The Prediction of Transmission Towers’ Foundation Ground Subsidence in the Salt Lake Area Based on Multi-Temporal Interferometric Synthetic Aperture Radar and Deep Learning
Abstract
:1. Introduction
2. Geographical and Geological Setting
3. Methodology
- (a)
- The Sentinel-1A SAR datasets from 2017 to 2021 were gathered in the first stage, and SBAS-InSAR technology was used to obtain the same ground subsidence time series findings for transmission towers as the MT-InSAR approach.
- (b)
- Based on the MT-InSAR results, K-shape clustering was used to analyze the time series characteristics of the ground subsidence of the transmission towers.
- (c)
- To research the ground subsidence deformation trend of the representative towers, the time series results were decomposed by VMD to obtain the periodic, trend, and random displacements. The ground subsidence trigger factors of the transmission tower were decomposed using the VMD method. Similar to the high-frequency random displacement, the low-frequency sequences match the periodic displacement.
- (d)
- Correlation analysis of the decomposed trigger factors was performed using the MIC algorithm to obtain the maximum correlation factor of transmission tower ground subsidence. Based on the above trigger factors and displacement decomposition results, the CNN–LSTM, GWO–LSTM, and LSTM models were used for displacement prediction. Finally, the predicted results were validated using R2 and the RMSE.
3.1. SBAS-InSAR Method
3.2. K-Shape Clustering of Time Series
3.3. Deep Learning and Optimization Model
3.3.1. LSTM Model
3.3.2. CNN–LSTM Model
3.3.3. GWO–LSTM Model
4. Results
4.1. Transmission Tower Ground Deformation Results
4.2. Ground Deformation Characteristic K-Shape Clustering Analysis Results
4.3. Decomposition of the Ground Displacement
4.4. Decomposition of Triggering Factors and Correlation Analysis
4.5. Trend Displacement Prediction
4.6. Periodic and Random Displacement Prediction
4.7. Cumulative Displacement Prediction and Accuracy Assessment
5. Discussion
5.1. Application of the MT-InSAR Technology
5.2. Triggering Factors of the Study Area
5.3. Ground Subsidence Prediction of the Transmission Towers
6. Conclusions
- (i)
- The mid-Salt Lake region is where the ground subsidence in the study area is most concentrated, according to MT-InSAR data. The time series results of the transmission towers exhibit three apparent features according to the K-shape clustering results. The negative effect of the deformation curve of the overall downward type on the transmission towers was the largest.
- (ii)
- The MIC values show that #95 in the salt pond was more significantly affected by temperature and rainfall. This indicated that the towers in the salt pond were more susceptible to external factors and deformation.
- (iii)
- The results of the ground subsidence prediction show that the LSTM optimized by CNN and GWO performs well in displacement prediction. The GWO–LSTM model was more suitable for trend prediction, whereas CNN–LSTM performed better under multiple factors.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lan, H.; Tian, N.; Li, L.; Wu, Y.; Macciotta, R.; Clague, J.J. Kinematic-based landslide risk management for the Sichuan-Tibet Grid Interconnection Project (STGIP) in China. Eng. Geol. 2022, 308, 106823. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Liu, H.; Wang, Y.; Peng, Y.; Sun, W.; Liu, J. Rockfall hazard identification and assessment of the Langxian- Milin section of the transmission line passage of Central Tibet Grid Interconnection Project. IOP Conf. Ser. Earth Environ. Sci. 2018, 189, 52046. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Zheng, N.; Wang, Y.; Huang, J.; Xing, L.; Li, J.; Feng, S.; Chen, G.; Kleissl, J. Assessment of concentrated solar power generation potential in China based on Geographic Information System (GIS). Appl. Energy 2022, 315, 119045. [Google Scholar] [CrossRef]
- Tomás, R.; Herrera, G.; Delgado, J.; Lopez-Sanchez, J.M.; Mallorquí, J.J.; Mulas, J. A ground subsidence study based on DInSAR data: Calibration of soil parameters and subsidence prediction in Murcia City (Spain). Eng. Geol. 2010, 111, 19–30. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Tanteri, L.; Tacconi Stefanelli, C.; Agostini, A.; Catani, F.; Casagli, N. The new landslide inventory of Tuscany (Italy) updated with PS-InSAR: Geomorphological features and landslide distribution. Landslides 2017, 15, 5–19. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Hu, X.; Yin, K.; Wang, Y.; Catani, F. Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area. Landslides 2022, 19, 1585–1597. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, R.; Liu, G.; Wang, X.; Mao, W.; Zhang, B.; Cai, J.; Bao, J.; Fu, Y. Extraction and analysis of saline soil deformation in the Qarhan Salt Lake region (in Qinghai, China) by the sentinel SBAS-InSAR technique. J. Geod. Geodyn. 2021, 13, 127–137. [Google Scholar] [CrossRef]
- Guo, Z.; Tian, B.; Li, G.; Huang, D.; Zeng, T.; He, J.; Song, D. Landslide susceptibility mapping in the Loess Plateau of northwest China using three data-driven techniques-a case study from middle Yellow River catchment. Front. Earth Sci. 2023, 10, 1033085. [Google Scholar] [CrossRef]
- Guo, Z.; Torra, O.; Hürlimann, M.; Abancó, C.; Medina, V. FSLAM: A QGIS plugin for fast regional susceptibility assessment of rainfall-induced landslides. Environ. Modell. Softw. 2022, 150, 105354. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Che, Y.; Li, P.; Jiang, Y.; Peng, X. Identification and Analysis of Unstable Slope and Seasonal Frozen Soil Area along the Litang Section of the Sichuan–Tibet Railway, China. Remote Sens. 2023, 15, 1317. [Google Scholar] [CrossRef]
- Yan, L.; Wu, W.; Li, T. Power transmission tower monitoring technology based on TerraSAR-X products. Proceedings of SPIE 8286—The International Society for Optical Engineering, Bellingham, DC, USA, 24 October 2011; Volume 8286. [Google Scholar]
- Luo, H.; Zuo, L.; Chen, Y.; Chenal, Y.; Chenal, J. Monitoring Surface Deformation of Transmission Corridors in Mountain Areas Based on SBAS-INSAR. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 14 November 2019. [Google Scholar]
- Guo, Z.; Chen, L.; Yin, K.; Shrestha, D.P.; Zhang, L. Quantitative risk assessment of slow-moving landslides from the viewpoint of decision-making: A case study of the Three Gorges Reservoir in China. Eng. Geol. 2020, 273, 105667. [Google Scholar] [CrossRef]
- Medina, V.; Hürlimann, M.; Guo, Z.; Lloret, A.; Vaunat, J. Fast physically-based model for rainfall-induced landslide susceptibility assessment at regional scale. Catena 2021, 201, 105213. [Google Scholar] [CrossRef]
- Boron, S. Forecasting of stresses in overhead power lines running through area affected by the mining damage. IOP Conf. Series: Earth Environ. Sci. 2018, 174, 12002. [Google Scholar] [CrossRef]
- Zhang, L.; Ruan, J.; Du, Z.; Zhou, W.; Li, G.; Gan, Y. Short-Term Failure Warning for Transmission Tower Under Land Subsidence Condition. IEEE Access 2020, 8, 10455–10465. [Google Scholar] [CrossRef]
- Jin, B.; Yin, K.; Li, Q.; Gui, L.; Yang, T.; Zhao, B.; Guo, B.; Zeng, T.; Ma, Z. Susceptibility Analysis of Land Subsidence along the Transmission Line in the Salt Lake Area Based on Remote Sensing Interpretation. Remote Sens. 2022, 14, 3229. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, M.; Tian, R.; Xu, A.; Hou, Y.; Han, B.; Li, X. Coupling Action of Cooling and Dynamic Load Impact on Deformation Characteristics of High-Salinity Saline Soils. Geofluids 2021, 2021, 2304164. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, F.; Ying, S.; Li, S. Study on water and salt migration and deformation properties of unsaturated saline soil under a temperature gradient considering salt adsorption: Numerical simulation and experimental verification. Comput. Geotech. 2021, 134, 104094. [Google Scholar] [CrossRef]
- Xiao, Z.; Lai, Y.; Zhang, M. Study on the freezing temperature of saline soil. Acta Geotech. 2018, 13, 195–205. [Google Scholar] [CrossRef]
- Wan, X.; You, Z.; Wen, H.; Crossley, W. An experimental study of salt expansion in sodium saline soils under transient conditions. J. Arid. Land 2017, 9, 865–878. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Z.; Guo, Z.; Hao, R.; Lv, Q.; Liu, T.; Zhou, T. Investigation of Salt-Frost Heaving Rules and Mechanical Properties of Chlorite Saline Soil along the Duku Highway under Freezing-Thawing Action. Adv. Civ. Eng. 2022, 2022, 3211197. [Google Scholar] [CrossRef]
- Baghabra Al-Amoudi, O.S.; Abduljauwad, S.N. Compressibility and collapse characteristics of arid saline sabkha soils. Eng. Geol. 1995, 39, 185–202. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Wang, S.; Ren, J.; Ding, J.; Wang, Q.; Cheng, D.; Yu, F. Cement-Improved Wetting Resistance of Coarse Saline Soils in Northwest China. J. Test. Eval. 2021, 49, 20180533. [Google Scholar] [CrossRef]
- Dongli, S.; Dongdong, L.; Jiajia, M.; Agbna, G.H.D. Hydrological responses on saline-sodic soil slopes in a coastal reclamation area of China. Catena 2016, 144, 130–140. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Gui, L.; Du, J.; Yin, K.; Do, H.M. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model. Landslides 2020, 17, 567–583. [Google Scholar] [CrossRef]
- Taorui, Z.; Hongwei, J.; Qingli, L.; Kunlong, Y. Landslide displacement prediction based on Variational mode decomposition and MIC-GWO-LSTM model. Stoch. Environ. Res. Risk Assess. 2022, 36, 1353–1372. [Google Scholar] [CrossRef]
- Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti, P.C. Detecting Novel Associations in Large Data Sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef]
- Miao, F.; Wu, Y.; Xie, Y.; Li, Y. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides 2018, 15, 475–488. [Google Scholar] [CrossRef]
- Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides 2019, 16, 677–694. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Chen, B.; Li, Z.; Yu, C.; Fairbairn, D.; Kang, J.; Hu, J.; Liang, L. Three-dimensional time-varying large surface displacements in coal exploiting areas revealed through integration of SAR pixel offset measurements and mining subsidence model. Remote Sens. Environ. 2020, 240, 111663. [Google Scholar] [CrossRef]
- Li, P.; Tan, Z.; Yan, L.; Deng, K. Time series prediction of mining subsidence based on a SVM. Min. Sci. Technol. 2011, 21, 557–562. [Google Scholar] [CrossRef]
- Xu, Y.; Shen, S.; Cai, Z.; Zhou, G. The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Nat. Hazards 2008, 45, 123–135. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Kim, T.; Cho, S. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Yan, R.; Liao, J.; Yang, J.; Sun, W.; Nong, M.; Li, F. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst. Appl. 2021, 169, 114513. [Google Scholar] [CrossRef]
- Mahmoodzadeh, A.; Mohammadi, M.; Ghafoor Salim, S.; Farid Hama Ali, H.; Hashim Ibrahim, H.; Nariman Abdulhamid, S.; Nejati, H.R.; Rashidi, S. Machine Learning Techniques to Predict Rock Strength Parameters. Rock Mech. Rock Eng. 2022, 55, 1721–1741. [Google Scholar] [CrossRef]
- Cai, N.; Li, L.; Zhu, H.; Chen, L.; Li, S.; Meng, F.; Zhang, X. Multiple evaluations, risk assessment, and source identification of heavy metals in surface water and sediment of the Golmud River, northeastern Qinghai-Tibet Plateau, China. Front. Environ. Sci. 2023, 10, 1095731. [Google Scholar] [CrossRef]
- Zhao, H.; Hou, Y.; Jiang, G.; Wu, Q. Risk assessment of the crushed rock structure embankments of the Qinghai-Tibet Railway under a warming climate. Cold Reg. Sci. Technol. 2022, 196, 103509. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L. The Microstructure Characters of Saline Soil in Qarhan Salt Lake Area and Its Behaviors of Mechanics and Compressive Strength. Arab. J. Sci. Eng. 2014, 39, 8649–8658. [Google Scholar] [CrossRef]
- Mishra, P.N.; Scheuermann, A.; Li, L. Significance of Corrections and Impact of Saline Pore Fluid on Kaolin. J. Mater. Civ. Eng. 2018, 30, 2458. [Google Scholar] [CrossRef]
- Chai, S.X.; Yang, B.Z.; Wang, X.Y.; Wang, P.; Zhong, X.M.; Wei, L. Experimental research on effect of salt content on strength of solidified saline soil in inshore with lime. Rock Soil Mech. 2008, 7, 50–53. [Google Scholar]
- Zhang, Y.; Chen, X.; Zou, M.; Tian, R.; Hou, Y.; Han, B. Impact of Isothermal Layering on the Stability of Saline Soil Subgrade in Cold Regions. Geofluids 2022, 2022, 3141964. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J.; Wang, Q.; Cheng, D. Modeling of wetting deformation of coarse saline soil with an improved von Wolffersdorff model. Bull. Eng. Geol. Environ. 2020, 79, 4783–4804. [Google Scholar] [CrossRef]
- Huang, Y.; Xin, Z.; Dor Ji, T.; Wang, Y. Tibetan Plateau greening driven by warming-wetting climate change and ecological restoration in the 21st century. Land Degrad. Dev. 2022, 33, 2407–2422. [Google Scholar] [CrossRef]
- Hu, B.; Wang, H.; Sun, Y.; Hou, J.; Liang, J. Long-Term Land Subsidence Monitoring of Beijing (China) Using the Small Baseline Subset (SBAS) Technique. Remote Sens. 2014, 6, 3648–3661. [Google Scholar] [CrossRef]
- Yastika, P.E.; Shimizu, N.; Abidin, H.Z. Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Adv. Space Res. 2019, 63, 1719–1736. [Google Scholar] [CrossRef]
- Paparrizos, J.; Gravano, L. k-Shape: Efficient and Accurate Clustering of Time Series. ACM SIGMOD Rec. 2016, 45, 69–76. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Long, X.; Wang, J.; Gong, S.; Li, G.; Ju, H. Reference evapotranspiration estimation using long short-term memory network and wavelet-coupled long short-term memory network. Irrig. Drain. 2022, 71, 855–881. [Google Scholar] [CrossRef]
- Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN–LSTM model for gold price time-series forecasting. Neural Comput. Appl. 2020, 32, 17351–17360. [Google Scholar] [CrossRef]
- Lu, W.; Rui, H.; Liang, C.; Jiang, L.; Zhao, S.; Li, K. A Method Based on GA-CNN-LSTM for Daily Tourist Flow Prediction at Scenic Spots. Entropy 2020, 22, 261. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Zeng, T.; Yin, K.; Jiang, H.; Liu, X.; Guo, Z.; Peduto, D. Groundwater level prediction based on a combined intelligence method for the Sifangbei landslide in the Three Gorges Reservoir Area. Sci. Rep. 2022, 12, 11108. [Google Scholar] [CrossRef]
- Li, J.; Dong, Z.; Zhang, Z.; Qian, G.; Luo, W.; Lu, J. Grain-size characteristics of linear dunes on the northern margin of Qarhan Salt Lake, northwestern China. J. Arid. Land 2015, 7, 438–449. [Google Scholar] [CrossRef]
- Li, J.; Gao, F.; Lu, J.; Tao, T. Deformation monitoring and prediction for residential areas in the Panji mining area based on an InSAR time series analysis and the GM-SVR model. Open Geosci. 2019, 11, 738–749. [Google Scholar] [CrossRef]
- Roy, P.; Martha, T.R.; Khanna, K.; Jain, N.; Kumar, K.V. Time and path prediction of landslides using InSAR and flow model. Remote Sens. Environ. 2022, 271, 112899. [Google Scholar] [CrossRef]
- Xing, X.; Zhang, T.; Chen, L.; Yang, Z.; Liu, X.; Peng, W.; Yuan, Z. InSAR Modeling and Deformation Prediction for Salt Solution Mining Using a Novel CT-PIM Function. Remote Sens. 2022, 14, 842. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Intrieri, E.; Ahmed, B.; Catani, F. Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides 2018, 15, 2211–2225. [Google Scholar] [CrossRef]
- Li, L.; Wu, Y.; Miao, F.; Xue, Y.; Huang, Y. A hybrid interval displacement forecasting model for reservoir colluvial landslides with step-like deformation characteristics considering dynamic switching of deformation states. Stoch. Environ. Res. Risk Assess. 2021, 35, 1089–1112. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Yin, K.; Wang, Y.; Shi, X.; Catani, F.; Ahmed, B. Landslide Characterization Applying Sentinel-1 Images and InSAR Technique: The Muyubao Landslide in the Three Gorges Reservoir Area, China. Remote Sens. 2020, 12, 3385. [Google Scholar] [CrossRef]
- Bayer, B.; Simoni, A.; Schmidt, D.; Bertello, L. Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Eng. Geol. 2017, 226, 20–32. [Google Scholar] [CrossRef]
Satellite | Time-Span | Image Number | Off-Nadir Angle (°) | Azimuth Angle (°) | Resolution (Rg × Azi m) |
---|---|---|---|---|---|
Sentinel-1A | 2017/04/28–2021/12/8 | 67 × 2 | 33.7 | −10.4 (Ascending) | 2.33 × 13.97 |
Tower Number | Model | Testing RMSE | Testing R2 | Validation RMSE | Validation R2 |
---|---|---|---|---|---|
#95 | GWO–LSTM | 0.368 | 0.995 | 1.324 | 0.904 |
CNN–LSTM | 0.674 | 0.984 | 1.570 | 0.862 | |
LSTM | 1.664 | 0.904 | 3.079 | 0.482 | |
#151 | GWO–LSTM | 0.163 | 0.998 | 0.326 | 0.978 |
CNN–LSTM | 0.679 | 0.971 | 0.647 | 0.914 | |
LSTM | 1.664 | 0.904 | 1.572 | 0.865 |
Tower Number | Model | Testing RMSE | Testing R2 | Validation RMSE | Validation R2 |
---|---|---|---|---|---|
#95 | GWO–LSTM | 0.413 | 0.941 | 0.470 | 0.734 |
CNN–LSTM | 0.161 | 0.991 | 0.056 | 0.996 | |
LSTM | 1.092 | 0.586 | 0.834 | 0.161 | |
#151 | GWO–LSTM | 0.205 | 0.863 | 0.213 | 0.560 |
CNN–LSTM | 0.061 | 0.988 | 0.338 | 0.923 | |
LSTM | 0.516 | 0.135 | 0.871 | 0.480 |
Tower Number | Model | Testing RMSE | Testing R2 | Validation RMSE | Validation R2 |
---|---|---|---|---|---|
#95 | GWO–LSTM | 0.360 | 0.940 | 0.518 | 0.895 |
CNN–LSTM | 0.259 | 0.969 | 0.251 | 0.971 | |
LSTM | 0.612 | 0.828 | 0.739 | 0.786 | |
#151 | GWO–LSTM | 0.336 | 0.631 | 0.214 | 0.564 |
CNN–LSTM | 0.018 | 0.997 | 0.092 | 0.973 | |
LSTM | 0.399 | 0.481 | 0.288 | 0.213 |
Tower Number | Model | Testing RMSE | Testing R2 | Validation RMSE | Validation R2 |
---|---|---|---|---|---|
#95 | GWO–LSTM | 0.930 | 0.986 | 1.412 | 0.923 |
CNN–LSTM | 0.875 | 0.983 | 1.564 | 0.810 | |
LSTM | 2.054 | 0.905 | 1.568 | 0.809 | |
#151 | GWO–LSTM | 0.490 | 0.989 | 0.813 | 0.922 |
CNN–LSTM | 0.723 | 0.976 | 0.485 | 0.972 | |
LSTM | 1.370 | 0.913 | 1.446 | 0.755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, B.; Zeng, T.; Yang, T.; Gui, L.; Yin, K.; Guo, B.; Zhao, B.; Li, Q. The Prediction of Transmission Towers’ Foundation Ground Subsidence in the Salt Lake Area Based on Multi-Temporal Interferometric Synthetic Aperture Radar and Deep Learning. Remote Sens. 2023, 15, 4805. https://doi.org/10.3390/rs15194805
Jin B, Zeng T, Yang T, Gui L, Yin K, Guo B, Zhao B, Li Q. The Prediction of Transmission Towers’ Foundation Ground Subsidence in the Salt Lake Area Based on Multi-Temporal Interferometric Synthetic Aperture Radar and Deep Learning. Remote Sensing. 2023; 15(19):4805. https://doi.org/10.3390/rs15194805
Chicago/Turabian StyleJin, Bijing, Taorui Zeng, Taohui Yang, Lei Gui, Kunlong Yin, Baorui Guo, Binbin Zhao, and Qiuyang Li. 2023. "The Prediction of Transmission Towers’ Foundation Ground Subsidence in the Salt Lake Area Based on Multi-Temporal Interferometric Synthetic Aperture Radar and Deep Learning" Remote Sensing 15, no. 19: 4805. https://doi.org/10.3390/rs15194805
APA StyleJin, B., Zeng, T., Yang, T., Gui, L., Yin, K., Guo, B., Zhao, B., & Li, Q. (2023). The Prediction of Transmission Towers’ Foundation Ground Subsidence in the Salt Lake Area Based on Multi-Temporal Interferometric Synthetic Aperture Radar and Deep Learning. Remote Sensing, 15(19), 4805. https://doi.org/10.3390/rs15194805