3-D Millimeter Wave Fast Imaging Technique Based on 2-D SISO/MIMO Array
Abstract
:1. Introduction
2. Theory and Formulation
2.1. The Proposed Algorithm for SISO Array Imaging
2.2. The Proposed Algorithm for MIMO Array Imaging
2.3. Efficient Range Decomposing Algorithm (ERDA) Combining MIMO and SISO
2.4. Computation Complexity
2.5. Error Analysis
3. Numerical Simulation and Experimental Verification
3.1. SISO/MIMO Array Simulation Experiment of Siemens Star
3.2. Point Target Simulation Experiment
3.3. Comparison of Algorithms in SISO Array Imaging Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, B.; Cui, Z.; Lu, B.; Qin, Y.; Liu, Q.; Chen, P.; He, Y.; Jiang, J.; He, X.; Deng, X.; et al. 340-GHz 3-D Imaging Radar With 4Tx-16Rx MIMO Array. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 509–519. [Google Scholar] [CrossRef]
- Zhong, H.; Xu, J.; Xie, X.; Yuan, T.; Reightler, R.; Madaras, E.; Zhang, X.C. Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens. J. 2005, 5, 203–208. [Google Scholar] [CrossRef]
- Meo, S.D.; Espín-López, P.F.; Martellosio, A.; Pasian, M.; Matrone, G.; Bozzi, M.; Magenes, G.; Mazzanti, A.; Perregrini, L.; Svelto, F.; et al. On the feasibility of breast cancer imaging systems at millimeter-waves frequencies. IEEE Trans. Microw. Theory Tech. 2017, 65, 1795–1806. [Google Scholar] [CrossRef]
- Sheen, D.M.; Mcmakin, D.L.; Hall, T.E.; Severtsen, R.H. Active millimeter-wave standoff and portal imaging techniques for personnel screening. In Proceedings of the 2009 IEEE Conference on Technologies for Homeland Security, Boston, MA, USA, 11–12 May 2009; pp. 440–447. [Google Scholar]
- Sheen, D.M.; Mcmakin, D.L.; Hall, T.E. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Techn. 2001, 9, 1581–1592. [Google Scholar] [CrossRef]
- Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D. Real-Time Wideband Holographic Surveillance System. U.S. Patent 5,557,283, 17 September 1996. [Google Scholar]
- Zhuge, X.; Yarovoy, A.G. A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection. IEEE Trans. Geosci. Remote Sens. 2011, 1, 509–518. [Google Scholar] [CrossRef]
- Gumbmann, F.; Schmidt, L. Millimeter-wave imaging with optimized sparse periodic array for short-range applications. IEEE Trans. Geosci. Remote Sens. 2011, 10, 3629–3638. [Google Scholar] [CrossRef]
- Yang, G.; Li, C.; Wu, S.; Liu, X.; Fang, G. MIMO-SAR 3-D Imaging Based on Range Wavenumber Decomposing. IEEE Sens. J. 2021, 21, 24309–24317. [Google Scholar] [CrossRef]
- Zhu, R.; Zhou, J.; Jiang, G.; Fu, Q. Range Migration Algorithm for Near-Field MIMO-SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2280–2284. [Google Scholar] [CrossRef]
- Fan, B.; Gao, J.; Li, H.; Jiang, Z.; He, Y. Near-Field 3-D SAR Imaging Using a Scanning Linear MIMO Array with Arbitrary Topologies. IEEE Access. 2020, 8, 6782–6791. [Google Scholar] [CrossRef]
- Bleh, D.; Rosch, M.; Kuri, M.; Dyck, A.; Tessmann, A.; Leuther, A.; Wagner, S.; Weismann-Thaden, B.; Stulz, H.P.; Zink, M.; et al. W-Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging. IEEE Trans. Microw. Theory Tech. 2017, 65, 3474–3484. [Google Scholar] [CrossRef]
- Gao, J.; Qin, Y.; Deng, B.; Wang, H.; Li, X. Novel effificient 3-D shortrange imaging algorithms for a scanning 1D-MIMO array. IEEE Trans. Image Process. 2018, 27, 3631–3643. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.S.; Schiessl, A.; Schmidt, L.-P. A novel fully electronic active real-time imager based on a planar multistatic sparse array. IEEE Trans. Microw. Theory Techn. 2011, 12, 3567–3576. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Genghammer, A.; Schiessl, A.; Schmidt, L. Fully electronic E-band personnel imager of 2m2 aperture based on a multistatic architecture. IEEE Trans. Microw. Theory Techn. 2013, 1, 651–657. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Mccorkle, J.W. Focusing of synthetic aperture ultra wideband data. In Proceedings of the IEEE 1991 International Conference on Systems Engineering, Dayton, OH, USA, 1–3 August 1991; Volume 8, pp. 1–5. [Google Scholar]
- Mccorkle, J.W.; Rofheart, M. Order N2 log(N) backprojector algorithm for focusing wide-angle wide-bandwidth arbitrary-motion synthetic aperture radar. Proc. SPIE Radar Sensor Technol. 1996, 6, 25–36. [Google Scholar]
- Boag, A.; Bresler, Y.; Michielssen, E. A multilevel domain decomposition algorithm for fast O(N2/logN) reprojection of tomographic images. IEEE Trans. Image Process. 2000, 9, 633–636. [Google Scholar] [CrossRef]
- Ponce, O.; Prats-Iraola, P.; Pinheiro, M.; Rodriguez-Cassola, M.; Scheiber, R.; Reigber, A.; Moreira, A. Fully polarimetric high-resolution 3-D imaging with circular SAR at L-band. IEEE Trans. Geosci. Remote Sens. 2014, 6, 3074–3090. [Google Scholar] [CrossRef]
- Yegulalp, A.F. Fast backprojection algorithm for synthetic aperture radar. Proc. IEEE Radar Conf. Radar Next Millennium 1999, 4, 60–65. [Google Scholar]
- Zhuge, X.; Yarovoy, A.G. Three-dimensional near-field MIMO array imaging using range migration techniques. IEEE Trans. Image Process. 2012, 6, 3026–3033. [Google Scholar] [CrossRef]
- Wu, S.; Wang, H.; Li, C.; Liu, X.; Fang, G. A modified omega-K algorithm for near-fifield single-frequency MIMO-arc-array-based azimuth imaging. IEEE Trans. Antennas Propag. 2021, 8, 4909–4922. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, Q.; Tian, X.; Chang, T.; Cui, H.-L. Near-field 3-D millimeter-wave imaging using MIMO RMA with range compensation. IEEE Trans. Microw. Theory Techn. 2019, 3, 1157–1166. [Google Scholar] [CrossRef]
- Guo, Q.; Zhang, X.; Chang, T.; Cui, H.-L.; Tian, X. Three dimensional bistatic array imaging using range migration algorithm. Electron. Lett. 2017, 2, 193–194. [Google Scholar] [CrossRef]
- Tan, K.; Wu, S.; Liu, X.; Fang, G. A modified omega-K algorithm for near-field MIMO array-based 3-D reconstruction. IEEE Geosci. Remote Sens. Lett. Oct. 2018, 10, 1555–1559. [Google Scholar] [CrossRef]
- Yang, G.; Li, C.; Gao, H.; Fang, G. Phase shift migration with SIMO superposition for MIMO-side looking imaging at terahertz band. IEEE Access 2020, 8, 208418–208426. [Google Scholar] [CrossRef]
- Tan, K.; Wu, S.; Liu, X.; Fang, G. Omega-K algorithm for near-field 3-D image reconstruction based on planar SIMO/MIMO array. IEEE Trans. Geosci. Remote Sens. 2019, 4, 2381–2394. [Google Scholar] [CrossRef]
- Wang, J.; Aubry, P.; Yarovoy, A. 3-D short-range imaging with irregular MIMO arrays using NUFFT-based range migration algorithm. IEEE Trans. Geosci. Remote Sens. 2020, 7, 4730–4732. [Google Scholar] [CrossRef]
- Tan, K.; Chen, X.; Wu, S.; Fang, G. Efficient frequency scaling algorithm for short-range 3-D holographic imaging based on a scanning MIMO array. IEEE Trans. Microw. Theory Techn. 2020, 9, 3885–3897. [Google Scholar] [CrossRef]
- Tan, K.; Chen, X. Fast 3-D image reconstruction on nonregular UWB sparse MIMO planar array using scaling techniques. IEEE Trans. Microw. Theory Techn. 2021, 1, 222–234. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Hu, J.; Li, C.; Shi, S.; Fang, G. An efficient algorithm based on CSA for THz stepped-frequency SAR imaging. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Hu, J.; Shi, S.; Li, C.; Cheng, W.; Fang, G. An Efficient Algorithm Based on Frequency Scaling for THz Stepped-Frequency SAR Imaging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, Y.; Shao, W.; Lin, B.; Li, C.; Fang, G. A Fast 3-D Chirp Scaling Imaging Technique for Millimeter-Wave Near-Field Imaging. IEEE Trans. Microw. Theory Techn. 2023, 2, 827–841. [Google Scholar] [CrossRef]
- Fromenteze, T.; Yurduseven, O.; Berland, F.; Decroze, C.; Smith, D.R.; Yarovoy, A.G. A transverse spectrum deconvolution technique for MIMO short-range Fourier imaging. IEEE Trans. Geosci. Remote Sens. 2019, 9, 6311–6324. [Google Scholar] [CrossRef]
- Alvarez, Y.; Rodriguez-Vaqueiro, Y.; Gonzalez-Valdes, B.; Rappaport, C.; Las-Heras, F.; Martinez-Lorenzo, J. Three dimensional compressed sensing-based millimeter-wave imaging. IEEE Trans. Antennas Propag. 2015, 12, 2868–5873. [Google Scholar] [CrossRef]
- Li, S.; Zhao, G.; Sun, H.; Amin, M. Compressive sensing imaging of 3-D object by a holographic algorithm. IEEE Trans. Antennas Propag. 2018, 12, 7295–7304. [Google Scholar] [CrossRef]
- Zhu, R.; Zhou, J.; Chen, B.; Fu, Q.; Jiang, G. Sequential frequency domain imaging algorithm for near-field MIMO-SAR with arbitrary scanning paths. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2019, 8, 2967–2975. [Google Scholar] [CrossRef]
Algorithm | Image Entropy | Image Contrast |
---|---|---|
SISO-RMA | 13.22 | 7.71 |
SISO-PSM | 13.26 | 7.65 |
SISO-RDA (proposed) | 12.97 | 7.99 |
Algorithm | Image Entropy | Image Contrast | Computation Time (s) |
---|---|---|---|
MIMO-RMA | 13.40 | 7.76 | 38.75 |
MIMO-PSM | 12.79 | 8.97 | 18.64 |
MIMO-RDA (proposed) | 12.83 | 8.92 | 8.99 |
MIMO-ERDA (proposed) | 12.60 | 10.23 | 8.22 |
Algorithms | 3-dB Beamwidth (cm) | PSLR (dB) |
---|---|---|
MIMO-RMA | 1.230 | −25.61 |
MIMO-PSM | 1.237 | −25.38 |
MIMO-RDA (proposed) | 1.236 | −25.34 |
MIMO-ERDA (proposed) | 1.234 | −25.67 |
Algorithm | Image Entropy | Image Contrast | Computation Time (s) |
---|---|---|---|
SISO-RMA | 13.62 | 31.44 | 2.54 |
SISO-PSM | 13.78 | 30.33 | 17.2 |
SISO-RDA (proposed) | 13.74 | 30.75 | 0.89 |
Algorithm | Image Entropy | Image Contrast | Computation Time (s) |
---|---|---|---|
SISO-RMA | 13.07 | 50.42 | 3.89 |
SISO-PSM | 13.11 | 50.52 | 30.26 |
SISO-RDA (proposed) | 13.15 | 49.49 | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, B.; Yuan, Y.; Ji, Y.; Li, C.; Liu, X.; Fang, G. 3-D Millimeter Wave Fast Imaging Technique Based on 2-D SISO/MIMO Array. Remote Sens. 2023, 15, 4834. https://doi.org/10.3390/rs15194834
Lin B, Yuan Y, Ji Y, Li C, Liu X, Fang G. 3-D Millimeter Wave Fast Imaging Technique Based on 2-D SISO/MIMO Array. Remote Sensing. 2023; 15(19):4834. https://doi.org/10.3390/rs15194834
Chicago/Turabian StyleLin, Bo, Yubing Yuan, Yicai Ji, Chao Li, Xiaojun Liu, and Guangyou Fang. 2023. "3-D Millimeter Wave Fast Imaging Technique Based on 2-D SISO/MIMO Array" Remote Sensing 15, no. 19: 4834. https://doi.org/10.3390/rs15194834
APA StyleLin, B., Yuan, Y., Ji, Y., Li, C., Liu, X., & Fang, G. (2023). 3-D Millimeter Wave Fast Imaging Technique Based on 2-D SISO/MIMO Array. Remote Sensing, 15(19), 4834. https://doi.org/10.3390/rs15194834