounding box.
Keypoint-based object-detection methods have proven to be flexible and hold significant
potential in the field of computer vision. Numerous excellent related works such as [42–47]
have made significant contributions to the advancement of keypoint-based arbitrarily
oriented object detection research. The collective efforts in this area are accelerating the
progress of computer vision technologies and bringing keypoint-based methods closer to
practical implementations in various real-world scenarios.

2.3. Other Methods

There are diverse approaches for arbitrarily oriented object detection, each offering
unique advantages and insights. Wei et al. [48] proposed a method based on predicting
paired midlines inside the object, resulting in a single-stage model without anchor frames
and non-maximum suppression. The experimental results demonstrated the effectiveness
of this approach for arbitrarily oriented object detection. Polar coordinates have been em-
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ployed in various works, such as those by He et al. [49], Zhou et al. [50], and Zhao et al. [51],
to achieve the detection of arbitrarily oriented objects. Similarly, rotating bounding boxes
and minimum circumscribed horizontal bounding boxes were utilized in the methods by
Xu et al. [4] and Xie et al. [52] for detecting such objects. Yang et al. [53] introduced weak
supervision and self-supervision learning methods to enable object-detection networks to
learn angle information from objects initially marked as horizontal boxes. The experimen-
tal results demonstrated the effectiveness of this approach, providing new insights into
arbitrarily oriented object detection. Considering that a significant portion of existing data
is annotated using horizontal boxes, the implementation of methods such as Yang et al.’s
approach [53] expanded the available data for arbitrarily oriented object detection. This
unification of horizontal bounding box and rotating bounding box datasets in the domain
of arbitrarily oriented object detection opens up new possibilities for research and applica-
tions in this area. Such a diverse range of methods allows researchers and practitioners
to explore various techniques, fostering continued progress and innovation in arbitrarily
oriented object detection.

3. The Proposed Method

In this section, we begin by presenting our novel representation of an oriented bound-
ing box and conducted a comparative analysis with similar methods to emphasize the
advantages of our approach. Following the introduction of our oriented bounding box
representation, we integrated it into an anchor-free object detection framework and pro-
vide an overview of our complete object-detection method. Subsequently, based on the
overview of our proposed object-detection method, we delve into the detailed explana-
tion of the key modules that constitute our approach. These modules play crucial roles
in achieving accurate and efficient arbitrarily oriented object detection. By providing a
comprehensive explanation of these key components, we aimed to showcase the efficacy
and innovation of our method in handling challenging scenarios of object detection with
arbitrary orientations.

3.1. The Representation of Oriented Bounding Box

In vector-decomposition-based arbitrarily oriented object detection, we selected sev-
eral methods similar to ours for analysis and comparison, which were BBAVectors [8],
Longside [12], and Ellipse [11]. Our representation method can be seen as an effective
combination of the above methods, but it is simpler and more effective than the original
methods. The figures depicting BBAVectors, Longside, Ellipse, and our representation
method are shown in Figure 1. In Figure 1a, based on BBAVectors [8], the oriented bounding
box is divided into a horizontal bounding box and a rotational bounding box to handle
corner cases, making the representation of an oriented bounding box more complex. More-
over, the parameters in BBAVectors are (t, r, b, l, w, h, o), where each of (t, r, b, l) requires
two parameters. Without considering the orientation parameter (o), predicting an oriented
bounding box requires 10 parameters. In Figure 1b, Longside [12] introduces a novel idea
by decomposing the oriented bounding box based on its long edge, but the number of
predicted parameters in the Longside method (x, y, l, s, w, h, vx, vy, o, d) is at least 10. Similar
to BBAVectors, Longside also divides the oriented bounding box into horizontal and rota-
tional components. In Figure 1c, the ellipse representation of an oriented bounding box is
an interesting method that has achieved remarkable results in SAR ship detection datasets.
The ellipse representation method (x, y, u, v, m, α) has demonstrated its potential in arbi-
trarily oriented object detection. However, when the oriented bounding box is a square,
the focal vector of the ellipse will disappear. In the paper “AEDet” by Zhou et al. [11], the
authors showed that the disappearance of the focal vector does not significantly affect the
performance of AEDet, as evidenced by their experiments. In this paper, we analyzed the
influence of the focal vector’s disappearance from a formulaic perspective.
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Figure 1. The different representations of the oriented bounding box. (a) BBAVectors: (t, r, b, l, w, h, o);
(b) Longside: (x, y, l, s, w, h, vx, vy, o, d); (c) Ellipse: (x, y, u, v, m, α); (d) ours: (x, y, lx, ly, s, α).

When the oriented bounding box is a square, as illustrated in Figure 2, the dotted-line
square has a rotation angle (θ) of arbitrary degrees from the solid-line square. The borders
of the two squares intersect at the corners, forming eight identical triangles. Let us denote
the area of each triangle as A. We can then compute the intersection-over-union (IoU) of the
dotted-line square and the solid-line square by using the following formula.

IoU =
L2 − 4A
L2 + 4A

(1)

where L is the side length of those squares. From this function, we know that the larger the
A, the smaller the IoU. When A obtains the maximum value, IoU is the minimum. A is a
function of the rotation angle (θ).

A =
1
2
× w× h =

L2

4
× tan(θ/2)(1− tan(θ/2))

1 + tan(θ/2)
(2)
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where w and h are side length of those triangles, as shown in Figure 2. The range of θ is
in [0, 90]; thus, the range of tan(θ/2) is in [0, 1]. Let us denote tan(θ/2) using x, then the
above equation can be rewritten as:

A =
L2

4
× x(1− x)

1 + x
(3)

The first-order derivative of A to x is:

A′ =
L2

4
× 1− 2x− x2

(1 + x)2 (4)

Let A′ = 0; we can solve this equation to obtain x =
√

2− 1, which means that A
reaches the maximum when x =

√
2− 1.

Amax =
L2

4
× 3
√

2− 4√
2

(5)

Substituting the value Amax into Equation (1), we can obtain the minimum value of
IoU, which is equal to (2−

√
2)/(2

√
2− 2) and approximately equal to 0.70711. This value

is greater than 0.5, indicating that, when the ground truth is a square, the influence of the
orientation is secondary, and the main influencing factor is the center distance between the
predicted bounding box and the ground truth. Therefore, the absence of the focal vector
does not affect the calculation of the mAP0.5 evaluation criterion.

w

h

90-θ

θ

w

h

90-θ

θ

Figure 2. The same object can possess multiple square bounding boxes.

From Equation (1) to Equation (5), we can observe that, when the prediction of the
center of the square object is accurate enough, it does not significantly impact the evaluation
criteria of the object-detection method. However, it becomes challenging to assess the shape
matching degree between the predicted box and the ground truth box due to the absence of
angle information in the square-object-prediction process. The removal of the ellipse focal
vector is one of the reasons why AEDet’s performance improvements are limited on the
complex DIOR-R [15] and DOTA [16] datasets. Inspired by the long-edge-decomposition
method presented in [12], we redesigned the representation of the oriented bounding boxes,
as depicted in Figure 1d. In our novel representation approach, we replaced the focal vector
of the ellipse with a long edge vector. Subsequently, we predicted the two components of
the long edge vector decomposition. This representation method can be considered as an
enhancement over the ellipse representation utilized in AEDet [11]. In our specific repre-
sentation, we predicted the following parameters (x, y, lx, ly, s, α) to determine a predicted
oriented bounding box, where (x, y) represent the center of the oriented bounding box,
(lx, ly) denote the two components of the long edge vector in the oriented bounding box,
(s) refers to the short edge of the oriented bounding box, and (α) serves as an orientation
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indicator. When α = 1, this means that the orientation of the object belongs to the first
and third quadrants; when α = 0, this means that the orientation of the object belongs
to the second and fourth quadrants. Additionally, for simplicity, when α = 1, this also
indicates that the orientation of the object coincides with the coordinate axis. As depicted in
Figure 1d, this representation method successfully overcomes the problem of disappearing
ellipse focal vectors. Moreover, owing to the advantages of the long-edge-decomposition
method, the angle information of the square bounding box is preserved effectively. This
improvement enhances the representation capabilities and performance of our model.
Indeed, our predicted parameters (x, y, lx, ly, s, α) offer a simpler representation compared
to the parameters used in BBAVectors [8] and Longside [12], namely (t, r, b, l, w, h, o) and
(x, y, l, s, w, h, vx, vy, o, d), respectively. Unlike BBAVectors [8] and Longside [12], we did not
divide the oriented bounding box into horizontal and rotational bounding boxes, which
further simplified our representation method. The most-crucial advantage of our method
lies in the combination of representation techniques from Ellipse [11] and Longside [12].
This enabled our method to retain angle information in the prediction of square bounding
boxes, thereby leading to improved object-detection performance.

3.2. The Overall Structure of Proposed Method

After introducing the vector representation of an oriented bounding box, we con-
structed VODet by incorporating it into the YOLOX [54] object-detection framework.
The overview of the proposed VODet is illustrated in Figure 3. Additionally, we display the
positions of the ATVEncode, VTADecode, and AdaCFPS modules, which will be introduced
in the following subsections.
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Figure 3. The structure of VODet.

In the structure of VODet, the vector representation of an oriented bounding box is
utilized in each head. Each head is derived from the the PAFPN [55] network and consists
of three branches. The first branch is responsible for class prediction (Cls represents the
number of object categories). The second branch predicts the orientations of the oriented
bounding box by treating orientation prediction as a classification task. Thus, the value D
in the head can predict either α1 or α2. If the predicted α1 is greater than or equal to α2, then
the orientation of the predicted bounding box belongs to the second and fourth quadrants.
Otherwise, if the predicted α1 is less than α2, then the orientation of the predicted bounding
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box belongs to the first and third quadrants. The third branch is utilized to predict the
oriented bounding box information (x, y, lx, ly, s). Therefore, the dimensionality V of this
branch is set to five. Additionally, on this branch, another branch is introduced to predict
the confidence (C is 1) of the object detection.

We can observe the positions of three modules, namely ATVEncode, VTADecode,
and AdaCFPS, in Figure 3. During the training phase, ATVEncode is used to convert the
ground truth bounding box coordinates (x, y, w, h, θ) into (x, y, lx, ly, s, α). The AdaCFPS
module dynamically selects positive samples based on the ground truth bounding boxes
transformed via the ATVEncode module and the predicted bounding boxes. In the testing
phase, to visualize and evaluate the predicted results, we employed the VTADecode
module to convert the predicted oriented bounding box coordinates (x, y, lx, ly, s, α1, α2) into
(x, y, l, s, θ). VODet employs specific loss functions, including the L1 loss for bounding box
regression (x, y, lx, ly, s) and the BCE loss for the predictions of categories and orientations.
The evaluation metrics used are the mAPs of VOC2007 or VOC2012.

3.3. The Proposed ATVEncode Module

The paper introduces a novel representation (x, y, lx, ly, s, α) for oriented bounding
boxes in the context of arbitrarily oriented object detection. Unlike the traditional format
(x, y, w, h, θ), this new representation hides the angle (θ) in the decomposition of the long-
side vector (lx, ly) instead of directly using the angle information. During the training phase,
a conversion from the traditional format (x, y, w, h, θ) to the proposed format (x, y, lx, ly, s, α)
is necessary for proper loss calculation. However, this transformation process involves
determining the long side and the corresponding orientation (α), which can be error-
prone and crucial for accurate results. To address this, the paper introduces the angle-to-
vector encode (ATVEncode) algorithm, presented in Pytorch-style code in Algorithm 1.
The ATVEncode algorithm demonstrates that all transformation processes involve matrix
operations, enabling parallel computation. As a result, this significantly reduces the
transformation time, leading to faster training times.

Algorithm 1 Angle-to-vector encode (Pytorch-style)

Input: I , which is an n× p matrix; n means the number of ground truth bounding boxes; p = 5
means the representation vector with the angle, i.e., (x, y, w, h, θ)

Output: O, which is an n × q matrix; n means the number of bounding boxes; q = 6 means the
representation vector with vector decomposition, i.e., (x, y, lx, ly, s, α)

# Clone the input I as T
T = I .clone()
# Find the long edge and short edge; put the long edge in the position of w; put the short edge in
the position of h
mask = T [:, 2 : 3] > T [:, 3 : 4]
T [:, 2 : 3] = I [:, 2 : 3] ∗mask + I [:, 3 : 4] ∗ (∼ mask)
T [:, 3 : 4] = I [:, 2 : 3] ∗ (∼ mask) + I [:, 3 : 4] ∗mask
# Adjust the angle according to the long edge and short edge
T [:, 4 : 5] = I [:, 4 : 5] ∗mask + (π/2 + I [:, 4 : 5] ∗ (∼ mask))
# Generate the horizontal (H) and vertical (V) components of the long edge
H = T [:, 2 : 3] ∗ torch.cos(T [:, 4 : 5])
V = T [:, 2 : 3] ∗ torch.sin(T [:, 4 : 5])
# Generate the orientation sign (α) of the oriented bounding box
α = H[:, 0 : 1] ∗ V [:, 0 : 1] > 0
# Concatenate x, y, lx, ly, s, α in the second dimension as the final output
x = T [:, 0 : 1]
y = T [:, 1 : 2]
lx = torch.abs(H)
ly = torch.abs(V)
s = T [:, 3 : 4]
O = torch.cat((x, y, lx, ly, s, α), dim = −1)
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3.4. The Proposed AdaCFPS Module

The proposed VODet builds upon the YOLOX framework, which was originally
designed for horizontal object detection, not oriented object detection. As a result, the
positive-sample-selection method used in YOLOX cannot be directly applied to VODet for
oriented object detection. Therefore, the paper introduces a new module called adaptive
coarse-to-fine positive sample selection (AdaCFPS) to address this issue and enable the
selection of positive samples for VODet.

In the AdaCFPS module, the primary objective is to select coarse positive samples
for oriented object detection. The process involves two main steps: first, choosing points
within the inscribed ellipse regions of the oriented ground truth bounding boxes and,
second, selecting points within a circle region of each oriented ground truth bounding box.
The decision to choose the points in the circle region as positive samples in the AdaCFPS
module is motivated by the need to address the challenge of small object detection during
the training process. Figure 4c illustrates the importance of including the circle region as
part of the positive-sample-selection process. When the circle region lies entirely inside
the oriented ground truth bounding box, the points within the inscribed ellipse region
are considered positive samples (as shown in Figure 4c). In this situation, the existence
of the circle region has little impact because there are already positive samples available
within the oriented ground truth bounding box. However, the critical role of the circle
region becomes evident when an object is small and there are no points inside the oriented
ground truth bounding box. This situation would result in a lack of any positive samples
for this specific oriented ground truth bounding box, which is unacceptable for small
object detection during training. In such cases, the circle region ensures that the oriented
ground truth bounding box has matching coarse positive samples as much as possible, as
depicted in Figure 4c. By including the circle region, the AdaCFPS module improves the
positive-sample-matching rate for small objects, addressing the challenge of detecting and
accurately predicting small objects in the training dataset.

(a) (b) (c)

Figure 4. The steps of coarse-to-fine positive sample selection, where the green rectangle box means
ground truth box, the ellipse and circle mean the selected coarse positive samples regions, the points
mean the positive samples. (a) The original positive samples; (b) The selected coarse positive samples
in ellipse region; (c) The coars positive samples in ellipse and circle regions.

After obtaining the final coarse positive samples, we employed the Kullback–Leibler
divergence (KLD) loss [13] to assess the matching degree between the coarse positive
samples and oriented ground truth bounding boxes. Subsequently, we selected the top-k
samples and calculated their costs [54], taking into account both the classification loss and
the KLD loss. Finally, we generated dynamic k samples based on the combined score of the
matching degree and corresponding cost. In cases where multiple oriented ground truth
bounding boxes have the same positive sample, we assigned the positive sample to the
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oriented ground truth bounding box with the lowest cost. To facilitate a clear understanding
of the positive-sample-selection process, we provide the detailed steps in Algorithm 2.

Algorithm 2 Adaptive coarse-to-fine positive sample selection (Pytorch style)

Input: Ig, which is an n× t matrix; n means the number of ground truth bounding boxes;
t = 5 means the long edge representation vector with the angle, i.e., (x, y, l, s, θ);
M, which is a w× h feature map with stride S ; (xm, ym) are the coordinates ofM. For
simplicity,M is reshaped to n× w ∗ h× 2, where n means the number of ground truth
bounding boxes; 2 means xm andym;
Ip, which is an m× r matrix; m = w ∗ h means the number of predicted bounding boxes;
r = 7 means the predicted vector with vector decomposition, i.e., (x, y, lx, ly, s, α1, α2);
Cg, which is an n× 1 matrix; n means the number of ground truth bounding boxes; “1”
indicates the category to which the ground truth bounding box belongs;
Cp, which is an m× c matrix; m = w ∗ h means the number of predicted bounding boxes;
c indicates the number of object categories.

Output: P , which is a d× r matrix; d means the number of predicted fine positive bounding
boxes; r = 7 means the representation vector with the angle, i.e., (x, y, lx, ly, s, α1, α2)

# First step: select the inscribed ellipse regions of ground truth bounding boxes as positive
samples
xe =M[:, :, 0] ∗ S − Ig[:, 0]
ye =M[:, :, 1] ∗ S − Ig[:, 1]
A = (torch.cos(Ig[:, 4])/(Ig[:, 2]/2))2 + (torch.sin(Ig[:, 4])/(Ig[:, 3]/2))2

B = 2 ∗ torch.cos(Ig[:, 4]) ∗ torch.sin(Ig[:, 4]) ∗ (1/(Ig[:, 2]/2)2 − 1/(Ig[:, 3]/2)2)

C = (torch.sin(Ig[:, 4])/(Ig[:, 2]/2))2 + (torch.cos(Ig[:, 4])/(Ig[:, 3]/2))2

inbox = A ∗ x2
e + B ∗ xe ∗ ye + C ∗ y2

e 6 1
inbox_mask = inbox.sum(dim = 0) > 0
# Second step: select samples within a fixed radius as positive samples, where the radius
is set to S * 1.5
incenter = x2

e + y2
e 6 (S ∗ 1.5)2

incenter_mask = incenter.sum(dim = 0) > 0
# Third step: select samples within inscribed ellipse regions or circles as the final coarse
positive samples (Tp)
inboxanchor = inbox_mask|incenter_mask
Tp = Ip[inboxanchor]
Cp = Cp[inboxanchor]
# Fourth step: calculate the matching degree according to the Kullback–Leibler diver-
gence (KLD) loss (refer to [13])
md = 1− KLDLoss(Ig, Tp)
# Fifth step: obtain the fine positive samples according the SimOTA algorithm (refer
to [54])
cost = BCELoss(Cp, Cg) + 3 ∗ KLDLoss(Ig, Tp)
f inemask = SimOTA(cost, md, inboxanchor)
P = Ip[ f inemask]

3.5. The Proposed VTADecode Module

In the testing or inference phase, it is necessary to visualize or evaluate the results.
However, the predicted format (x, y, lx, ly, s, α1, α2) is not convenient for this purpose. There-
fore, we need to convert this format into another format that includes angle information,
i.e., vector-to-angle transformation. The transformation process involves several steps to
ensure the accurate orientations of the predicted bounding boxes based on the predicted ori-
entation parameters (α1, α2). Additionally, we need to calculate the angle (θ) and long-side
length (l) using the two components (lx, ly) of the long-side vector. It is crucial to correct
the angle according to the orientation, as an incorrect angle could be obtained otherwise.
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To achieve the desired format (x, y, l, s, θ), we present the detailed transformation steps
in Algorithm 3.

Algorithm 3 Vector-to-angle decode (Pytorch style)

Input: I , which is an n × p matrix; n means the number of predicted bounding boxes;
p = 7 means the predicted vector with vector decomposition, i.e., (x, y, lx, ly, s, α1, α2)

Output: O, which is an n× q matrix; n means the number of predicted bounding boxes;
q = 5 means the representation vector with the angle, i.e., (x, y, l, s, θ)

# Calculate the lengths of the long edge and short edge
l = torch.sqrt(I [:, 2 : 3]2 + I [:, 3 : 4]2)
s = I [:, 4 : 5]
# Obtain the orientation of the predicted bounding boxes
I [:, 5] = torch.max(I [:, 5 : 7], dim = −1)[1]
mask = I [:, 5 : 6] < 1
# Calculate the angle of the predicted bounding boxes
θ = torch.acos(I [:, 2 : 3]/l)
# Correct the angle according to the orientation of the predicted bounding boxes
θ = θ ∗ (∼ mask) + (−θ) ∗mask
# Concatenate x, y, l, s, θ in the second dimension as the final output
x = I [:, 0 : 1]
y = I [:, 1 : 2]
O = torch.cat((x, y, l, s, θ), dim = −1)

4. Experiments and Analysis

In this section, we conducted experiments to validate the effectiveness of the proposed
VODet on three datasets: HRSC2016, DOTA, and DIOR-R. The experiments were conducted
on a PC with the following specifications: Intelr Core™i7-6850K CPU @ 3.60 GHz × 12,
64 GB of memory, and two NVIDIA TITAN Xp GPUs with 12 GB of memory each. The op-
erating system used was 64 bit Ubuntu 18.04.6 LTS. Firstly, we describe the settings used
in our object-detection method, followed by the introduction of the three datasets used in
our experiments. We conducted the experiments on these three datasets and analyzed the
experimental results subsequently. Finally, we performed related ablation experiments and
provide the model size and inference time of the proposed method.

4.1. Experiment Settings

In the proposed VODet method, we used different input sizes for each dataset:
800 × 800 for HRSC2016 and DIOR-R and 1024 × 1024 for DOTA. During the training
phase, we set the learning rate per image to 0.00015625. The optimizer used was SGD
with a weight decay of 5 × 10−4 and a momentum of 0.9. To increase the diversity of the
training samples, we employed several data-augmentation techniques, including Mosaic,
Mixup, HSV Transformation, Horizontal Flip, and Vertical Flip. The probabilities of using
Mosaic, Mixup, and HSV Transformation were set to 1.0, while the probabilities of apply-
ing Horizontal Flip and Vertical Flip were 0.5. We conducted the training for a total of
36 epochs, and within the last 15 epochs, the data-augmentation methods were prohibited
to ensure better convergence. To speed up the convergence of VODet, we initialized the
model using a pre-trained model on the COCO dataset. During the test phase, we set the
confidence threshold to 0.01 and the non-maximum suppression (NMS) threshold to 0.5 to
post-process the detection results.

4.2. Experiment Datasets
4.2.1. HRSC2016

The HRSC2016 dataset is an arbitrarily oriented ship-detection dataset comprising
1061 images with sizes ranging from 300 × 300 to 1500 × 900. The dataset is divided into



Remote Sens. 2023, 15, 4738 14 of 24

three subsets: a training set (436 images), a validation set (181 images), and a testing set
(444 images). During the training phase, both the training set and validation set were
utilized for training the ship-detection model.

4.2.2. DOTA

The DOTA dataset contains a total of 2806 images and includes 15 object categories,
namely: plane, baseball diamond, bridge, ground track field, small vehicle, large vehicle,
ship, tennis court, basketball court, storage tank, soccer ball field, roundabout, harbor,
swimming pool, helicopter. Since the original images in the DOTA dataset have large
sizes ranging from 800 × 800 to 4000 × 4000, they are too large for direct training and
testing. Therefore, the images were cropped into smaller patches of size 1024 × 1024 with a
stride of 512. This cropping process allowed for better handling of the large images during
training and testing. For the multi-scale training and testing, the original images were first
resized at three scales: 0.5, 1.0, and 1.5. After resizing, the images were then cropped into
patches of 1024 × 1024 with a stride of 512 at each scale. During the training phase, both
the training dataset and validation dataset were used to train the model. After training, the
model’s performance was evaluated using the testing dataset. The experimental results
were obtained through the DOTA evaluation server, which provides a standardized way to
evaluate the performance of object-detection algorithms on the DOTA dataset.

4.2.3. DIOR-R

DIOR-R is an extended version of the DIOR dataset, which has been relabeled with
oriented annotations. It consists of a total of 23,463 images and contains 192,472 instances
across 20 object categories. The 20 object categories present in the DIOR-R dataset are:
airplane, ground track field, overpass, airport, golf field, baseball field, basketball court,
bridge, train station, chimney, dam, expressway service area, expressway toll station, harbor,
ship, stadium, storage tank, tennis court, vehicle, windmill. The training and validation
sets combined contain 11,725 images with a total of 68,073 instances. The testing set, on the
other hand, includes 11,738 images with a total of 124,445 instances.

4.3. Experiments on HRSC2016

We conducted experiments on the HRSC2016 dataset, and the results are presented
in Table 1. The evaluation was based on the mean average precision (mAP) metrics for
both the VOC2007 and VOC2012 datasets. The results clearly demonstrated the remarkable
detection performance of the proposed VODet method. It achieved an mAP of 90.23%
on VOC2007 and 96.25% on VOC2012, surpassing the performance of most algorithms
participating in the comparison. In terms of the VOC2007 mAP, VODet performed only
0.22 lower than AEDet and 0.17 lower than Oriented R-CNN. For the VOC2012 mAP,
VODet scored 0.65 lower than AEDet and 0.25 lower than Oriented R-CNN. These small
differences highlight that VODet achieved competitive results when compared with other
excellent algorithms. Overall, the impressive performance of VODet in object detection on
remote sensing images underscores its potential and effectiveness in handling challenging
detection tasks.

In order to visually demonstrate the detection capabilities of VODet, we present
several images with predicted bounding boxes in Figure 5, where the yellow ellipse means
false detection or missed detection or inaccurate orientation prediction. Through the
visualization of VODet’s detection results, it became evident that the model can effectively
handle objects with high aspect ratios. However, when the object was too similar to
the surrounding background, as shown in the second row and second column image
in Figure 5, the orientation of the object may be inaccurate due to interference from the
background information. Additionally, missed detections will occur, one of the reasons
being that similar objects do not appear in the training dataset, another reason being that
the objects are too small to detect. In the last two images of Figure 5, the missed detections
occurred due to the two few similar training samples according to the analysis of HRSC2016.
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Anyway, the effectiveness of VODet was demonstrated by the successful visualization and
the results in Table 1.

Table 1. The results of different methods on the HRSC2016 dataset.

Methods Backbone Size mAP (VOC2007) mAP (VOC2012)

Two-stage method

Rotated RPN [56] ResNet-101 800 × 800 79.08 85.64
R2CNN [57] ResNet-101 800 × 800 73.07 79.73

RoI Transformer [28] ResNet-101 512 × 800 86.20 -
Gliding Vertex [4] ResNet-101 512 × 800 88.20 -

CenterMap-Net [58] ResNet-50 - - 92.80
Oriented R-CNN [52] ResNet-50 - 90.40 96.50

FPN-CSL [1] ResNet-101 - 89.62 96.10

one-stage method

R3Det [30] ResNet-101 800 × 800 89.26 96.01
DAL [2] ResNet-101 800 × 800 89.77 -

S2ANet [29] ResNet-101 512 × 800 90.17 95.01
RRD [59] VGG16 384 × 384 84.30 -

RetinaNet-O [60] ResNet-101 800 × 800 89.18 95.21
PIoU [31] DLA-34 512 × 512 89.20 -
DRN [61] Hourglass-34 768 × 768 - 92.70

CenterNet-O [62] DLA-34 - 87.89 -

AEDet [11] CSPDarknet-
53 800 × 800 90.45 96.90

ours

VODet CSPDarknet-
53 800 × 800 90.23 96.25

Figure 5. The visualization of the detection results on the HRSC2016 dataset, the yellow ellipse means
false detection or missed detection or inaccurate orientation prediction.

4.4. Experiments on DOTA

To further validate the effectiveness of the proposed VODet method, we conducted
additional experiments on the widely used DOTAv1.0 dataset. The experimental results
under different data-processing scenarios are summarized in Table 2. In the case where
both the training and testing data were generated using a single-scale (1.0) cropping, VODet
achieved a promising result of 75.7%. This already surpassed the performance of most other
arbitrarily oriented algorithms participating in the comparison, notably outperforming
AEDet with single-scale cropping, which achieved a result of 72.8%. To explore the benefits
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of multiple-scale cropping, we conducted experiments with VODet using training and
testing data generated at scales of 0.5, 1.0, and 1.5 (denoted as VODet‡). The results
showed that VODet‡ obtained even better detection results compared to VODet’s single-
scale cropping, achieving an outstanding result of 77.8%. This outperformed the VODet’s
performance by 2.1%, and it stood as the best result among the algorithms participating in
the comparison. The remarkable performance of both VODet and VODet‡ demonstrated the
superiority of the proposed arbitrarily oriented object-detection method, further validating
its effectiveness and potential.

Table 2. The experimental results of different methods on the DOTAv1.0 dataset. ‡ denotes the
training and testing of multiple-scale cropping.

Methods Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

two-stage method

CenterMap-Net [58] ResNet-50 89.0 80.6 49.4 62.0 78.0 74.2 83.7 89.4 78.0 83.5 47.6 65.9 63.7 67.1 61.6 71.6
SCRDet [63] ResNet-101 90.0 80.7 52.1 68.4 68.4 60.3 72.4 90.9 87.9 86.9 65.0 66.7 66.3 68.2 65.2 72.6

RoI Transformer [28] ResNet-101 88.6 78.5 43.4 75.9 68.8 73.7 83.6 90.7 77.3 81.5 58.4 53.5 62.8 58.9 47.7 69.6
FPN-CSL [1] ResNet-152 90.3 85.5 54.6 75.3 70.4 73.5 77.6 90.8 86.2 86.7 69.6 68.0 73.8 71.1 68.9 76.2

Gliding Vertex [4] ResNet-101 89.6 85.0 52.3 77.3 73.0 73.1 86.8 90.7 79.0 86.8 59.6 70.9 72.9 70.9 57.3 75.0
FR-Est [3] ResNet-101 89.6 81.2 50.4 70.2 73.5 78.0 86.4 90.8 84.1 83.6 60.6 66.6 70.6 66.7 60.6 74.2

DODet [64] ResNet-50 89.3 84.3 51.4 71.0 79.0 82.9 88.2 90.9 86.9 84.9 62.7 67.6 75.5 72.2 45.5 75.5
Oriented R-CNN [52] ResNet-50 89.5 82.1 54.8 70.9 78.9 83.0 88.2 90.9 87.5 84.7 64.0 67.7 74.9 68.8 52.3 75.9

AOPG [15] ResNet-50 89.3 83.5 52.5 70.0 73.5 82.3 88.0 90.9 87.6 84.7 60.0 66.1 74.2 68.3 57.8 75.2

one-stage method

RetinaNet-O [60] ResNet-50 88.7 77.6 41.8 58.2 74.6 71.6 79.1 90.3 82.2 74.3 54.8 60.6 62.6 69.6 60.6 68.4
S2ANet [29] ResNet-50 89.1 82.8 48.4 71.1 78.1 78.4 87.3 90.8 84.9 85.6 60.4 62.6 65.3 69.1 57.9 74.1
R3Det [30] ResNet-101 88.8 83.1 50.9 67.3 76.2 80.4 86.7 90.8 84.7 83.2 62.0 61.4 66.9 70.6 53.9 73.8

DAL [2] ResNet-50 88.7 76.6 45.1 66.8 67.0 76.8 79.7 90.8 79.5 78.5 57.7 62.3 69.1 73.1 60.1 71.4
AEDet [11] CSPDarknet-53 87.5 77.6 51.7 68.2 78.0 80.5 86.5 90.3 80.7 75.4 54.6 59.6 73.4 73.8 53.8 72.8
DRN [61] Hourglass-104 88.9 80.2 43.5 63.4 73.5 70.7 84.9 90.1 83.9 84.1 50.1 58.4 67.6 68.6 52.5 70.7
RSDet [6] ResNet-101 89.8 82.9 48.6 65.2 69.5 70.1 70.2 90.5 85.6 83.4 62.5 63.9 65.6 67.2 68.0 72.2

ours

VODet CSPDarknet-53 86.3 80.0 52.4 67.9 79.3 83.9 87.9 90.8 87.6 85.6 63.3 61.2 75.8 78.9 54.5 75.7
VODet ‡ CSPDarknet-53 88.8 83.6 53.2 78.7 79.9 84.1 88.5 90.8 88.1 86.2 64.4 67.7 76.9 79.7 57.8 77.8

PL: plane, BD: baseball diamond, BR: bridge, GTF: ground track field, SV: small vehicle, LV: large vehicle, SH: ship,
TC: tennis court, BC: basketball court, ST: storage tank, SBF: soccer ball field, RA: roundabout, HA: harbor,
SP: swimming pool, HC: helicopter.

We also present the visualization of the VODet detection results in Figure 6, where the
yellow ellipse means missed detection or false detection. It was evident that VODet per-
formed exceptionally well with small and dense oriented objects, such as swimming pools
and small vehicles. Moreover, VODet accurately detected densely distributed oriented
objects, such as large vehicles and ships. The impressive detection visualization in harbors
further confirmed VODet’s capability to handle high aspect ratios effectively. However,
VODet also made mistakes sometimes, as shown in the last two images of Figure 6: the
shadowed small vehicles were not detected, and the false harbor was detected. These
situations occurred because the proposed VODet does not provide an extra strategy to
distinguish the object from the background, which led to the occurrence of the missed
detection and false detection. Some effective strategies [65,66] can be applied to VODet in
future research for better detection performance.
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Figure 6. The visualization of the detection results on the DOTA dataset, the yellow ellipse means
false detection or missed detection or inaccurate orientation prediction.

4.5. Experiments on DIOR-R

DIOR-R is another widely used arbitrarily oriented object-detection dataset. In our exper-
iments, we compared VODet with several other algorithms, including Faster R-CNN-O [67],
RetinaNet-O [60], Gliding Vertex [4], RoI Transformer [28], AOPG [15], DODet [64], QPDet [68],
and AEDet [11]. The experimental results are shown in Table 3. Among all the participating
algorithms, VODet achieved the best performance on DIOR-R, obtaining an impressive
result of 67.66%, which is 1.52% higher than AEDet. These results demonstrated that
VODet maintained remarkable detection performance even on more-complex datasets,
highlighting its superiority once again. Furthermore, on both the DOTA and DIOR-R
datasets, VODet outperformed AEDet, indicating that the object representation of VODet
was more efficient than that of AEDet, even when using the same CSPDarknet-53 backbone.

We present the visualization of VODet’s detection results in Figure 7, which further
validated its ability to detect small, densely arranged, and high-aspect-ratio objects. As de-
picted in Figure 7, where the yellow ellipse means missed detection or false detection, some
failed detections are shown in the last row of Figure 7. In theory, the vehicles should be
on the road or in the parking lot, and the ship should be in the harbor or at sea. However,
VODet could not establish the connection between the object and the background, which
led to the false detections in the first three images in the last row of Figure 7. The false
detection in the last image in the last row of Figure 7 was because some objects of differ-
ent categories had similar characteristics. Overall, although VODet achieved remarkable
detection performance, the ability to distinguish object from the background needs to be
further improved.
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Table 3. The experimental results of different methods on the DIOR-R dataset.

Methods Faster R-CNN-O [67] RetinaNet-O [60] Gliding Vertex [4] RoI Transformer [28] AOPG [15] DODet [64] QPDet [68] AEDet [11] VODet

Backbone ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 ResNet-50 CSPDarknet-53 CSPDarknet-53

APL 62.79 61.49 65.35 63.34 62.39 63.40 63.22 81.06 85.74
APO 26.80 28.52 28.87 37.88 37.79 43.35 41.39 48.09 53.15

BF 71.72 73.57 74.96 71.78 71.62 72.11 71.97 77.35 76.25
BC 80.91 81.17 81.33 87.53 87.63 81.32 88.55 89.66 89.41
BR 34.20 23.98 33.88 40.68 40.90 43.12 41.23 43.46 35.49
CH 72.57 72.54 74.31 72.60 72.47 72.59 72.63 76.42 72.47

DAM 18.95 19.94 19.58 26.86 31.08 33.32 28.82 27.46 31.30
ETS 66.45 72.39 70.72 78.71 65.42 78.77 78.90 71.83 74.31
ESA 65.75 58.20 64.70 68.09 77.99 70.84 69.00 79.60 81.82
GF 66.63 69.25 72.30 68.96 73.20 74.15 70.07 59.06 72.51

GTF 79.24 79.54 78.68 82.74 81.94 75.47 83.01 76.51 80.65
HA 34.95 32.14 37.22 47.71 42.32 48.00 47.83 45.40 46.26
OP 48.79 44.87 49.64 55.61 54.45 59.31 55.54 56.91 50.27
SH 81.14 77.71 80.22 81.21 81.17 85.41 81.23 88.50 89.15
STA 64.34 67.57 69.26 78.23 72.69 74.04 72.15 70.33 62.49
STO 71.21 61.09 61.13 70.26 71.31 71.56 62.66 68.55 73.25
TC 81.44 81.46 81.49 81.61 81.49 81.52 89.05 90.23 90.28
TS 47.31 47.33 44.76 54.86 60.04 55.47 58.09 48.80 58.62
VE 50.46 38.01 47.71 43.27 52.38 51.86 43.38 59.00 58.92

WM 65.21 60.24 65.04 65.52 69.99 66.40 65.36 64.69 70.34

mAP 59.54 57.55 60.06 63.87 64.41 65.10 64.20 66.14 67.66

APL: airplane, APO: airport, BF: baseball field, BC: basketball court, BR: bridge, CH: chimney, ETS: expressway toll
station, ESA: expressway service area, DAM: dam, GF: golf field, GTF: ground track field, HA: harbor, OP: overpass,
SH: ship, STA: stadium, STO: storage tank, TC: tennis court, TS: train station, VE: vehicle, WM: windmill.

Figure 7. The visualization of detection results on the DIOR-R dataset, the yellow ellipse means false
detection or missed detection or inaccurate orientation prediction.



Remote Sens. 2023, 15, 4738 19 of 24

4.6. Ablation Experiments

In this section, we conducted experiments on DOTAv1.0 to explore the effects of
multiscale training, multiple-scale cropping, and focal loss in the proposed VODet. The ex-
perimental results are shown in Table 4, where “MS_Train” refers to multiscale training,
“SC_Crop” indicates single-scale cropping (“yes” for single-scale cropping and “no” for
multiple-scale cropping), and “focal loss” denotes the use of focal loss as the classification
loss. In the second and third rows of Table 4, we observed that multiscale training was
beneficial for improving the detection performance when using single-scale cropping and
focal loss simultaneously. Specifically, with multiscale training, AP0.5:0.95, AP50, and AP75
showed improvements of 1.16%, 0.94%, and 1.37%, respectively. After confirming the effec-
tiveness of multiscale training, we conducted subsequent experiments under the premise of
using multiscale training. In the third and fourth rows, when using single-scale cropping,
we observed that the use of focal loss in VODet can degrade the detection performance. Sim-
ilarly, the results in the fifth and sixth rows also demonstrated that focal loss led to worse
detection performance when using multiple-scale cropping. These findings were consistent
with YOLOv3 [69], which also experienced performance degradation when using focal
loss for object detection. In the third and fifth rows, we noticed significant improvements
in the AP0.5:0.95, AP50, and AP75 of 3.73%, 2.72%, and 4.68%, respectively, with the use of
multiple-scale cropping. In the fourth and sixth rows, the corresponding improvements
were 2.91%, 2.08%, and 5.34%, respectively. These results indicated that multiple-scale
cropping can greatly enhance the detection performance compared to single-scale cropping.
Furthermore, the substantial improvement in AP75 suggests that multiple-scale cropping
can equip VODet with a more-accurate object location ability.

Table 4. Ablation experiments on the DOTA dataset.

MS_Train SC_Crop Focal Loss AP0.5:0.95 AP50 AP75

× X X 44.34 72.90 46.84
X X X 45.50 73.84 48.21
X X × 46.74 75.68 49.07
X × X 49.23 76.56 52.89
X × × 49.65 77.76 54.41

MS_Train means that the input size of VODet can be changed in the range of [imgsz − 5 × 32, imgsz + 5 × 32], in
which the imgsz is the preset size of VODet, 1024 × 1024 for the DOTA dataset. SC_Crop represents whether to
use multiple-scale cropping. X denotes cropping after resizing the original images at a scale of 1.0. × denotes
cropping after resizing the original images at scales of (0.5, 1.0, 1.5).

4.7. The Comparison to Related Algorithms

To compare the vector-decomposition-based approach used in our proposed method,
VODet, there are other vector-decomposition-based arbitrarily oriented object-detection
methods available in the literature. To facilitate a comprehensive comparison of the ex-
perimental results among these related algorithms, we present the performance results of
BBAVectors [8], ProjBB [9], RIE [10], AEDet [11], and our VODet in Table 5. It is evident
from the table that our VODet achieved the best results when compared to the other related
algorithms. Remarkably, even under the constraint of single-scale cropping, VODet outper-
formed the other algorithms. This comparison highlighted the superiority of VODet over
its counterparts and demonstrated its significant potential for arbitrarily oriented object
detection in remote sensing images.
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Table 5. The comparison of related algorithms on the DOTA dataset, ‡ denotes the training and
testing of multiple-scale cropping.

Methods BBAVectors [8] ProjBB [9] RIE [10] AEDet [11] VODet VODet ‡

Backbone ResNet-101 ResNet-101 HRGANet-W48 CSPDarknet-53 CSPDarknet-53 CSPDarknet-53

PL 88.35 88.96 89.23 87.46 86.34 88.83
BD 79.96 79.32 84.86 77.64 79.95 83.58
BR 50.69 53.98 55.69 51.71 52.43 53.17

GTF 62.18 70.21 70.32 68.21 67.90 78.70
SV 78.43 60.67 75.76 77.99 79.32 79.88
LV 78.98 76.20 80.68 80.53 83.85 84.15
SH 87.94 89.71 86.14 86.53 87.87 88.55
TC 90.85 90.22 90.26 90.33 90.85 90.82
BC 83.58 78.94 80.17 80.75 87.57 88.12
ST 84.35 76.82 81.34 75.44 85.57 86.18

SBF 54.13 60.49 59.36 54.63 63.26 62.38
RA 60.24 63.62 63.24 59.64 61.19 67.65
HA 65.22 73.12 74.12 73.35 75.75 76.91
SP 64.28 71.43 70.87 73.76 78.87 79.69
HC 55.70 61.96 60.36 53.82 54.53 57.81

mAP 72.32 73.03 74.83 72.79 75.68 77.76

4.8. Model Parameters and Inference Time

Because the proposed VODet is similar to AEDet, in this section, we compared the
model parameters and inference time between VODet and AEDet to highlight the speed
and precision advantages of VODet. The model parameters and inference time are listed in
Table 6. Since VODet and AEDet have the same number of prediction parameters, their
model parameters were identical, specifically 27.28 M parameters on the DOTA dataset
with 15 categories and 27.29 M parameters on the DIOR-R dataset with 20 categories.
Regarding the inference time, the bounding box transformation in VODet is fully parallel,
which resulted in a faster inference time compared to AEDet with incomplete bounding
box parallel transformation. As shown in Table 6, VODet was almost 3.5× faster than
AEDet on the DOTA and DIOR-R datasets. Moreover, VODet exhibited better detection
performance than AEDet. In conclusion, the proposed VODet achieved improvements in
speed and precision compared to AEDet, making it highly advantageous for arbitrarily
oriented object detection.

Table 6. The model parameters and inference time of different methods on the DOTA and DIOR-R datasets.

Datasets Methods AP50 Model Parameters (M) Inference Time (ms)

DOTA AEDet 72.79 27.28 87.44
VODet 77.76 27.28 25.89

DIOR-R AEDet 66.14 27.29 69.86
VODet 67.66 27.29 18.86

5. Discussion

The proposed VODet achieved remarkable detection results on HRSC2016, DOTA, and
DIOR-R. However, it is worth noting that the current approach only utilizes vector decom-
position to describe bounding boxes and employs a simple coarse-to-fine positive–negative
-sample-selection method. Therefore, there are still other strategies that can be explored to
further enhance the detection accuracy of the proposed VODet. In our VODet, we utilized
CSPDarknet-53 as the backbone to extract features. Although CSPDarknet-53 is effective,
there are more-powerful backbones available. We believe that replacing CSPDarknet-53
with a stronger backbone can lead to significant improvements in detection performance.
Another area for improvement lies in the matching of positive and negative samples. Adopt-
ing a more-reasonable and -effective positive- and negative-sample-matching method can
enhance the overall performance of VODet. Additionally, the bounding box regression
loss currently employed was the L1 loss, which optimizes each prediction vector indi-
vidually. Exploring joint optimization losses, such as the IoU-based loss, based on the
representation method in this paper, can potentially enhance the training process of VODet.
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In our future work, we plan to focus on further improving the detection performance of
VODet by addressing the above-mentioned aspects and incorporating related strategies
described earlier.

6. Conclusions

In this paper, we analyzed the advantages and disadvantages of vector-decomposition-
based arbitrarily oriented object-detection methods. Based on this analysis, we proposed
a new, simple, and efficient arbitrarily oriented object detector called VODet, built upon
YOLOX. In VODet, we treated the long side of the oriented bounding box as a vector and
decomposed it into horizontal and vertical vectors. This allowed us to encode the angle
information of the oriented bounding box within the two decomposed vectors. To enable
the transformation from angle-based representation to vector-decomposition-based repre-
sentation, we introduced the ATVEncode and VTADecode modules, which significantly
reduced the data-processing time. Furthermore, we presented a straightforward positive–
negative-sample-matching method, which dynamically matched the positive and negative
samples from coarse to fine. Through a thorough analysis of vector-decomposition-based
arbitrarily oriented object-detection methods and the efficient implementation of VODet,
we achieved impressive mAPs of 90.23%, 77.76%, and 67.66% on HRSC2016, DOTA, and
DIOR-R, respectively. These results demonstrated the effectiveness of VODet through
extensive experiments. Additionally, we conducted a comparison among various vector-
decomposition-based arbitrarily oriented object-detection methods, and our proposed
VODet outperformed other related algorithms in terms of both efficiency and accuracy. Its
simple design made VODet fast, accurate, and a potential candidate for arbitrarily oriented
object detection.
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