Diurnal Variation Characteristics of Summer Precipitation over the Northern Slope of the Tianshan Mountains, Xinjiang, Northwest China: Basic Features and Responses to the Inhomogeneous Underlying Surface
Abstract
:1. Introduction
2. Data and Methods
2.1. Dataset
2.2. Methods
- 1.
- Calculate the covariance matrix C:
- 2.
- Perform an eigenvalue decomposition on the covariance matrix C:
- 3.
- Select the top n eigenvectors (principal components):
- 4.
- Construct principal component time series:
- 5.
- Rotate the principal components:
3. Results
3.1. Comparison of Precipitation Characteristics
3.2. Diurnal Variations in the Spatial Distribution of Precipitation
3.3. REOF and Coefficient of Variation Analysis
3.4. Diurnal Variation Characteristics of Precipitation at Different Altitudes
3.5. Diurnal Variation Characteristics of Precipitation on Different Land Surface Categories
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, J.-H.; Walther, A.; Nikulin, G.; Chen, D.; Jones, C. Diurnal cycle of precipitation amount and frequency in Sweden: Observation versus model simulation. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 664–674. [Google Scholar] [CrossRef]
- Li, X.; Lau, N.-C.; Lee, T.-C. An Observational Study of the Diurnal Variation of Precipitation over Hong Kong and the Underlying Processes. J. Appl. Meteorol. Climatol. 2018, 57, 1385–1402. [Google Scholar] [CrossRef]
- Dai, A.; Deser, C. Diurnal and semidiurnal variations in global surface wind and divergence fields. J. Geophys. Res. Atmos. 1999, 104, 31109–31125. [Google Scholar] [CrossRef]
- Dai, A.; Giorgi, F.; Trenberth, K.E. Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res. Atmos. 1999, 104, 6377–6402. [Google Scholar] [CrossRef]
- Lynn, J.; Peeva, N. Communications in the IPCC’s Sixth Assessment Report cycle. Clim. Chang. 2021, 169, 18. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W. Diurnal cycles of precipitation over subtropical China in IPCC AR5 AMIP simulations. Adv. Atmos. Sci. 2013, 30, 1679–1694. [Google Scholar] [CrossRef]
- Li, D.; Sun, J.; Fu, S.; Wei, J.; Wang, S.; Tian, F. Spatiotemporal characteristics of hourly precipitation over central eastern China during the warm season of 1982–2012. Int. J. Climatol. 2016, 36, 3148–3160. [Google Scholar] [CrossRef]
- Ombadi, M.; Risser, M.D.; Rhoades, A.M.; Varadharajan, C. A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature 2023, 619, 305–310. [Google Scholar] [CrossRef]
- Abulikemu, A.; Wang, Y.; Gao, R.; Wang, Y.; Xu, X. A Numerical Study of Convection Initiation Associated with a Gust Front in Bohai Bay Region, North China. J. Geophys. Res. Atmos. 2019, 124, 13843–13860. [Google Scholar] [CrossRef]
- Abulikemu, A.; Xu, X.; Wang, Y.; Ding, J.; Wang, Y. Atypical occlusion process caused by the merger of a sea-breeze front and gust front. Adv. Atmos. Sci. 2015, 32, 1431–1443. [Google Scholar] [CrossRef]
- Kong, M.; Abulikemu, A.; Zheng, J.; Aireti, M.; An, D. A Case Study on Convection Initiation Associated with Horizontal Convective Rolls over Ili River Valley in Xinjiang, Northwest China. Water 2022, 14, 1017. [Google Scholar] [CrossRef]
- Patz, J.A.; Campbell-Lendrum, D.; Holloway, T.; Foley, J.A. Impact of regional climate change on human health. Nature 2005, 438, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Yuan, W.; Yu, R. Diurnal cycle of rainfall in amount, frequency, intensity, duration, and the seasonality over the UK. Int. J. Climatol. 2018, 38, 4967–4978. [Google Scholar] [CrossRef]
- Carbone, R.E.; Tuttle, J.D.; Ahijevych, D.A.; Trier, S.B. Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci. 2002, 59, 2033–2056. [Google Scholar] [CrossRef]
- Wang, C.-C.; Huang, H.-L.; Li, J.-L.; Leou, T.-M.; Chen, G.T.-J. An Evaluation of the Performance of the CWB NFS Model for Warm-Season Rainfall Distribution and Propagation over the East Asian Continent. Terr. Atmos. Ocean. Sci. 2011, 22, 49–69. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, L.M.d.S.; Satyamurty, P.; Machado, L.A.T. Diurnal variation of precipitation in central Amazon Basin. Int. J. Climatol. 2014, 34, 3574–3584. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Chen, H.; Yu, R. Diurnal Variations of Summer Precipitation over the Qilian Mountains in Northwest China. J. Meteorol. Res. 2019, 33, 18–30. [Google Scholar] [CrossRef]
- Rui, Y.; Shuliang, Z.; Peng, S.; Yaojin, B.; Qiqi, Y.; Zongkui, G.; Yaru, Z. Diurnal Variations in Different Precipitation Duration Events over the Yangtze River Delta Urban Agglomeration. Remote Sens. 2022, 14, 5244. [Google Scholar] [CrossRef]
- Fu, X.; Yang, X.Q.; Sun, X. Spatial and Diurnal Variations of Summer Hourly Rainfall over Three Super City Clusters in Eastern China and Their Possible Link to the Urbanization. J. Geophys. Res. Atmos. 2019, 124, 5445–5462. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S. Estimation and spatiotemporal evolution of groundwater storage on the northern slope of the Tianshan Mountains over the past three decades. Acta Geogr. Sin. 2023, 78, 1744–1763. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, C.X.; Yang, Z.P. Strategies for environmentally friendly development in the Northern Tianshan Mountain Economic Zone based on scenario analysis. J. Clean. Prod. 2017, 156, 74–82. [Google Scholar] [CrossRef]
- Fang, C.; Gao, Q.; Zhang, X.; Cheng, W. Spatiotemporal characteristics of the expansion of an urban agglomeration and its effect on the eco-environment: Case study on the northern slope of the Tianshan Mountains. Sci. China Earth Sci. 2019, 62, 1461–1472. [Google Scholar] [CrossRef]
- Nie, C.; Qin, C. Study on Intimidation of Water Resources on Urbanization of City Group in the Northern Slope of Tianshan Mountain. Yellow River 2020, 42, 57–62. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, Z.; Yang, Q. Characteristics of Area Precipitation in Xinjiang Region with Its Variations. J. Appl. Meteorol. Sci. 2008, 19, 326–332. [Google Scholar]
- Chen, C.; Wang, J.; Tang, Y.; Mao, W. Diurnal Variations of Summer Precipitation in Xinjiang. J. Appl. Meteorol. Sci. 2017, 28, 72–85. [Google Scholar] [CrossRef]
- Li, J.; Chen, T.; Li, N. Diurnal Variation of Summer Precipitation across the Central Tian Shan Mountains. J. Appl. Meteorol. Climatol. 2017, 56, 1537–1550. [Google Scholar] [CrossRef]
- Cao, J.; Ma, S.; Yuan, W.; Wu, Z. Characteristics of diurnal variations of warm-season precipitation over Xinjiang Province in China. Atmos. Ocean. Sci. Lett. 2022, 15, 100113. [Google Scholar] [CrossRef]
- Cai, P.; Hamdi, R.; Luo, G.; He, H.; Zhang, M.; Termonia, P.; De Maeyer, P. Agriculture intensification increases summer precipitation in Tianshan Mountains, China. Atmos. Res. 2019, 227, 140–146. [Google Scholar] [CrossRef]
- Yu, R.; Zhou, T.; Xiong, A.; Zhu, Y.; Li, J. Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett. 2007, 34, L01704. [Google Scholar] [CrossRef]
- Li, J.; Yu, R.; Zhou, T. Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China. J. Clim. 2008, 21, 6036–6043. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, R.; Chen, H.; Dai, A.; Pan, Y. Summer Precipitation Frequency, Intensity, and Diurnal Cycle over China: A Comparison of Satellite Data with Rain Gauge Observations. J. Clim. 2008, 21, 3997–4010. [Google Scholar] [CrossRef]
- Chen, G.; Sha, W.; Iwasaki, T. Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality. J. Geophys. Res. 2009, 114, D13103. [Google Scholar] [CrossRef]
- Chen, G.; Sha, W.; Iwasaki, T. Diurnal variation of precipitation over southeastern China: 2. Impact of the diurnal monsoon variability. J. Geophys. Res. 2009, 114, D21105. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Gao, F.; Xiao, X. Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology. J. Geophys. Res. Atmos. 2012, 117, D20115. [Google Scholar] [CrossRef]
- Chen, C.-S.; Lin, Y.-L.; Zeng, H.-T.; Chen, C.-Y.; Liu, C.-L. Orographic effects on heavy rainfall events over northeastern Taiwan during the northeasterly monsoon season. Atmos. Res. 2013, 122, 310–335. [Google Scholar] [CrossRef]
- Xu, R.; Ming, J. Evaluation of precipitation forecasts from NJU 4 km forecasting system in Xinjiang during summer. J. Meteorol. Sci. 2022, 42, 804–815. [Google Scholar]
- Li, Z.; Abulikemu, A.; Zhu, K.; Mamtimin, A.; Zeng, Y.; Li, J.; Abulimiti, A.; Kadier, Z.; Abuduaini, A.; Li, C.; et al. Diurnal Variation Characteristics of Summer Precipitation and Related Statistical Analysis in the Ili Region, Xinjiang, Northwest China. Remote Sens. 2023, 15, 3954. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Wang, Y.; Xie, P. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res. 2010, 115, D02114. [Google Scholar] [CrossRef]
- Zang, H.; Wang, Y.; Li, Z. American Systems for Earth Observation Satellite Data Products and Services; China Meteorological Press: Beijing, China, 2011; pp. 19–199. [Google Scholar]
- Liao, R.; Zhang, D.; Shen, Y. Validation of Six Satellite-Derived Rainfall Estimates over China. Meteorol. Mon. 2015, 41, 970–979. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, M.; Zhu, K.; Zhou, B. What Is the Main Cause of Diurnal Variation and Nocturnal Peak of Summer Precipitation in Sichuan Basin, China? The Key Role of Boundary Layer Low-Level Jet Inertial Oscillations. J. Geophys. Res. Atmos. 2019, 124, 2643–2664. [Google Scholar] [CrossRef]
- Zhu, K.; Xue, M.; Yang, N.; Zhang, C. How Well Does 4-km WRF Model Predict Three-Dimensional Reflectivity Structure over China as Compared to Radar Observations? J. Geophys. Res. Atmos. 2023, 128, e2022JD038143. [Google Scholar] [CrossRef]
- Zhu, K.; Xue, M.; Zhou, B.; Zhao, K.; Sun, Z.; Fu, P.; Zheng, Y.; Zhang, X.; Meng, Q. Evaluation of Real-Time Convection-Permitting Precipitation Forecasts in China During the 2013–2014 Summer Season. J. Geophys. Res. Atmos. 2018, 123, 1037–1064. [Google Scholar] [CrossRef]
- Morrison, H.; Curry, J.A.; Khvorostyanov, V.I. A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. J. Atmos. Sci. 2005, 62, 1665–1677. [Google Scholar] [CrossRef]
- Pleim, J.E. A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Pleim, J.E. A Simple, Efficient Solution of Flux–Profile Relationships in the Atmospheric Surface Layer. J. Appl. Meteorol. Climatol. 2006, 45, 341–347. [Google Scholar] [CrossRef]
- Collins, W.D.; Rasch, P.J.; Boville, B.A.; Hack, J.J.; Mccaa, J.R.; Williamson, D.L. Description of the NCAR Community Atmosphere Model (CAM 3.0); University Corporation for Atmospheric Research: Boulder, CO, USA, 2004; p. 226. [Google Scholar]
- Unal, Y.S.; Deniz, A.; Toros, H.; Incecik, S. Temporal and spatial patterns of precipitation variability for annual, wet, and dry seasons in Turkey. Int. J. Climatol. 2012, 32, 392–405. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F. Sampling Errors in the Estimation of Empirical Orthogonal Functions. Mon. Weather Rev. 1982, 7, 699–706. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X. Evaluation of Five Satellite-Based Precipitation Products in Two Gauge-Scarce Basins on the Tibetan Plateau. Remote Sens. 2018, 10, 1316. [Google Scholar] [CrossRef]
- He, M.; Chen, H.; Yu, R. Evaluation of Warm-Season Rainfall Diurnal Variation over the Qilian Mountains in Northwest China in ERA5 Reanalysis. Atmosphere 2022, 13, 674. [Google Scholar] [CrossRef]
- Chen, T.; Li, J.; Zhang, Y.; Chen, H.; Li, P.; Che, H. Evaluation of Hourly Precipitation Characteristics from a Global Reanalysis and Variable-Resolution Global Model over the Tibetan Plateau by Using a Satellite-Gauge Merged Rainfall Product. Remote Sens. 2023, 15, 1013. [Google Scholar] [CrossRef]
- Guo, Y.Z.Y.; Zhang, T.; Yao, J.; Gu, Z. Diurnal Variation of Summer Extreme Precipitation in Tianshan Mountains of Xinjiang. Desert Oasis Meteorol. 2023, 17, 44–51. [Google Scholar]
- Karl, T.R.; Knight, R.W. Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–241. [Google Scholar] [CrossRef]
- Min, Y.; Huang, W.; Ma, M.; Zhang, Y. Simulations in the Topography Effects of Tianshan Mountains on an Extreme Precipitation Event in the Ili River Valley, China. Atmosphere 2021, 12, 750. [Google Scholar] [CrossRef]
- Zhang, Y.; Hanati, G.; Danierhan, S.; Liu, Q.; Xu, Z. Evaluation and Comparison of Daily GPM/TRMM Precipitation Products over the Tianshan Mountains in China. Water 2020, 12, 3088. [Google Scholar] [CrossRef]
- Tian, P.; Jian, B.; Li, J.; Cai, X.; Wei, J.; Zhang, G. Land-Use-Change-Induced Cooling and Precipitation Reduction in China: Insights from CMIP6 Models. Sustainability 2023, 15, 12191. [Google Scholar] [CrossRef]
- Kavitha, M.; Nair, P.R.; Girach, I.A.; Aneesh, S.; Sijikumar, S.; Renju, R. Diurnal and seasonal variations in surface methane at a tropical coastal station: Role of mesoscale meteorology. Sci. Total Environ. 2018, 631–632, 1472–1485. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Hourly station-based precipitation characteristics over the Tibetan Plateau. Int. J. Climatol. 2018, 38, 1560–1570. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol. 2017, 37, 305–327. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J. Diurnal Variations of Summer Precipitation Linking to the Topographical Conditions over the Beijing-Tianjin-Hebei Region. Sci. Rep. 2020, 10, 9701. [Google Scholar] [CrossRef]
- Cao, B.; Yang, X.; Li, B.; Lu, Y.; Wen, J. Diurnal Variation in Cloud and Precipitation Characteristics in Summer over the Tibetan Plateau and Sichuan Basin. Remote Sens. 2022, 14, 2711. [Google Scholar] [CrossRef]
- Fu, S.; Li, D.; Sun, J.; Si, D.; Ling, J.; Tian, F. A 31-year trend of the hourly precipitation over South China and the underlying mechanisms. Atmos. Sci. Lett. 2016, 17, 216–222. [Google Scholar] [CrossRef]
- Abulikemu, A.; Ming, J.; Xu, X.; Zhuge, X.; Wang, Y.; Zhang, Y.; Zhang, S.; Yu, B.; Aireti, M. Mechanisms of Convection Initiation in the Southwestern Xinjiang, Northwest China: A Case Study. Atmosphere 2020, 11, 1335. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, L.; Zhang, Y. Numerical Simulation of Mesoscale System during a Rare Torrential Rainstorm Process in Yili of Xinjiang. J. Arid Meteorol. 2020, 38, 290–300. [Google Scholar]
Parameterization Scheme | Type |
---|---|
Lateral boundaries | NCEP GFS real–time forecasts at 3-hourly intervals. |
Horizontal grid points | 1408 × 1080 |
Grid spacing | 4 km |
Vertical levels | 51 |
Microphysics | Morrison 2–moment [44] |
Planetary boundary layer scheme | Asymmetrical Convective Model version 2 [45] |
Land surface and surface layer schemes | Pleim–Xiu [46] |
Short- and long-wave radiation schemes | CAM [47] |
Time Slot Name | Time Range (LST = UTC + 6) |
---|---|
Midnight | 2300–0100 |
Early morning | 0200–0400 |
Dawn | 0500–0700 |
Morning | 0800–1000 |
Noon | 1100–1300 |
Afternoon | 1400–1600 |
Nightfall | 1700–1900 |
Evening | 2000–2200 |
PI Levels | 5 | 6 | 7 | 8 | 9 | 10 | 5–10 |
---|---|---|---|---|---|---|---|
PI (mm h−1) | 0.41 | 0.57 | 0.82 | 1.23 | 2.08 | 3.10 | 0.81 |
Contribution rates (%) | 6.03 | 4.84 | 12.32 | 19.39 | 15.12 | 28.98 | 86.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadier, Z.; Li, Z.; Abulikemu, A.; Zhu, K.; Abulimiti, A.; An, D.; Abuduaini, A. Diurnal Variation Characteristics of Summer Precipitation over the Northern Slope of the Tianshan Mountains, Xinjiang, Northwest China: Basic Features and Responses to the Inhomogeneous Underlying Surface. Remote Sens. 2023, 15, 4833. https://doi.org/10.3390/rs15194833
Kadier Z, Li Z, Abulikemu A, Zhu K, Abulimiti A, An D, Abuduaini A. Diurnal Variation Characteristics of Summer Precipitation over the Northern Slope of the Tianshan Mountains, Xinjiang, Northwest China: Basic Features and Responses to the Inhomogeneous Underlying Surface. Remote Sensing. 2023; 15(19):4833. https://doi.org/10.3390/rs15194833
Chicago/Turabian StyleKadier, Zulipina, Zhiyi Li, Abuduwaili Abulikemu, Kefeng Zhu, Aerzuna Abulimiti, Dawei An, and Abidan Abuduaini. 2023. "Diurnal Variation Characteristics of Summer Precipitation over the Northern Slope of the Tianshan Mountains, Xinjiang, Northwest China: Basic Features and Responses to the Inhomogeneous Underlying Surface" Remote Sensing 15, no. 19: 4833. https://doi.org/10.3390/rs15194833
APA StyleKadier, Z., Li, Z., Abulikemu, A., Zhu, K., Abulimiti, A., An, D., & Abuduaini, A. (2023). Diurnal Variation Characteristics of Summer Precipitation over the Northern Slope of the Tianshan Mountains, Xinjiang, Northwest China: Basic Features and Responses to the Inhomogeneous Underlying Surface. Remote Sensing, 15(19), 4833. https://doi.org/10.3390/rs15194833