Detection of Macroalgal Bloom from Sentinel−1 Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methodology
2.2.1. Data Preprocessing
2.2.2. Postprocessing
3. Results
3.1. Detection of Macroalgal Bloom from Sentinel−1
3.2. Temporal Changes of Macroalgal Bloom Patches Using Sentinel−1, Landsat 8, and Sentinel−2 for a Short−Term Period (31 h)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yabe, T.; Ishii, Y.; Amano, Y.; Koga, T.; Hayashi, S.; Nohara, S.; Tatsumoto, H. Green tide formed by free-floating Ulva spp. at Yatsu tidal flat, Japan. Limnology 2009, 10, 239–245. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C.; Barnes, B.B.; Mitchum, G.; Lapointe, B.; Montoya, J.P. The great Atlantic Sargassum belt. Science 2019, 365, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.K.; Linton, T. Development and implementation of Sargassum early advisory system (SEAS). Shore Beach 2013, 81, 1–6. [Google Scholar]
- Liu, D.; Keesing, J.K.; Xing, Q.; Shi, P. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull. 2009, 58, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Pang, I.C.; Moon, I.J.; Ryu, J.H. On physical factors that controlled the massive green tide occurrence along the southern coast of the Shandong Peninsula in 2008: A numerical study using a particle-tracking experiment. J. Geophys. Res. 2011, 116, C12036. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, H.; Cheng, Y.; Zhang, S.; Zhang, W. Monitoring and tracking the green tide in the Yellow Sea with satellite imagery and trajectory model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5172–5181. [Google Scholar] [CrossRef]
- Choi, D.-L.; Noh, J.-H.; Ryu, J.-H.; Lee, J.-H.; Jang, P.-K.; Lee, T.; Choi, D.-H. Occurrence of green macroalgae (Ulva prolifera) blooms in the northern East China Sea in summer 2008. Ocean Polar Res. 2010, 32, 351–359. [Google Scholar] [CrossRef]
- Qi, L.; Wang, M.; Hu, C.; Holt, B. On the capacity of Sentinel−1 synthetic aperture radar in detecting floating macroalgae and other floating matters. Remote Sens. Environ. 2022, 280, 113188. [Google Scholar] [CrossRef]
- Park, Y.-J. An analysis on the distribution of floating seaweed in the East China Sea and southern Yellow Sea in 2015—The case of Sargassum observed by the Geostationary Ocean Color Imager. KMI Int. J. Marit. Aff. Fish. 2020, 12, 21–35. [Google Scholar] [CrossRef]
- Yuan, C.; Xiao, J.; Zhang, X.; Fu, M.; Wang, Z. Two drifting paths of Sargassum bloom in the Yellow Sea and East China Sea during 2019–2020. Acta Oceanol. Sin. 2022, 41, 78–87. [Google Scholar] [CrossRef]
- Komatsu, T.; Mizuno, S.; Natheer, A.; Kantachumpoo, A.; Tanaka, K.; Morimoto, A.; Hsiao, S.-T.; Rothäusler, E.A.; Shishidou, H.; Aoki, M.; et al. Unusual distribution of floating seaweeds in the East China Sea in the early spring of 2012. J. Appl. Phycol. 2014, 26, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Hu, C.; Wang, M.; Shang, S.; Wilson, C. Floating algae blooms in the East China Sea. Geophys. Res. Lett. 2017, 44, 501–511. [Google Scholar] [CrossRef]
- Sun, D.; Chen, Y.; Wang, S.; Zhang, H.; Qiu, Z.; Mao, Z.; He, Y. Using Landsat 8 OLI data to differentiate Sargassum and Ulva prolifera blooms in the South Yellow Sea. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102302. [Google Scholar] [CrossRef]
- Rashid, A.H.A.; Yang, C.-S. Hourly variation of green tide in the Yellow Sea during summer 2015 and 2016 using Geostationary Ocean Color Imager data. Int. J. Remote Sens. 2018, 39, 4402–4415. [Google Scholar] [CrossRef]
- Hu, C.; Cannizzaro, J.; Carder, K.L.; Muller-Karger, F.E.; Hardy, R. Remote detection of Trichodesmium blooms in optically complex coastal waters: Examples with MODIS full-spectral data. Remote Sens. Environ. 2010, 114, 2048–2058. [Google Scholar] [CrossRef]
- Shen, H.; Lu, R.; Li, D. Remote sensing of the Yellow Sea green tide evolution in 2015. Mar. Sci. 2016, 40, 134–142. [Google Scholar] [CrossRef]
- Ma, Y.; Wong, K.; Tsou, J.Y.; Zhang, Y. Investigating spatial distribution of green-tide in the Yellow Sea in 2021 using combined optical and SAR image. J. Mar. Sci. Eng. 2022, 10, 127. [Google Scholar] [CrossRef]
- Kudryavtsev, V.N.; Chapron, B.; Myasoedov, A.G.; Collard, F.; Johannessen, J.A. On dual co-polarized SAR measurements of the ocean surface. IEEE Geosci. Remote Sens. Lett. 2013, 10, 761–765. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, L.; Li, X. A deep learning model for green algae detection on SAR images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Gao, L.; Li, X.; Kong, F.; Yu, R.; Guo, Y.; Ren, Y. AlgaeNet: A deep-learning framework to detect floating green algae from optical and SAR imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2782–2796. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Li, J.; Sui, Y. Automatic extraction of green tide from GF-3 SAR images based on feature selection and deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10598–10613. [Google Scholar] [CrossRef]
- Shin, J.; Lee, J.-S.; Jang, L.-H.; Lim, J.; Khim, B.-K.; Jo, Y.-H. Sargassum detection using machine learning models: A case study with the first 6 months of GOCI-II imagery. Remote Sens. 2021, 13, 4844. [Google Scholar] [CrossRef]
- Copernicus Marine Service. Global Ocean Hourly Sea Surface Wind and Stress from Scatterometer and Model. Available online: https://data.marine.copernicus.eu/product/WIND_GLO_PHY_L4_NRT_012_004/download?dataset=cmems_obs-wind_glo_phy_nrt_l4_0.125deg_PT1H_202207 (accessed on 10 February 2023).
- Copernicus Marine Service. Global Ocean Physics Analysis and Forecast. Available online: https://data.marine.copernicus.eu/product/GLOBAL_ANALYSISFORECAST_PHY_001_024/download?dataset=cmems_mod_glo_phy_anfc_merged-uv_PT1H-i (accessed on 10 February 2023).
- Moskolaï, W.R.; Abdou, W.; Dipanda, A.; Kolyang. A workflow for collecting and preprocessing Sentinel−1 images for time series prediction suitable for deep learning algorithms. Geomatics 2022, 2, 435–456. [Google Scholar] [CrossRef]
- Fillipponi, F. Sentinel−1 GRD preprocessing workflow. Proceedings 2019, 18, 11. [Google Scholar] [CrossRef]
- Rashid, A.H.A.; Yang, C.-S. Improved detection of tiny macroalgae patches in Korea bay and Gyeonggi bay by modification of floating algae index. Remote Sens. 2018, 10, 1478. [Google Scholar] [CrossRef]
- van der Zande, D.; Vanhellemont, Q.; De Keukelaere, L.; Knaeps, E.; Ruddick, K. Validation of Landsat-8/OLI for ocean colour applications with AERONET-OC sites in Belgian coastal waters. In Proceedings of the Ocean Optics Conference, Victoria, BC, Canada, 23–28 October 2016. [Google Scholar]
- Vermote, E.; Tanre, D.; Deuze, J.; Herman, M.; Morcrette, J.; Kotchenove, S. Second simulation of a satellite signal in the solar spectrum-vector (6SV). IEEE Trans. Geosci. Remote Sens. 2006, 3, 675–686. [Google Scholar]
- European Space Agency. Technical Guides Sentinel−2 MSI Level-1C Algorithms and Products. Available online: https://sentinels.copernicus.eu/web/sentinel/technical-guides/Sentinel−2-msi/level-1c-algorithms-products (accessed on 25 July 2023).
- Qiu, H.; Li, H.; Wu, Q.; Meng, F.; Ngan, K.N.; Shi, H. A2RMNet: Adaptively aspect ratio multi-scale network for object detection in remote sensing images. Remote Sens. 2019, 11, 1594. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Palmer, M.C. Calculation of distance traveled by fishing vessels using GPS positional data: A theoretical evaluation of the sources of error. Fish. Res. 2008, 89, 57–64. [Google Scholar] [CrossRef]
Satellite | Product | Polarization/Total Bands | Path and Row | Acquisition Time (UTC) | Resolution | |
---|---|---|---|---|---|---|
Date | Center Time | |||||
Sentinel−1 | Level 1 GRD | VV + VH | - | 7 April 2021 | 09:55:06 | 10 m |
09:54:41 | ||||||
19 April 2021 | 09:55:06 | |||||
09:54:41 | ||||||
Landsat 8 | Collection 1 Level 1 | 11 | 117, 38 | 6 April 2021 | 02:18:35 | 30 m |
117, 39 | 02:18:59 | |||||
117, 40 | 02:19:22 | |||||
Sentinel−2 | Level 1C | 13 | T51RVQ | 20 April 2021 | 02:39:01 | 10 m |
T51RVP | 02:39:15 | |||||
T51RVN | 02:39:30 |
ROI No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Threshold value (dB) | −18 | −17 | −19 | −20 | −20 | −18 | −20 | −19 | −19 | −17 | −17 | −16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, S.J.K.; Harun-Al-Rashid, A.; Yang, C.-S.; Shin, D.-W. Detection of Macroalgal Bloom from Sentinel−1 Imagery. Remote Sens. 2023, 15, 4764. https://doi.org/10.3390/rs15194764
Chowdhury SJK, Harun-Al-Rashid A, Yang C-S, Shin D-W. Detection of Macroalgal Bloom from Sentinel−1 Imagery. Remote Sensing. 2023; 15(19):4764. https://doi.org/10.3390/rs15194764
Chicago/Turabian StyleChowdhury, Sree Juwel Kumar, Ahmed Harun-Al-Rashid, Chan-Su Yang, and Dae-Woon Shin. 2023. "Detection of Macroalgal Bloom from Sentinel−1 Imagery" Remote Sensing 15, no. 19: 4764. https://doi.org/10.3390/rs15194764
APA StyleChowdhury, S. J. K., Harun-Al-Rashid, A., Yang, C. -S., & Shin, D. -W. (2023). Detection of Macroalgal Bloom from Sentinel−1 Imagery. Remote Sensing, 15(19), 4764. https://doi.org/10.3390/rs15194764